
Image Anal Stereol 2024;43:85-95  doi: 105566/ias.2974 
Original Research Paper 

85 
 

MORPHOLOGY OF GRAPHITE AGGLOMERATES OBTAINED BY SPHERI-
CAL AGGLOMERATION VIA PROPAGATION-BASED X-RAY MICROTO-
MOGRAPHY 

JULIA SCHREIER AND ULRICH BRÖCKEL 
University of Applied Sciences Trier, Institute for Micro-Process-Engineering and Particle Technology (IMiP), 
Umwelt-Campus Birkenfeld, P.O. Box 1380, D-55761 Birkenfeld, Germany 
e-mail: j.schreier@umwelt-campus.de; u.broeckel@umwelt-campus.de 
(Received July 11, 2023; revised February 9, 2024; accepted February 11, 2024) 

ABSTRACT 

The aim of this work was to develop a novel method for studying the 3D morphology of agglomerates 
obtained by spherical agglomeration. It has been found, that the combination of shock-freezing the samples 
in a mixture of ethanol and dry ice followed by an X-ray microtomography measurement leads to useful 
results. Hereby, the image quality for low absorbing material like the used graphite was enhanced by prop-
agation-based X-ray microtomography, which results in phase contrast images. We also discuss our 3D 
image post-processing routine, which is used to determine the morphology parameters sphericity, fractal 
dimension and packing density. Furthermore, a two-dimensional kernel density estimation is used to cal-
culate the joint probability density of agglomerate size and the morphology parameter. In future, this 
method will be used to determine the morphological behaviour of agglomerates during the different phases 
of spherical agglomeration. 

Keywords: morphology, phase-contrast, spherical agglomeration, two-dimensional characterisation, X-
ray microtomography. 

INTRODUCTION  
Spherical agglomeration, or agglomeration in liq-

uids, has been used for more than 100 years, as Catter-
mole’s (1904) patent shows. Fundamentally, spherical 
agglomeration consists of a three-phase system (suspen-
sion liquid / particles / binding liquid) and is conducted 
in a stirred vessel. Typical particle sizes range from 0.1 
µm up to several 100 µm according to various studies 
(Dawei et al., 1986; Drzymala et al., 1991; House and 
Veal, 1989; Kelsall and Pitt, 1987; Petela et al., 1995; 
Sirianni et al., 1969; Wahl and Baker, 1971) with water 
commonly used as suspension liquid. Additionally, the 
binding liquid must fulfil two requirements; being im-
miscible with the suspension liquid and preferably wet-
ting the suspended particles. 

Several studies have investigated the kinetics of the 
spherical agglomeration process, including Bemer 
(1979), Bos (1983), Kawashima & Capes (1974; 1976), 
and Kawashima et al. (1981). The process consists of 
three distinct phases. Following the addition of binding 
liquid to the particle-water-suspension, the agglomera-
tion process is initiated. In the beginning, particles and 
binding liquid droplets collide due to turbulent mixing 
through the stirrer. When the binding liquid meets the 

requirement to preferentially wet the suspended parti-
cles, the binding liquid droplets and the particles stick 
together after the collision. Depending on the size of the 
collision partners, the outcome is either a droplet cov-
ered with particles or a wetted particle. Over time, and 
through the power input of the stirrer, the wetted parti-
cles stick together due to capillary forces and creating 
microagglomerates. This initial stage is known as the 
wetting phase.  

The formation of microagglomerates is optically de-
tectable by clarification of the turbid suspension, which 
was first described by Bos (1983). Turbidity decreases 
during the beginning of the fast growth regime, which is 
the second process phase. Furthermore, agglomerate 
size rapidly increases until reaching equilibrium after 
which no further growth occurs.  

During spherical agglomeration, these three process 
phases can also be monitored by measuring the stirrer 
torque. In the early stages of agglomeration, the torque 
is stable. As the turbidity of the suspension decreases, 
the torque also decreases. After reaching a minimum, the 
torque then increases towards another stable plateau. 
These phenomena were first published by Kawashima & 
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Capes (1976) and in a previous study published by 
Schreier & Bröckel (2021).  

The aim of this paper is to present a method to ex-
amine the agglomerate morphology during the agglom-
eration process. This approach will be the basis for un-
derstanding the torque behaviour mentioned above. 
There are a few publications in the literature character-
ising the morphology of agglomerates obtained by 
spherical agglomeration via either scanning electron mi-
croscopy (SEM) or optical microscopy coupled with 2D 
image analysis (Thati and Rasmuson, 2012, Kardos et 
al., 2016; Guo et al., 2022;). The morphological param-
eters of 2D imaging depend on orientation of the object. 
This limitation can be overcome by using X-ray mi-
crotomography (µCT) in combination with 3D image 
analysis (Miller and Lin, 2004; Gilson and Bröckel, 
2015; Dioguardi et al., 2017; Dosta et al., 2018; Leißner 
et al., 2019; Schreier and Bröckel, 2021). Other studies 
have also been done to characterise the morphology of 
agglomerates using µCT, e.g. agglomerates produced by 
spray fluidised bed (Pashminehazar et al., 2016; 2018). 
All these experiments have in common that they charac-
terise the morphology at the end of the process.  

In our study, our objective is to analyse the agglom-
erate morphology over the entire spherical agglomera-
tion in the future. To achieve this goal, we use a specific 
sample preparation that minimises the influence on the 
morphology of two exemplary samples (after 30 s & 
150 s agglomeration time), but is also stable enough for 
the µCT measurement (see section Sample Preparation 
for µCT). Another objective is to illustrate the image 
post-processing routine used to obtain the morphologi-
cal parameters on these exemplary samples (see section 
Image Processing & Analysis Routine). Furthermore, 
the object discrete data obtained by 3D image analysis 
can be used to calculate the joint two-dimensional num-
ber-based probability density distributions by two-di-
mensional kernel density estimation (see section Two-
dimensional Kernel Density Distribution). This distribu-
tion type offers a better insight into the dependence of 
the analysed parameters on each other, e.g. the size de-
pendence of the individual morphological parameters. 

PROPAGATION-BASED X-RAY 
MICROTMOGRAPHY 

The basic setup of a laboratory µCT is illustrated in 
Fig. 1 and consists of a cone beam X-ray source, a rota-
tionally symmetric sample, and a CCD camera as detec-
tor. 

During the measurement, the sample rotates around 
its axis in pre-defined angular steps, each time taking a 
projection image. This set of projection images serves as  

Fig. 1. µCT setup. 

the input for the subsequent reconstruction algorithm, 
which transforms the dataset into a 3D representation of 
the sample.  

Generally, X-rays interacting with material can be 
described by the complex refractive index 𝑛𝑛 (Eq. (1)), 
where δ denotes the phase shift of the X-ray wave, caus-
ing deviation from the initial direction, while 𝛽𝛽 stands 
for X-ray absorption 

𝑛𝑛 = 1 − 𝛿𝛿 + i𝛽𝛽.   (1) 

In traditional µCTs the detector is placed in proxim-
ity to the sample (Fig. 2-A). This configuration solely 
measures the imaginary part of the complex refractive 
index, which is linked to both the absorption and atten-
uation of X-rays. Essentially, when X-rays pass through 
material, the attenuation is a result of absorption and 
scattering phenomena. It can be described by the Lam-
bert-Beer law, where I denotes the intensity measured 
by the detector, and 𝐼𝐼0 the emitted intensity from the X-
ray source (see Eq. (2)) 

ln � 𝐼𝐼
𝐼𝐼0
� = −∫ 𝜇𝜇(𝑥𝑥)d𝑥𝑥d

0 .     (2) 

The linear attenuation coefficient 𝜇𝜇 is a function of 
the material density 𝜌𝜌 of the sample, the path length 𝑑𝑑 
through the material, the wavelength 𝜆𝜆3 of radiation and 
the mean atomic number 𝑍𝑍4. Therefore, given identical 
measuring conditions, the atomic structure of the sample 
predominantly determines the resulting attenuation, 
which is proportional to the imaginary part of the com-
plex refractive index β according to Eq. (3) 

𝜇𝜇 = 2π𝛽𝛽 𝜆𝜆⁄     (3) 

However, absorption is not the only interaction that 
occurs while X-rays penetrate a sample. Increasing the 
sample-detector-distance (or placing the sample closer 
to the source if the detector-source distance is fixed) will 
cause the intensity image at the detector to include not 
only attenuation, but also phase shift information. This,  
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in turn, causes artefacts in the reconstructed images, 
such as edge enhancement at sample surfaces (both outer 
and inner) due to small-angle scattering (Fig. 2-B). 

Fig. 2. Different sample-detector-distances; A: classical 
µCT, B: phase and attenuation effects mixed (based on 
(Pacilè and Tromba, 2018)). 

This edge enhancement improves the visibility of 
structural details (Pacilè and Tromba, 2018), but it also 
makes a threshold-based segmentation impossible. 
Moreover, to obtain the phase shift information and thus 
to improve the signal-to-noise-ratio of the reconstructed 
images, Paganin et al. (2002) developed the single-dis-
tance phase retrieval algorithm. This algorithm is ap- 

Fig. 3. Comparison between reconstructed images; A: 
only absorption information, B: with single-distance 
phase retrieval. 

plied to the set of projection images before the recon-
struction. The 3D images obtained are phase-contrast 
images (Fig. 3-B) rather than images based solely on ab-
sorption (Fig. 3-A). 

This technique, which combines an increased sam-
ple-detector distance during the µCT scan with the ap-
plication of the single-distance phase retrieval algo-
rithm, is called propagation-based imaging (PBI).  

MATERIALS AND METHODS 
MATERIALS 
Graphite particles (SGB 23 L, AMG Kropfmühl 

GmbH) are used as the solid phase, water as suspension 
liquid and highly liquid paraffin oil (Merck KGaA, CAS 
Nr. 8002-74-2, 𝜐𝜐 = 16 mm2/s) as the binding liquid for 
the spherical agglomeration experiments. The particle 
size distribution of graphite ranges from 10.9 µm to 35.9 
µm (Fig. 4) and is determined by laser diffraction 
(Fritsch Analysette 22 MicroTec plus).  

Fig. 4: Graphite particle size distribution; x10, x50 and x90 
are the 10 %, 50 % and 90 % quantile values of the dis-
tribution. 

The static contact angle of graphite particles in the 
three-phase system graphite/water/paraffin oil is deter-
mined by the method published by Schreier et. al (2020). 
Results showed the static contact angle to be 135° ± 5.9°.  

SPHERICAL AGGLOMERATION 
The spherical agglomeration experiment is carried 

out in a rheometer (Kinexus Ultra Plus, Netzsch) with a 
torque measurement accuracy of 0.05 nNm. Within the 
rheometer, a one-litre vessel with four baffles and an in-
clined, four-bladed stirrer is mounted on a self-made fix-
ture. 28 g of graphite particles are suspended in 560 g of 
water (𝛽𝛽 = 4 wt.%) for five minutes at a speed of 700 
rpm. Additionally, 8.4 g of paraffin oil are emulsified in 
140 g of water externally, using a dispersing unit (Ultra 
Turrax, IKA) at 16000 rpm for two minutes. This results 



 SCHREIER J AND BRÖCKEL U: Morphology of agglomerates obtained by SA 

88 
 

in a droplet size distribution of x10 = 1.3 µm, x50 = 
14.4 µm and x90 = 27.1 µm. The emulsion is then added 
to the suspension, and the agglomeration process is ini-
tiated with a stirrer speed of 1200 rpm. 

SAMPLE PREPARATION FOR µCT 
The purpose of the sample preparation is to reduce 

the mechanical influence on the agglomerates, which 
consequently would change the morphology, and to 
avoid sedimentation during the CT scan. Therefore, 
shock freezing of the samples and scanning them while 
being cooled in a “Cryo-Stage” is a suitable combination 
for these requirements. The sample preparation method 
involves taking samples with a Pasteur pipette of 4 mm 
inner diameter at one specific time (30 s & 150 s) during 
the spherical agglomeration experiment. To avoid sedi-
mentation of the agglomerates, they are shock frozen in 
a mixture of ethanol and dry ice at 195 K for 30 s and 
then stored in a freezer at 255 K for at least 24 h to com-
plete the crystallisation process (Fig. 5-A).  

Following this, about 5 mm of the pipette's height is 
trimmed (Fig. 5-B) and then positioned on a copper 
mount (Fig. 5-C). After each of the preparation steps, 
lasting approximately five seconds, the sample is 
sprayed with an ice-spray (Cryo-Jet Lamb’s Freezing 
Aerosol, VWR Chemicals) to prevent melting. The cop-
per mount is then inserted into the Cryo-Stage, an addi-
tional sample stage that ensures the sample remains fro-
zen throughout the CT scan (Fig. 5-D). 

µCT SCAN 
A µCT from Bruker (Skyscan 1272) is used for this 

study. The power of the X-ray source is set to  
4.8 W/40 keV with an exposure time of 3000 ms and ro-

tation steps of 0.3° per projection image. The scan posi-
tion along the z-axis is chosen to be 0.5 mm above the 
copper pin up to a scan height of 3 mm. Additional scans 
on another vertical plane are omitted to minimise scan 
time. This results in a total scan time of approx. 3 h and 
a resolution of 2.4 µm/voxel.  

Prior to reconstruction, the projection images are 
filtered using the Paganin single-distance phase retrieval 
algorithm described in section Propagation-based X-ray 
Microtomography, which is implemented by Bruker in 
their reconstruction software NRecon. Previous internal 
tests have shown that a ratio of 𝛿𝛿/𝛽𝛽 = 200 gives the best 
results in the following image processing routine.  

After the single-distance phase retrieval algorithm, 
the obtained projection images are getting reconstructed 
by the software NRecon (Bruker) to obtain a 3D repre-
sentation of the scanned volume. NRecon uses the Feld-
kamp algorithm for reconstruction (Feldkamp et al., 
1984). 

MORPHOLOGICAL PARAMETERS 
The morphological parameters are the volume-

equivalent sphere diameter 𝑥𝑥V, the sphericity according 
to Wadell Ψ, the fractal dimension 𝐷𝐷f according to the 
Box Counting method and the packing density 𝜌𝜌Pack. 

Sphericity 
The sphericity according to Wadell (1935) is the ra-

tio between the volume-equivalent sphere diameter 𝑥𝑥V 
and the surface-equivalent sphere diameter 𝑥𝑥S raised to 
the power of 2 (Eq. (4)) 

Ψ = �𝑥𝑥V
𝑥𝑥S
�
2

,𝑥𝑥V = �6𝑉𝑉
𝜋𝜋

3 , 𝑥𝑥S = �𝑆𝑆
𝜋𝜋
     (4) 

 
Fig. 5. Sample preparation for X-ray CT; A: Shock-frozen sample out of agglomeration process, B: cut out, C: sample 
on copper mount, D: Cryo-Stage for Bruker Skyscan 1272. 
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The volume (V) and surface area (S) of the object 
are determined and inserted into Eq. (4) 

The sphericity lies between Ψ ∈ ]0,1] , where a 
value of 1 represents the perfect sphere and values close 
to zero represent, for example, a sheet of paper or highly 
irregularly shaped objects. 

Fractal dimension 
The fractal dimension is determined by the Box 

Counting method (Bouligand, 1925). In general, this 
method is based on an equally spaced grid, which is 
placed over an object. Then all squares (2D) or cubes 
(3D) that cover one piece of the object are counted. Then 
the box size is increased and the counting is repeated. 
The data points box size (L) and number of object boxes 
(N(L)) are plotted against each other in a log-log plot 
(see Fig. 6). In this study the Box Counting algorithm is 
implemented by the MatLab function boxcount written 
by Moisy (2022). In this function the box size L is scaled 
to the power of two. 

Fig. 6. Number of surface voxels dependent on the box 
size during the Box Counting method. 

The absolute value of the slope then represents the 
fractal dimension (see Eq. (5)) 

𝐷𝐷f = lim
𝐿𝐿→∞

log (𝑁𝑁(𝐿𝐿))
log (1/𝐿𝐿)

       (5) 

According to this definition, the fractal dimension 
falls within the range of 𝐷𝐷f ∈ [1,3] and is equivalent to 
the space dimension for typical geometric objects. For 
instance, a perfect solid sphere has a fractal dimension 
of 3.  

Packing density 
The packing density 𝜌𝜌Pack ∈ [0,1] is a measure of 

the compactness of an object consisting of several small 
objects (Gupta and Larson, 1979). When this principle 

is applied to agglomerates obtained by spherical ag-
glomeration, the space-filling objects are represented by 
the solid particles, and the total volume is the convex 
hull volume of the agglomerate (see Eq. (6)). 

𝜌𝜌Pack = 𝑉𝑉Particles
𝑉𝑉convex hull

       (6) 

TWO-DIMENSIONAL KERNEL DENSITY 
DISTRIBUTION 
The result of the image post-processing and analysis 

mentioned later is object discrete data, since all the pa-
rameters mentioned in the Morphological Parameters 
section are known for each individual object. In such a 
case the probability density distributions can be calcu-
lated using kernel density estimation, which were first 
introduced by Parzen (1962). The advantage of kernel 
density estimation is that no assumption is made about 
the distribution of the data. Schach et al. (2019) used 
two-dimensional kernel estimations in the context of 
mineral processing to calculate the two-dimensional dis-
tributions, where the probability 𝑓𝑓𝑥𝑥𝑥𝑥(𝑥𝑥,𝑦𝑦)  is deter-
mined using two particle properties 𝑥𝑥 and 𝑦𝑦 

𝑓𝑓𝑥𝑥𝑥𝑥(𝑥𝑥,𝑦𝑦) = ∑ 1
𝑛𝑛
∗ 𝜅𝜅𝑥𝑥 �

𝑥𝑥−𝑥𝑥𝑖𝑖
𝑏𝑏𝑥𝑥
� ∗ 𝜅𝜅𝑥𝑥 �

𝑥𝑥−𝑥𝑥𝑖𝑖
𝑏𝑏𝑦𝑦

� .𝑛𝑛
𝑖𝑖=1  (7) 

In Eq. (7) 𝑏𝑏𝑥𝑥  and  𝑏𝑏𝑥𝑥 represent the bandwidth of the 
kernels 𝜅𝜅𝑥𝑥  and 𝜅𝜅𝑥𝑥 , whereas 𝜅𝜅𝑥𝑥  represents the sample 
size. In the used MatLab script the function ksdensity 
(Peter D., 1985; Silverman, 1986; Bowman and Az-
zalini, 1997) is used to calculate the two-dimensional 
kernel estimation. 

IMAGE POST-PROCESSING 
The aim of the image post-processing is to obtain a 

representation of each individual agglomerate (particles 
plus binding liquid) within the scanned volume. The 
morphological parameters volume-equivalent sphere di-
ameter, sphericity, fractal dimension and packing den-
sity are then computed. 

IMAGE PROCESSING & ANALYSIS 
ROUTINE 

The image processing & analysis routine and the 
computation of the morphometric parameters are carried 
out in a self-written script based on MatLab (R2022a) 
together with the toolboxes Image Processing, Statistics 
& Machine Learning and Curve Fitting. The individual 
steps of the image processing routine are described be-
low. The image processing operations used are in italics. 
The MatLab commands are given in brackets to make 
the whole implementation easier for the reader. 



 SCHREIER J AND BRÖCKEL U: Morphology of agglomerates obtained by SA 

90 
 

As a first step, the reconstructed images (Fig. 8-A) 
are filtered with a Non-Local Means Denoising (imnlm-
filt) algorithm (Fig. 8-B) (Buades et al., 2011). Com-
pared to other filters such as Gaussian Blur or Median, 
the Non-Local Means Denoising requires more compu-
tation time, but has the advantage of preserving edges 
and boundaries. Next, the Gradient (imgradient3) is ap-
plied which calculates the directional change in the grey 
scale values within an image using the Sobel operator 
(Tennenbaum et al., 1969). When a Threshold 
(otsuthresh) (Otsu, 1979) is applied to the result of the 
Gradient, the boundaries of the microagglomerates are 
binarised (Fig. 8-C). The advantage of segmenting the 
boundaries with the combination of Gradient and 
Threshold is the shape-independent binarisation of the 
outer contour and thus the preservation of the original 
object shape.  

Since the contour of the agglomerate is formed by 
particles and is therefore not completely closed, it is 
filled in a two-step process. First, the binding liquid 
must be added to the contour, because at this early stage 
of agglomeration, the droplets of binding liquid are cov-
ered with particles. To achieve this, the binding liquid is 
segmented in the original images via Threshold. In this 
case the Threshold was set between the two peaks of the 
gray value histogram shown in Fig. 7, where the first 
peak corresponds to the binding liquid and the second 
peak to the matrix. 

Fig. 7. Grey value histogram of the whole 3D volume. 

Secondly, any remaining holes are closed using a 
3D Fill Holes (imfill) (Soille and Ansoult, 1990) algo-
rithm. The result of these operations is a segmented rep-
resentation of the agglomerates (Fig. 8-D).  

In the experiment discussed in section Spherical 
Agglomeration, the samples are taken at the beginning 
of the agglomeration process. In this case, the agglom-
erates are still small and there is a high number concen-
tration of objects in the scanned volume. Consequently,  

Fig. 8. Image processing; A: original image, B: image 
after applying Non-Local Means Denoising, C: agglom-
erate contour after applying Gradient and Threshold, 
D: filled agglomerate with segmented binding-liquid, E: 
single agglomerate after applying the Distance Trans-
form Watershed, F: particle volume of the correspond-
ing agglomerate from image E. 

the distance between two objects can be very small (only 
a few voxels), resulting in a mixed grey value between 
the matrix and the object. This CT artefact is called Par-
tial Volume Effect (PVE) (Buzug, 2008). Due to this 
mixed grey value, the objects appear to be connected af-
ter segmentation. To overcome this problem, a Distance 
Transform Watershed is computed to separate the ob-
jects from each other.  

The main steps of this set of algorithms are as fol-
lows: For all segmented objects the so-called Distance 
Transform (bwdist) (Rosenfeld and Pfaltz, 1966; Paglie-
roni, 1992) is computed. This algorithm assigns each 
voxel a number representing the distance between that 
voxel and the nearest non-zero voxel resulting in the 
highest value at the centroid of the object. Multiplying 
the output of the distance transform by -1 produces a set 
of minima marker which is consequently the basis for 
the flooding algorithm of the Watershed Transform (wa-
tershed) (Meyer, 1994). Due to the Distance Transform, 
an object may contain more than one minimum, leading 



Image Anal Stereol 2024;43:85-95 
 

91 
 

to over-segmentation in the Watershed Transform. Ap-
plying an H-minima Transform (imhmin) (Schmitt and 
Prêteux, 1986) to the Distance Transform reduces the 
number of minima and therefore the over-segmentation 
(Ismail et al., 2016) (Fig. 8-E).  

All image operations mentioned so far are com-
puted on the whole image stack. From now on, all fur-
ther image processing steps are computed on each indi-
vidual object detected by the Distance Transform Wa-
tershed. 

After the segmentation of individual agglomerates, 
the parameters volume, surface area, sphericity and frac-
tal dimension are determined. As mentioned in section 
Morphological Parameters, the particle volume and the 
convex hull volume must be calculated to determine the 
packing density. This is done by computing the Bound-
ing Box (regionprops3), which is the smallest cuboid 
aligned with the coordinates containing the segmented 
region (The MathWorks Inc., 2022). The same region is 
cropped in the original filtered images. After applying 
the crop, the same Threshold for the binding liquid is set 
as at the beginning, so that the binding liquid is seg-
mented again. This binding liquid volume correspond-
ing to this individual agglomerate is then subtracted 
from the agglomerate image stack, resulting in an indi- 
 

vidual particle volume representation (Fig. 8-F). 

QUALITATIVE EVALUATION OF IMAGE 
PROCESSING ROUTINE 
The Distance Transform Watershed segmentation 

described earlier has a major impact on the results of im-
age processing. Over-segmentation (one object is sepa-
rated into two or even more objects) can be reduced by 
applying an H-minima Transform, but there are still 
cases where the segmentation does not represent the 
original object. As shown in Fig. 9, three distinct cases 
have been selected from a large pool of objects. Fig. 9-
A depicts a highly branched agglomerate that has been 
segmented into three smaller ones. The original objects 
correlate well with the segmented objects. This also ap-
plies to the nearly spherical agglomerates illustrated in 
Fig. 9-B. The third case displays an elongated agglom-
erate formed by numerous primary particles and small 
agglomerates. The segmentation divides this agglomer-
ate into three parts, as seen in Fig. 9-C. This is a case of 
persistent over-segmentation. Varying the values in the 
H-minima transform did not alter this over-segmenta-
tion. Consequently, we conducted a manual clean-up of 
the data by inspecting each segmented object after anal-
ysis and comparing the segmentation result with the 
original object. 

 
Fig. 9: Original object and corresponding segmentation result after applying Distance Transform Watershed; A: 
good segmentation of branched agglomerates, B: good segmentation of nearly spherical agglomerates, C: over seg-
mentation of elongated agglomerates. 
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RESULTS AND DISCUSSION 

Using the image post-processing routine, 2420 ag-
glomerates could be detected after 30 s agglomeration 
time and only 85 after 150 s. For each agglomerate, the 
parameters volume equivalent sphere diameter, spheric-
ity, fractal dimension and packing density, are calcu-
lated according to section Morphological Parameters. 
The concentration of agglomerates decreases signifi-
cantly over time. Therefore, the data corresponding to 
150 s are presented as averages with minimum and max-
imum values.  

The first parameters evaluated are the volume-
equivalent sphere diameter of the agglomerates 𝑥𝑥VA and 
the size of the paraffin content 𝑥𝑥VP within them. The cu-
mulative number distribution 𝑞𝑞0(𝑥𝑥VA,𝑥𝑥VP) of both sizes 
shows that the whole agglomerate size ranges between 
57 µm and 362 µm, whereas the paraffin size ranges be-
tween 4 µm and 242 µm (see Fig. 10-A). Evidently, 
when the two-dimensional number distribution of both 
sizes is determined, large agglomerate sizes correlate 
with large paraffin droplet sizes and vice versa (see Fig. 
10-B). 

The sphericity, fractal dimension and packing den-
sity of the agglomerates are size dependent, as can be 
seen in Fig. 11. In particular, the smaller agglomerates 
between 50 µm and 100 µm show higher sphericity val-
ues from 0.5 to 0.8 (Fig. 11-A), lower fractal dimensions 
of about 2.1 (Fig. 11-B) and higher packing densities be-
tween 0.6 and 0.8 (Fig. 11-C). This indicates that smaller 
agglomerates contain small paraffin droplets with only a 
single layer of particles at the surface, as highlighted in 
the lower left of Fig. 11-A. The high sphericity values 
and the low fractal dimensions tend towards perfect 
spheres (Ψ = 1, 𝐷𝐷f = 3), but the agglomerate surface area 
is increased due to the particles at the droplet surface. In 
addition, these small agglomerates also have high pack-
ing densities, because the convex hull is only slightly 
different from the agglomerate itself and the particle 
content is also high.  

The parabolic shape of 𝑞𝑞0(𝑥𝑥V,Ψ) (Fig. 11-A) was 
expected because the sphericity Ψ is directly related to 
the volume-equivalent sphere diameter 𝑥𝑥V according to 
Eq. (4). 

 

Fig. 10: Size distribution; A: cumulative number distributions of whole agglomerate and paraffin droplet inside ag-
glomerate, B: two-dimensional number density distribution of agglomerate size and paraffin droplet size. 

Fig. 11. Two-dimensional number density distribution of volume-equivalent sphere diameter and corresponding mor-
phological parameter; A: sphericity, B: fractal dimension, C: packing density. 
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In contrast, larger agglomerates between 150 µm 
and 300 µm have low sphericity values (0.1 < Ψ < 0.3) 
and low packing densities (0.1 < 𝜌𝜌Pack< 0.3). Conse-
quently, larger agglomerates show complex structures 
(see Fig. 11-A top right) which are more interconnected 
and therefore have a larger surface area compared to 
smaller agglomerates. This increased surface area leads 
to the second peak in the fractal dimension (see Fig. 11-
B) and to a decrease in the sphericity. Moreover, the 
convex hull volume of this interlinked structures is also 
high, leading to a decrease in the calculated packing den-
sity.  

In addition to the two-dimensional distributions de-
pending on the volume-equivalent sphere diameter, Fig. 
12 shows the correlation between the packing density 
and the sphericity. It can be observed that low values of 
sphericity correlate with low values of packing density 
and vice versa. Additionally, the data lie along the bisec-
tor line, which shows that both packing density and 
sphericity are influenced in the same way by the in-
creased surface area of the interconnected agglomerates. 
This trend is also seen in the sample taken after 150 s of 
agglomeration. Whether this is the case throughout the 
agglomeration process will have to be verified again. 

 
Fig. 12. Two-dimensional number density distribution of 
sphericity and packing density (red line represents the 
bisector line). 

All results so far have been obtained from the sam-
ple taken after 30 s agglomeration time. If we compare 
these with the results after 150 s agglomeration time, we 
see an increase in the volume equivalent sphere diameter 
to x50,150s = 260 µm (xmin = 113 µm & xmax = 472 µm), 
which is larger than x50,30s = 146 µm. Furthermore, the 
packing density, as well as the sphericity and the fractal 
dimension all show higher values compared to the 30 s 
agglomeration time (𝜌𝜌Pack,50 = 0.45, Ψ50 = 0.55, 𝐷𝐷f,50 = 
2.45). This indicates that the agglomerates become more 

packed and more spherical during spherical agglomera-
tion. Other authors, such as Blandin et al. (2003) and 
Müller & Löffler (1996), have also reported this effect 
where agglomerates begin with more interconnected and 
complex structures, but become more spherical and 
compact during agglomeration. 

CONCLUSION 
The aim of this paper was to present a method that 

can be used to study the morphology of agglomerates 
during the agglomeration process. It has been demon-
strated that the combination of shock freezing a sample 
in an ethanol-dry ice mixture, which prevents sedimen-
tation of the suspended agglomerates, in combination 
with the propagation-based X-ray microtomography is 
suitable to study the morphology of agglomerates gen-
erated by the spherical agglomeration process.  

The first results of the morphological parameters 
(volume-equivalent sphere diameter, sphericity, fractal 
dimension and packing density) show that the size of the 
agglomerates at the beginning of the process is directly 
related to the paraffin droplet size inside the agglomer-
ates. Furthermore, the values of sphericity, fractal di-
mension and packing density are size dependent in sam-
ples evaluated, while the fractal dimension shows a sec-
ond peak when agglomerates consist of many linked par-
ticles.  

In the future, this methodology will be applied to 
study the time-dependent morphology of agglomerates 
during the spherical agglomeration process over the 
three different process phases. 
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