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ABSTRACT

Elongated anisotropic Gaussian filters are used for the orientation estimation of fibers. In cases where
computed tomography images are noisy, roughly resolved, and of low contrast, they are the method of choice
even if being efficient only in virtual 2D slices. However, minor inaccuracies in the anisotropic Gaussian
filters can carry over to the orientation estimation. Therefore, this paper proposes a modified algorithm for
2D anisotropic Gaussian filters and shows that this improves their precision. Applied to synthetic images of
fiber bundles, it is more accurate and robust to noise. Finally, the effectiveness of the approach is shown by
applying it to real-world images of sheet molding compounds.

Keywords: computed tomography, directional filter, fiber direction, fiber reinforced polymers, orientation
estimation, sheet molding compounds.

INTRODUCTION

Gaussian filters have a wide variety of applications
in image processing. Whereas isotropic Gaussian
filters, being the foundation of scale space theory
(Lindeberg, 1996), can be implemented easily, their
anisotropic counterparts are more demanding while
being just as interesting (Lampert and Wirjadi, 2006):
They give a handle on orientation as well as scale,
which makes them the cornerstones of orientation
space theory (Faas and van Vliet, 2003).

Anisotropic Gaussian filters have been employed
for denoising images (Yang et al., 1996; Treece,
2020) as they can be adapted to image structures
and, hence, preserve edges. Another application is
the estimation of orientations using a filter bank of
anisotropic Gaussian filters. For example, local fiber
directions can be estimated by the direction of the
maximal response of anisotropic Gaussian filters that
are aligned along a given set of directions (Robb et al.,
2007; Wirjadi et al., 2009).

Most established methods for estimating fiber
directions are based on gradients, such as calculating
the image’s Hessian matrix (Eberly et al., 1994;
Frangi et al., 1998; Ohser and Schladitz, 2009) or
the second-moment matrix of the image’s gradient,
called the structure tensor (Haglund, 1992; Weickert,
1999; Krause et al., 2010). In both methods, the local
fiber directions result from the eigendecomposition of
the respective matrix. Wirjadi et al. (2016) compared

them to other methods based on 3D images of single
synthetic fibers and identified them as the most
accurate. Pinter et al. (2018) further investigated their
accuracy on images of multiple fibers, finding the
structure tensor to be comparably more robust.

In their comparison, Wirjadi et al. (2016) and
Pinter et al. (2018) both identified the Maximal
Response (MR) method as robust to noise but suffering
from the trade-off between runtime and accuracy in
3D. However, there are use cases where the image
quality is too low for methods based on local gray-
value derivatives on the one hand and where due to the
production process the fibers are known to be oriented
in a 2D subspace anyway. This holds for instance
true for µCT images of sheet molding compounds, a
material where reinforcing fibers lie within a plane.
Then, only 2D images have to be analyzed, similarly
to stereological approaches. In 2D, the MR method is
less restricted regarding runtime and even outperforms
other methods due to its robustness with respect to low
image contrast (Schladitz et al., 2016).

The accuracy of the direction estimation clearly
depends on the accuracy of the filter responses for
the considered directions. Under otherwise perfect
conditions, this method’s results barely depend on
contrast as the filter responses scale with the contrast.
Although the response differences are smaller, this
does not influence which response is maximal.
However, computed tomography images are often
affected by noise and other artifacts. For low-contrast
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images, these effects have a much stronger impact
on the detected direction of maximal response due to
the small differences in responses for varying angles.
In this case, small inaccuracies in the anisotropic
Gaussian filter can impair the direction estimation
further. In this paper, we will consider the case of low
contrast between the foreground, i.e., fibers, and noise,
while using a low resolution for the fibers.

Anisotropic Gaussian filters in R2 can be
implemented naı̈vely by filtering in the directions
of the major and the minor axis of the Gaussian’s
contour ellipses, subsequently. However, Geusebroek
et al. (2003) derived a more accurate decomposition,
where at least one of two filter directions is aligned
with an axis of the image grid. Whereas the naı̈ve
implementation may need interpolation for filtering in
both directions, Geusebroek et al.’s method requires
interpolation for at most one filter direction. Lampert
and Wirjadi (2006) generalized these results to Rd and
provided explicit formulas for R3.

Besides implementational inaccuracies of the 1D
filters, interpolation introduces spatial inhomogeneity
into the filter kernels, as Lam and Shi (2007) have
shown. Therefore, they propose a modification of
Geusebroek et al.’s method which avoids interpolation
altogether at the cost of an additional 1D Gaussian
filtering step. However, Lam and Shi’s modification
limits possible half-axis ratios ω = σ2/σ1, to ω ≥
0.4142. The ratio can be lowered to ω ≥ 0.1622 at
the cost of aliasing effects. In our setting, far smaller
ratios are needed to accurately mimic the fiber shape,
e.g., ω = 0.025 in the Application section.

In this paper, we therefore suggest another
modification not suffering from this restriction.
We propose a modification to Geusebroek’s
decomposition that halves the number of interpolation
steps and show that this modification improves
performance. Moreover, we consider cubic instead
of linear interpolation, which improves accuracy
at the cost of speed. Based on synthetic fiber
images, we show that the adapted method results in
higher accuracy of the maximal response method.
Additionally, we show that it outperforms estimation
based on the Hessian matrix or the structure tensor in
2D. Finally, we apply our method to real-world images
of sheet molding compounds.

MATERIALS AND METHODS

A natural approach to calculating the anisotropic
Gaussian filter in Rd is to decompose it into a sequence
of multiple Gaussian filters in R, which poses a
simpler problem (Lampert and Wirjadi, 2006). The

recursive scheme with infinite impulse response by
Young et al. (1995; 2002), using boundary conditions
by Triggs and Sdika (2006) has proven efficient and
accurate. For the case of R2, Geusebroek et al. (2003)
propose a decomposition into filters along the x1-axis
of the image grid and a filter along another direction
that generally does not align with the grid.

Initially, consider an axis-aligned Gaussian kernel
with standard deviations σ1 > σ2 > 0 centered in the
origin, i.e.,
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Its contour lines are axis-aligned ellipses with half-
axis ratio ω = σ2/σ1. We now rotate the kernel to
get gσ1,σ2,θ , whose major half axis points in direction
ν = (cos(θ),sin(θ))T for θ ∈ [0,π). Formally,
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where xxx= (x1,x2)∈R2 and ν⊥ν⊥
ν⊥ = (−sin(θ),cos(θ))T .

A decomposition of the corresponding filter into
one-dimensional filters along the coordinate axes is
generally not possible. However, Geusebroek et al.
(2003) proved that a decomposition into filters along
the x1-direction and the direction

ν∗ = ν∗(x1,x2,θ ,σ1,σ2) = x1 cos(ϕ)+ x2 sin(ϕ)

(5)
with
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is indeed possible, namely with the kernel
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(8)

The standard deviations σx,σν∗ can be computed
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in terms of the rotation angle θ and the standard
deviations σ1,σ2 via

σx = σx(θ ,σ1,σ2) =
σ1σ2√

σ2
1 cos2 θ +σ2

2 sin2
θ

(9)

σν∗ = σν∗(θ ,σ1,σ2) =
1

sinϕ

√
σ2

2 cos2 θ +σ2
1 sin2

θ

(10)

Fig. 2 illustrates this decomposition;
see Geusebroek et al. (2003) for the detailed
derivation.
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Fig. 1: The Gaussian ellipse, i.e., contour line of the
Gaussian function, w.r.t. (a) the principal axes v1 and
v2, and (b) the axes x1 and ν∗ (Geusebroek et al.,
2003).

ALGORITHMS FOR ANISOTROPIC
GAUSSIAN FILTERING

Gaussian filters can be implemented naı̈vely
by rotating the image with the same matrix that
rotates the filter such that its major and minor
axes are aligned with the coordinate axes. Then,
the image can be filtered along the coordinate axes
using Young et al.’s (2002) recursive Gaussian filter.

This corresponds to the filter decomposition along
the principal axes, see Eq. 3. This way, more
memory is consumed as the image does not fit its
previous rectangular structure anymore. Moreover,
interpolation steps are necessary for both filter
directions (Lampert and Wirjadi, 2006).

More advanced algorithms make use of
decomposition along other axes, as in Eq. 7: Lampert
and Wirjadi’s(2006) geometric algorithm circumvents
the interpolation along one axis by considering the
filter decomposition as a shear of the coordinate axes
with a shear matrix V . Hence, the image is sheared
with V before filtering along the coordinate axes.
Afterwards, the resulting image is transformed back
with V−1.

In Geusebroek et al.’s (2003) line buffer
algorithm (Lampert and Wirjadi, 2006) the image is
processed in-place as it filters along the x1-axis and the
ν∗-line, see above. The transformation step necessary
for filtering along the ν∗-line is the inverse shear used
in the geometric algorithm. This transformation using
interpolation is necessary every time data is read or
written. This can be kept minimal by using image
line buffers for the filter history. However, as the
recursive Gaussian filter consists of a forward and a
backward filter, this yields 2 forward and 2 backward
transformation steps, yielding 4 interpolation steps per
pixel.

In comparison, the geometric algorithm uses only
2 transformations and, thus, interpolations per pixel,
which makes it less error-prone compared to the line
buffer algorithm. However, the geometric algorithm
needs more memory because the transformed image
no longer fits the original rectangular shape.

THE HYBRID ALGORITHM
Our improved scheme combines the advantages of

both the geometric and the line buffer algorithm: It
filters in x1-direction with Young’s (2002) recursive
Gaussian filter as in the line buffer algorithm. The filter
in ν∗-direction is modified such that the intermediate
transformation steps are omitted: As the forward
and backward filter move along the same line, the
intermediate transformation steps taken together are
the identity. Therefore, the result of the forward filter
does not need to be transformed but can be stored
in-place. This approach requires 2 interpolation steps
per pixel, as in the geometric algorithm, while using
as little memory as the line buffer algorithm. The
difference to the established algorithms is ”smarter
bookkeeping”. Hereafter, we will call this the hybrid
algorithm1.

1A free, open-source implementation in C++ is available at https://github.com/akeilmann/aniGauss.
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An axis-aligned filter is generally more accurate
than a filter that is not axis-aligned since the latter
requires interpolation. Therefore, we first filter along
the axis and, subsequently, in ν∗-direction.

So far, we only discussed a decomposition into
filters where one filter direction is aligned with the
x1-axis. Analogously, a decomposition such that one
filter direction is aligned with the x2-axis is possible
(Lampert and Wirjadi, 2006). This may even be
advantageous for 45◦ ≤ θ ≤ 135◦: The standard
deviation σx of the filter along the x1-axis varies over
the rotation angles θ , being largest for θ = 0◦ and
smallest for θ = 90◦. For the line buffer and the hybrid
algorithm, filtering along the x1-axis smoothes the
image in the same direction, in which the interpolation
takes place. This may be less error-prone for stronger
smoothing. Hence, we propose to decompose the
anisotropic filter with an x2-aligned axis for 45◦ ≤ θ ≤
135◦.

This modification is possible for each of the
approaches mentioned above. In the following, we call
this the major-axis modification.

THEORETICAL PERFORMANCE
ANALYSIS

The runtime of the anisotropic Gaussian filter
is constant for each pixel and depends only on the
rotation angle and not on the variance. The filtering
steps require 12 additions and 13 multiplications.
Linear interpolation can be implemented with 1
addition and 2 multiplications per pixel.

We further propose to apply cubic interpolation
with natural boundary conditions. In our
implementation, each cubic interpolation step takes 8
additions and 14 multiplications per pixel. Therefore,
we only combine it with the hybrid algorithm. The
total complexities per pixel are listed in Table 1.

Table 1: Complexity per pixel for different algorithms
with interpolation.

Line buffer Hybrid
Linear Linear Cubic

Multiplications 21 17 27
Additions 16 14 20

The runtime of the MR method in total depends
on the complexity of the employed anisotropic filter
algorithm, the discretization of the direction space, i.e.,
the number of angles considered, and the image size.
The dependency on the latter three is linear, thus we
discuss the speed of Gaussian filters, only.

FIBER ORIENTATION ESTIMATION

Maximal Response of Anisotropic
Gaussian Filters

To filter an image of fibers for directions, imitate
the elongated shape of a fiber with the d-dimensional
anisotropic Gaussian (function) gθ , see Eq. 1. Its
parameters give a handle on the orientation, length,
and diameter for the fiber model (Lampert and Wirjadi,
2006).

The filter response (gggθ ∗ fff )(xxx) to the image fff is
maximal when θ matches the local fiber direction in
the point xxx ∈ Ξ, where Ξ is the fiber system. Therefore,
one can find the direction ν that maximizes the filter
response for all xxx ∈ Ξ (Wirjadi et al., 2016):

ν(xxx) = argmax
θ∈S1

+

(gggθ ∗ fff )(xxx) (11)

ν(xxx) is estimated by calculating the
convolution(gggθ ∗ fff )(xxx) for a finite set of directions that
covers the space as evenly as possible (Schladitz et al.,
2016). Hereafter, we will call this the MR method.

The method’s accuracy is mainly influenced by
the parameter σ2, which we will set to r/2 in the
following. This is motivated by the 2σ rule for the
normal distribution, which says that approximately
95% of the data points are within two standard
deviations of the mean (Georgii, 2012). Hence, a
correctly aligned filter kernel gθ that is centered within
the fiber covers the fiber’s thickness with 95% of its
weight when σ2 = r/2, where r is the fiber’s radius.
Pixels that are further away than 2σ2 are barely taken
into account. This ensures that the filter response
is maximal when the 2-dimensional Gaussian filter
kernel is aligned with the fiber: a much larger variance
might take too many pixels outside of the fiber into
account, while a much smaller variance results in
filter kernels whose main mass is concentrated in an
elliptical region that is thinner than the fibers. In this
case, the ellipse might fit inside the fiber for several
angles θ which makes it harder to accurately detect
the direction for which the maximum is attained. The
parameter σ1 corresponds to the elongation of the fiber.
We observed that it has rather little influence on the
estimation accuracy. Yet, it should hold σ1 < ℓ/4,
where ℓ is the fiber length, analogous to the argument
above, and the Gaussian kernel should still be clearly
elongated.
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Structure Tensor

The image’s gradient describes directions in the
image as it is aligned with the fiber’s surface normal,
which in turn is orthogonal to the fiber direction.
Further convolution with a Gaussian kernel allows for
robust direction estimation against noise.

For smoothing parameters σ ,ρ > 0, let the
isotropic Gaussian kernel gσ := gσ ,σ and ∇ f the
gradient of the image f . The structure tensor is defined
as

Sσ ,ρ = gρ ∗
(
∇( f ∗gσ ) ·∇( f ∗gσ )

T ) (12)

as denoted in Wirjadi et al. (2016) and proposed by
Haglund (1992). Its eigenvector corresponding to the
smallest eigenvalue describes the local fiber direction.

As argued and done by Krause et al. (2010) and
Wirjadi et al. (2016), we set σ = r. This choice
was empirically confirmed by Pinter et al. (2018).
The parameter ρ is less impacted by the size of the
underlying structure. Hence, we use a constant ρ =
6.0, as was found optimal by Pinter et al. (2018).

Hessian Matrix

The image’s Hessian matrix

Hσ = ∇∇
T ( f ∗gσ ) (13)

with smoothing parameter σ > 0 describes image
curvature, which is minimal along the fiber direction.
Therefore, the local fiber direction is determined by the
Hessian’s eigenvector corresponding to the smallest
eigenvalue. Analogous to the structure tensor, we set
σ = r following Wirjadi et al. (2016) and Pinter et al.
(2018).

RESULTS

In this section, we support the theoretical analysis
with experimental results. More precisely, we show
that the hybrid algorithm is more accurate than the
line buffer algorithm. Employing linear interpolation,
the hybrid algorithm is indeed faster than the line
buffer algorithm. In the first subsection, we test the
performance of anisotropic Gaussian filters as such.
In the second subsection, we test performance on
synthetic fiber bundles with varying noise contrast to
the background. In the third subsection, we apply the
algorithms to real-life data.

The following experiments were carried out on an
Intel(R) Core(TM) i7-7500U CPU @2.70 GHz with
16 GiB of RAM, using the GNU compiler GCC 9.0 on
a 64-bit GNU/Linux operating system.

PERFORMANCE OF ANISOTROPIC
GAUSSIAN FILTERS

We test the performance of the anisotropic
Gaussian filters for the line buffer algorithm using
linear interpolation and for the hybrid algorithm using
linear interpolation as well as cubic interpolation with
natural boundary conditions.

Accuracy

We reconstruct the anisotropic Gaussian filter
kernel by calculating the unit impulse response,
i.e., applying the anisotropic Gaussian filter to an
image of size N × N with N = 512, in which all
pixel values are 0 except one pixel in the image
center with pixel value 1. For each algorithm and
variance combination considered here, we compute the
l2-deviation between the reconstructed kernel ĝ̂ĝgθ and
the actual kernel gggθ as a measure of accuracy, i.e.,

∥ĝ̂ĝgθ −gggθ∥l2 =

(
N

∑
i, j=1

(ĝθ i j −gθ i j)
2

)1/2

. (14)

The mean and maximum deviation for the rotation
angles θ = 0◦,1◦, ...,179◦ are reported in Table 2.

The hybrid algorithm with linear interpolation
yields more accurate results than the line buffer
algorithm. Cubic interpolation is even more accurate,
except for σ1 = 7.0,σ2 = 4.0. This is most likely
due to ringing artifacts, i.e., oscillations of the
interpolation kernel, which is a known problem
of cubic interpolation (Lehmann et al., 1999)
also known as the Runge phenomenon (Gautschi,
2011), or, more generally, Gibb’s phenomenon (Hou
and Andrews, 1978). However, cubic interpolation
improves the approximations substantially for variance
combinations that otherwise yield comparably large
errors for linear interpolation. Note that smaller
variances go along with larger errors because the
Gaussian approximation is less precise there, see
(Young and Van Vliet, 1995).

The major-axis modification achieves even
higher precision compared to its counterpart without
modification. Notably, the hybrid algorithm with
linear interpolation and major-axis modification often
outperforms the hybrid non-modified algorithm with
cubic interpolation.

For elongated Gaussian kernels, the l2-error
changes considerably over all rotations: It is lowest
for small angular deviations from the x-axis, that
is, θ = 0◦. Between 50◦ to 130◦ it is considerably
larger, peaking around 90◦. This conforms with
our motivation for the major-axis modification.
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Fig. 2: Performance of anisotropic Gaussian filter algorithms.

Employing the hybrid algorithm, the deviations shrink
significantly, see Fig. 2a.

Throughput

We test the algorithms’ data throughput by
applying the filter 50 times to Gaussian noise images of

sizes N ×N with N = 100,130, ...,4990 and calculate
the trimmed mean excluding top and bottom 10%.
Fig. 2b shows that the hybrid algorithm with linear
interpolation is slightly faster than the line buffer
algorithm, at least for larger image sizes. Cubic
interpolation, however, takes considerably more time.
This conforms to the theoretical results above.
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Table 2: l2-deviation in 10−3 between the reconstructed and the true Gaussian kernel. Mean over all angles θ ,
maximal error in brackets.

σ1 σ2 Line buffer Hybrid Hybrid + Mod.
Linear Linear Cubic Linear Cubic

2.0 1.0 38.9 (60.8) 29.7 (39.9) 23.6 (28.2) 28.0 (30.0) 25.4 (28.2)
5.0 2.0 7.2 (10.6) 6.2 (7.8) 5.8 (6.3) 5.9 (6.5) 5.7 (6.3)
7.0 2.0 5.7 (8.0) 4.9 (6.0) 4.6 (5.1) 4.6 (5.2) 4.5 (5.1)
7.0 4.0 2.8 (2.9) 2.7 (2.8) 2.6 (3.1) 2.7 (2.7) 2.6 (3.2)

10.0 0.5 35.7 (75.7) 23.1 (60.8) 14.3 (30.4) 16.9 (29.0) 12.0 (18.3)
10.0 1.25 9.5 (17.5) 7.2 (11.4) 5.9 (8.3) 5.6 (8.3) 5.4 (8.3)
10.0 2.0 4.5 (7.0) 3.9 (4.9) 3.6 (4.1) 3.6 (4.1) 3.5 (4.1)
20.0 0.5 24.6 (44.0) 15.8 (37.3) 9.8 (19.4) 10.9 (22.6) 7.7 (12.8)
20.0 1.25 6.1 (10.4) 4.6 (7.6) 3.9 (5.8) 3.4 (5.8) 3.3 (5.8)
20.0 2.0 2.9 (4.2) 2.4 (3.2) 2.3 (2.8) 2.2 (2.8) 2.1 (2.8)
25.0 0.5 21.8 (37.9) 13.9 (31.4) 8.7 (16.7) 9.6 (15.7) 6.6 (11.5)
25.0 1.25 5.5 (9.3) 4.1 (6.6) 3.4 (5.2) 2.9 (5.2) 2.8 (5.1)
25.0 2.0 2.5 (3.7) 2.1 (2.8) 2.0 (2.4) 1.8 (2.4) 1.8 (2.4)

The major-axis modification further slows down
the algorithms. For 45◦ ≤ θ ≤ 135◦, the filter in
ν∗-direction iterates over all image columns, while
the image pixels are saved adjacently within a line.
Therefore, memory access is more expensive than it
is without modification, the more so, the larger the
image. This can be circumvented at the cost of memory
by saving the image adjacently within a column for
45◦ ≤ θ ≤ 135◦.

For all three algorithms without modification, there
are two different speed plateaus in the throughput,
see Fig. 2b. As Lampert and Wirjadi (2006) argue,
the throughput is dependent on the image size: In our
implementations — for the hybrid as well as the line
buffer algorithm — we use 4 buffers for the filter
history while reading from and writing into the same
image. For small image dimensions, these buffers fit
into the CPU’s L1 data cache. For larger image sizes,
the buffer sizes exceed the cache size slowing down
the computations. In our test setup the drop at N =
1690 corresponds with the system’s size of the L1 data
cache, namely 64 KiB, see Fig. 2b.

EXPERIMENTAL VALIDATION OF THE
MR METHOD

The experiments in the previous subsection have
shown that anisotropic Gaussian filters are generally
more accurately calculated with the hybrid than with
the line buffer algorithm, especially with the major-
axis modification. This section will show that these
results translate to the accuracy of the MR method.

Setup

We evaluate the MR method on synthetic images
with known constant fiber orientation. The design of
the images is inspired by our application example.
There, bundles of nearly parallel thin fibers form
the main building block of the microstructure. The
synthetic images shall mimic the fiber system within
one such bundle.

Given an image of size 512 × 512 pixels, a width
parameter w, and an angle θ , we define an image Fθ ,w
by setting

Fθ ,w(x,y) =
sin(xsin(θ)+ ycos(θ))

2w
+

1
2
. (15)

For each θ = 0◦,1◦,2◦, ...,179◦ and w = 1,2, we
generate such an image. These gray-value images
represent idealized fiber bundles with known fiber
direction and a radius of r = πw/2 pixels. Note that
we choose a significantly smaller radius than Wirjadi
et al. (2016) and Pinter et al. (2018), who use cylinders
with a radius of at least 2.5 voxels. Our choice is again
inspired by our application example.

As background noise, we generate images B of
size 512 × 512 with pixels sampled from the uniform
distribution in [0,1].

To model images of varying contrast between
background and fiber, we consider images of the
form (1 − c)B + cFθ ,w for c ∈ [0,1], see Fig. 3. The
MR method is applied as described below, which
yields a mean absolute angular error MAE w.r.t. the
known fiber direction. For comparison, we additionally
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Fig. 3: Visualization of the experimental data set for varying contrast c.
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Fig. 4: Mean angle error for 50 noise images overlayed with synthetic fiber images with direction θ = 0◦, ...,179◦,
and with varying contrast. For each noise image contrast combination, the MAE’s maximum over fiber directions
was calculated. The mean and standard deviations over 50 noise images are depicted as point symbol with bars
for each contrast and algorithm. Note, however, that the standard deviations are small and therefore the bars
delimiting the interval are in many cases covered by the symbol for the mean value.

apply the algorithm to images preprocessed by a
median filter of size 3 × 3. This is motivated by the
fact that smoothing with median filters is a typical
preprocessing step for real image data.

The MAE is determined as follows. The synthetic
fiber image Fθ ,w is binarized with a threshold of 0.75.
The resulting image serves as a mask to include only
pixels within fiber cores.

Further, we want to make sure that we only
estimate the estimating bias and do not confound it
with a sampling bias, i.e., lower or higher sampling
probability for certain directions. For example, in an
image, one can place more fibers and longer fibers in
diagonal directions than in the horizontal and vertical
direction. Therefore, we only evaluate pixels within

a circle around the image’s center. In order to avoid
boundary effects, the circle radius is set to 206 pixels.

For each realization B, we are interested in the
maximum of the MAE over all θ per method. We run
the MR method with σ1 = 20.0,σ2 = 0.75w≈ r/2, the
structure tensor with σ = r, ρ = 6.0 and the Hessian
matrix with σ = r as argued in the Methods section.

Results
Fig. 4 shows the mean error for unfiltered images

and the standard deviations for 50 noise realizations.
Considering the MR method, the hybrid algorithm
outperforms the line buffer algorithm, especially for
low-contrast cases. The cubic interpolation is more
accurate than the linear interpolation, especially for
the high contrast, but also for the low-contrast setup.
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The hybrid algorithm with linear interpolation and
major-axis modification performs nearly as well as it
does with cubic interpolation. For cubic interpolation,
however, it performs just as well with the major-axis
modification as it does without it. The effect of low
contrast is reduced for the larger fiber diameter of
r = π in comparison to r = π/2.

The structure tensor, however, is affected by low
contrast for both r = π/2,π . For r = π/2, it is
about as accurate as the MR method using the line
buffer algorithm, so it is outperformed by the hybrid
algorithm. For r = π , it is always outperformed
by the MR method with a hybrid algorithm and
modification. Note that for higher contrast, it still
performs better or as well as the MR method using the
line buffer algorithm, but for the lowest contrast, it is
outperformed by all algorithms employed in the MR
method.

The Hessian matrix is not able to match the
performance of the other methods, see Fig. 7(b).

Applying a median filter to noisy images is
a common preprocessing step to get rid of noise
while preserving edges. However, the errors are
considerably larger than for unfiltered images as
direction information is lost by the undirected median
filter, see Fig. 7(a).

APPLICATION TO SHEET MOULDING
COMPOUNDS

In this section, we apply the MR method to
low-contrast image data of sheet molding compound
materials. Sheet molding compounds (SMC) are a type
of material consisting of stacked layers of fibers. In
the automotive industry, SMC are of high interest
due to their versatile behavior such as light weight,
high stiffness, and strength, which is determined by
their fiber direction distribution (Orgéas and Dumont,
2012). Computed tomography imaging of SMC is
challenging due to the high fiber volume fraction and
the low difference in X-ray absorption of fiber and
matrix material. In the following, we will use the
MR method both for fiber direction estimation and
fiber enhancement, which is useful for segmenting the
fibers.

Sheet Molding Compound with Glass
Fibers

First, we consider an SMC material with glass
fibers, see Fig. 5. The image was taken using the
µCT device at the Fraunhofer ITWM, Kaiserslautern,
Germany, with a voltage of 120 kV, an integration
time of 999 ms, and 1 200 projections/angular steps.

The device uses a Feinfocus FXE-225 X-ray tube
and a PerkinElmer detector with 2048 × 2048 pixels
(Fraunhofer ITWM, 2022). As specified by the
manufacturer, the fibers’ diameter is 10 µm. The
material was scanned with a pixel spacing of 5 µm,
deliberately undersampling the fibers for the sake of
imaging representative sample volumes.

Following the arguments from the Methods
section, we applied the line buffer and the hybrid
algorithm with both linear and cubic interpolation to
the sample with σ1 = 0.5,σ2 = 20.0. For the structure
tensor and the Hessian matrix, we used σ = 1.0 and
ρ = 6.0. Additional to the direction estimation, the MR
method supplies a fiber enhancement with its maximal
response. Combined with Frangi et al.’s (1998)
enhancement filtering, we employ it to segment the
fiber system. Subsequently, we add a postprocessing
step based on Sliseris et al.’s work (2015). For further
details see Niedziela et al. (2024).

For these images, we do not have a ground truth,
but visually, the masks produced by the MR method
all appear quite accurate, see Fig. 5. Note that for very
diffuse fiber bundles, the hybrid algorithm using cubic
interpolation looks the most accurate. This result is
consistent with its higher accuracy for the response
to a unit impulse: The higher accuracy very likely
translates to the response to fibers, which makes the
enhanced fibers even more distinguishable, the basis
of our segmentation approach.

Sheet Molding Compound with Carbon
Fibers
As a second application, we consider images of

the material SMCarbon® 24 CF50-3K by POLYNT
Composites Germany GmbH. It consists of carbon
fibers with a length of 25 mm within a vinyl ester resin.
The fiber diameter is not known directly as it also
changes under pressure.

The sample was scanned with the X-ray
microscope Xradia 520 by Carl Zeiss Microscopy
GmbH (Leibniz-Institut für Verbundwerkstoffe, 2022)
with a pixel spacing of 24.93 µm, a voltage of 60 keV,
a power of 5 W, and 3 201 projections. The exposure
time was 2 s, where 20 single images were taken with
an exposure time of 0.1 s and then averaged. For the
field-of-view, they used 76 mm×48 mm.

We applied our versions of the MR method
with σ1 = 25.0,σ2 = 2.0. Following Schladitz et al.
(2016), we binarized the maximal filter response using
Niblack’s local thresholding (1986) with a window
size of w = 4σ2, and the threshold 0.6. Further, we
excluded components that have a pixel size lower than
100 after eroding the mask with a square of size 2 × 2.
For the sake of consistency, we applied the structure
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tensor and the Hessian matrix with σ = 4.0 and ρ =
6.0.

Despite there barely being any contrast within
the fiber bundles, the MR algorithm provides a fairly
accurate estimation of fiber directions, whereas the
gradient-based methods are struggling, see Fig. 6.
We compared the histograms of different algorithms
for the MR method, see supplementary material.
Strikingly, the line buffer and the hybrid algorithm
using linear interpolation without modification
apparently overestimate the direction 90◦ while
underestimating the neighboring 89◦ and 91◦. This
conforms to the error behavior of the kernel as plotted
in Fig. 2a. The other algorithms show minor deviations
from each other.

DISCUSSION

We proposed an alternative algorithm for
elongated anisotropic Gaussian filters in 2D, which
improves throughput and accuracy. Employed in a
numerical scheme for estimating fiber directions,
namely the maximal response of anisotropic Gaussian

filters, it improves accuracy, especially for noisy
images with low contrast. Moreover, it outperforms
established methods using the structure tensor or the
Hessian matrix on synthetic images of fibers.

We present two real-world data sets of sheet
molding compounds, to which we apply the method
successfully. This application also inspired our
experimental setup, for which we generated synthetic
images containing straight and parallel fiber bundles.
Here, our modifications to the algorithm yield
improved precision. Note that the method still
performs well on visibly bent carbon fibers.
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(a) Original slice, gray-values are spread for improved
visibility.

(b) Result using the MR method.

(c) Result using the structure tensor. (d) Result using the Hessian matrix.

Fig. 6: Direction estimation of SMC with carbon fibers. The directions are color-coded, see color wheel at the
top-right side.
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(a) Experimental results after applying the median filter.
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(b) Experimental results for the Hessian matrix.

Fig. 7: APPENDIX - Mean angle error for 50 noise images overlayed with synthetic fiber images with direction
θ = 0◦, ...,179◦, and with varying contrast. For each noise image contrast combination, the MAE’s maximum
over fiber directions was calculated. The mean and standard deviations over 50 noise images are depicted as
point symbol with bars for each contrast and algorithm. Note, however, that the standard deviations are small and
therefore the bars delimiting the interval are in most cases covered by the symbol for the mean value.
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