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ABSTRACT

Mathematical morphology (MM) is a powerful tool for spatial multispectral and hyperspectral image analyses.
However, MM was originally developed for single-band images in which each pixel is represented by a
numerical value. The most commonly used method for extending MM to multiband images is to process
each band independently without considering its correlations with other bands. This can lead to the creation of
artificial false spectral signatures and result in object misidentification. Therefore, extending MM to multiband
images requires the use of an adequate vector ordering strategy to fully exploit its potential. This work
proposes new vector ordering algorithms for the computation of multivalued MM. A multicriteria analysis
(MCA) system is used as a tool for establishing an ordering of vectors. Two MCA approaches, namely, an
”analytic hierarchy process” and a ”preference ranking organization method for enrichment evaluation,” are
developed to define ordering relations between vectors. To ensure the validity of the proposed vector ordering
algorithms, the computed multivalued morphological profiles are compared using the proposed vector ordering
approaches and conventional schemes. The results of applying the proposed vector ordering algorithms for
computing morphological profiles show that good classification accuracies were achieved for urban structures
in ROSIS hyperspectral images.

Keywords: hyperspectral imaging, multiband images, multivalued mathematical morphology, multivalued
morphological profile, vector ordering.

INTRODUCTION

Mathematical morphology (MM) is a useful tool
for spatial image processing. The MM technique
was developed by Serra (Serra, 1986; Nagel, 1988)
and has been used to extract spatial information
about the sizes, shapes, and orientations of objects
present in single-band images. The two basic
operations of mathematical morphology are erosion
and dilation, which are formulated by the infimum
operator (denoted as ∧) and the supremum operator
(denoted as ∨), respectively (Chevallier and Angulo,
2014). These two basic morphological operations
are at the origins of more elaborate morphological
transformations, such as morphological opening and
closing by reconstruction (Soille, 2013). Initially,
MM was defined for single-band images, where each
pixel of the image is a scalar value and there is a
natural ordering between the pixels in a predefined
neighbourhood. However, it is less trivial to formulate
pixel ordering relations in MM for multiband images.
In fact, in multiband images, each pixel is a vector
with m components corresponding to the pixel
values of the m image bands, and scalar ordering
is not possible. Therefore, the extension of MM
to multiband images requires ordering among pixel

vectors (Dougherty, 1992). Although several works
have proposed extending MM to multiband images,
there is no scientific consensus on the appropriate
process. This is mainly because extending MM to
multiband images is strongly related to the choice
of an appropriate vector ordering scheme, which is
considered an open mathematical problem (Aptoula
and Lefèvre, 2007; Velasco-Forero and Angulo, 2011).

Barnett (1976) categorized the existing vector
ordering algorithms used to extend MM to multiband
images into four groups: marginal vector ordering
strategies, conditional vector ordering strategies,
reduced vector ordering strategies, and partial vector
ordering strategies.

Marginal ordering strategies (M-ordering) process
each image band of the original image separately
from the other bands using scalar morphological
operations and ignore the intercorrelations among
image bands. Typically, due to the high dimensionality
of images, marginal approaches are performed after
the dimensionality reduction step to obtain a set of
decorrelated bands (Li and Li, 2004; Benediktsson
et al., 2005). Examples of using marginal vector
ordering strategies can be found in (Weber and
Lefevre, 2008; Fauvel et al., 2008; Chevallier et al.,
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2016). Although marginal approaches are easy to use,
they do not preserve vectors and can create new pixel
vectors that are not present in the original image
(Aptoula and Lefèvre, 2008b). This is mainly because
a pixel vector is treated by marginal strategies as
a collection of separate components rather than a
single entity. In satellite images, this can lead to the
creation of new spectral signatures and result in object
misidentification.

Conditional ordering strategies (C-ordering) aim
to rank vectors by assigning priorities to some (or
all) vector components. This type of ordering is
recommended for multiband images when the weights
of some image bands are more important than
others (Aptoula and Lefèvre, 2007). The efficiency
of conditional algorithms depends on the chosen
band prioritization function, which assigns weights
(or priorities) to each image band in the conditional
ordering scheme. Lexicographic ordering (L-ordering)
is a specific C-ordering strategy inspired by the
idea of sorting words in alphabetical order. In the
lexicographic ordering scheme, vectors are initially
ordered according to their first component values.
Vectors with the same value at the first vector
component are then ordered according to the next
vector component values, and so on. It is also
possible to obtain a valid lexicographic ordering
scheme by inverting the priorities of the vector
components (i.e., assigning higher weights to the last
vector components and lower weights to the first
vector components). L-ordering strategies guarantee
that the supremum and infimum vectors are members
of the initial set of compared vectors (i.e., the L-
ordering preserves the original pixel vectors). These
approaches also guarantee the uniqueness of the
vector extremes (i.e., they find a unique supremum
and a unique infimum for the compared vectors).
However, lexicographic ordering strategies present
the major drawback of exclusively using dominant
vector components in their vector ordering decisions.
Therefore, the remaining vector components rarely
participate in the lexicographic ordering process
(Aptoula and Lefèvre, 2008b). Despite this limitation,
L-ordering imposes total order relations among the
compared vectors (i.e., any two vectors can be
compared and ordered) and has been widely used in
several works, such as (Hanbury and Serra, 2001;
Angulo, 2005; Aptoula and Lefevre, 2007; Aptoula
and Lefèvre, 2008a; Angulo, 2010; Gao and Hu, 2013;
Lei et al., 2013).

Reduced ordering (R-ordering) strategies involve
projecting multidimensional data onto a one-
dimensional space and then applying the single-
band MM approach. This projection is performed

using an invertible rank function that produces a
representative scalar value for each vector. The
vectors are then ordered according to their associated
scalar values. After applying single-band MM to the
reduced data, the original multidimensional space
is reconstructed by inverting the rank function that
was initially used. R-ordering algorithms can utilize
various predefined rank functions. These include
simple rank functions such as PCA or other invertible
dimensionality reduction algorithms (Chanussot and
Lambert, 1998). Some approaches utilize different
distance measures from predefined reference vectors
as rank functions (Louverdis et al., 2002; Al-Otum,
2003; Du et al., 2003; Keshava, 2004; Van der Meer,
2006; Angulo, 2007; Garcia et al., 2008). In certain R-
ordering algorithms, the cumulative distance between
each vector and all other vectors is computed to
compare vectors, eliminating the need to choose a
reference vector (Plaza et al., 2002; 2004; 2005; 2009).
Additionally, R-ordering strategies can be developed
using other invertible rank functions, such as those
presented in (Lezoray et al., 2009; Lezoray and
Elmoataz, 2012; Sangalli and Valle, 2019). Although
the reduced ordering strategy takes the correlations
between image bands into account and preserves the
original vectors, the uniqueness of the vector extremes
(i.e., finding only one infimum vector and/or only
one supremum vector) is not guaranteed when the
rank function is not injective (Louverdis et al., 2002).
To ensure the uniqueness of the vector extremes, an
injective rank function should be used, or the reduced
vector ordering process should be completed by an
additional ordering relation to resolve the undecided
cases (Angulo, 2007).

Partial vector ordering (P-ordering) strategies
cluster a set of input vectors into groups of equivalence
based on a predefined criterion. P-ordering strategies
only compare vectors from two different (not identical)
groups, which means that the resulting ordering
relation is generally not a total relation. Furthermore,
P-ordering approaches have the disadvantage of
producing multiple vector extremes. Examples of
using P-ordering strategies to extend MM to multiband
images can be found in (Velasco-Forero and Angulo,
2011; 2012; Aptoula et al., 2014; Velasco-Forero and
Angulo, 2014; Franchi and Angulo, 2015).

A comprehensive overview of other works
that have addressed the extension of mathematical
morphology to multidimensional data is given in
(Aptoula and Lefèvre, 2007; Van de Gronde and
Roerdink, 2017).

According to the previously cited works, it follows
that the definition of a multivalued MM requires
an adequate vector ordering scheme. This scheme
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should take the correlations between image bands into
account and process all bands simultaneously. Vector
preservation and the uniqueness of the vector extremes
should be ensured. In addition, total order relations
should be imposed between the compared vectors.

This paper addresses the problem of extending
MM to multiband images by exploiting algorithms
from the specific field of multicriteria analysis (MCA)
systems. Two multicriteria analysis methods, the
analytic hierarchy process (AHP) and the preference
ranking organization method for enrichment
evaluation (PROMETHEE), have been adapted to
implement two new vector ordering algorithms
for multivalued MM computing. For this purpose,
the comparison structure of the exploited MCA
approaches are utilized as vector comparison
schemes to expand MM to multiband images. To
our knowledge, no previous work has employed
multicriteria analysis algorithms to design a vector
ordering scheme, and even less to extend MM
to multiband images. The resulting multivalued
MM operators are used to construct morphological
descriptors. The generated descriptors demonstrate
better classification performance than that of
conventional multivalued MM operators.

The remainder of this paper is organized as
follows. The second section introduces multicriteria
analysis systems and describes the two adapted
multicriteria analysis algorithms. The third section
discusses the experimental results. Finally, the
conclusions of and new perspectives on this work are
presented in Section 4.

MULTICRITERIA ANALYSIS SYS-
TEMS

Multicriteria analysis (MCA) systems are
comparison systems that evaluate actions (alternatives,
solutions or options) and select the optimal action
that satisfies a maximum number of criteria for a
predefined ranking objective (Roy et al., 2002). The
purpose of any multicriteria method is to reduce
the incomparability (denoted as the R situation)
between the compared actions as much as possible.
A multicriteria analysis system is based on three key
factors.

– Actions: An action is designated by an object on
which the multicriteria decision is made. The set of
potential actions in a multicriteria analysis system
is denoted by A.

– Criteria: A criterion g() is a function that assigns
a utility value g(ai) for each action ai. gk(ai)

designates the utility value (or the evaluation
value) of action ai according to the kth criterion.
The elimination of superfluous and redundant
criteria makes the multicriteria analysis process
more robust (Roy et al., 2002).

– Criteria weights: Some criteria may be more
important than others. This importance is
expressed by a weight coefficient in a multicriteria
analysis system. A higher weight value designates
a more privileged criterion. When the criteria have
the same weights, the multicriteria system does
not take the weights of the different criteria into
account. In our work, wk indicates the weight of
the kth criterion.

To exploit a multicriteria analysis system for
any type of problem, it is necessary to identify the
previously mentioned factors (i.e., actions, criteria, and
criteria weights), which are fundamental for utilizing
the multicriteria analysis structure.

All multicriteria analysis methods start with the
same evaluation matrix D(n × m), which is also
called the judgement matrix or the performance matrix
(see Eq. (1)), but they vary in their calculation
procedures. Thus, the obtained results can differ from
one multicriteria analysis method to another.

D(n×m) =


g1(a1) g2(a1) · · · gm(a1)

g1(a2) g2(a2) · · · gm(a2)

...
...

. . .
...

g1(an) g2(an) · · · gm(an)

 (1)

where the rows of the evaluation matrix D
correspond to n compared actions and the columns
correspond to m criteria. The element in the ith row
and jth column (i.e., g j(ai)) of the decision matrix D
represents the utility value of the ith action ai according
to the jth criterion g j().

The purpose of this work is to consider the
vector ordering problem as an MCA problem and
to create a multicriteria representation of multiband
data to exploit multicriteria analysis methods as vector
ordering methods in multivalued MM computing
settings.

To adapt a multicriteria comparison structure to
the context of pixel vector ordering, we consider each
pixel vector in a multiband image as an action ai. Each
image band is considered a criterion, and the spectral
response of the pixel vector ai for the kth image band
is considered the utility value of action ai according
to the kth criterion in the MCA structure. The priority
value of the kth image band represents the weight of
the kth criterion (denoted as wk). By specifying these
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correspondences, the structure of the multiband image
can be represented as a decision matrix in the MCA
system. The pixel vectors are thus compared during the
multivalued MM computation process by comparing
their components in the MCA comparison structure.

The theoretical basis of MM imposes the use
of a total ordering relation on the vector ranking
process, even though this relation is more difficult to
apply when the compared values do not have a one-
dimensional structure (Dougherty, 1992; Serra, 1992).
Therefore, using multicriteria analysis methods, which
overcomes action incomparability (i.e., where two
vectors with different components cannot be ordered),
is more suitable in our work context.

Several multicriteria methods require additional
information, such as predefined threshold values
requiring human operator intervention (Greco et al.,
2016). In this paper, only automatic multicriteria
analysis methods are employed.

According to the previous constraints, two
multicriteria analysis methods, the AHP and
PROMETHEE, are studied and developed to extend
MM to multiband images. These methods are more
commonly used for multicriteria analysis and are
highly capable of extending MM to multiband images.

In the following subsections, we describe the
two multicriteria analysis methods, the AHP and
PROMETHEE, that are used for multivalued MM
computing.

ANALYTIC HIERARCHY PROCESS
(AHP)

The analytic hierarchy process (AHP) is a
mathematical method for analysing and prioritizing
a set of possible actions based on a predefined
objective, from the best actions (i.e., those that
satisfy the maximum number of criteria) to the worst
actions. It was developed by Thomas L. Saaty (1987;
2008) and produces priority numbers for each action,
quantifying its rank in the comparison set. It is
important to note that the AHP output depends on the
predefined objective, which can be oriented towards
either maximization to find the supremum action or
minimization to find the infimum action.

As previously mentioned, the AHP method starts
with an evaluation matrix D (see Eq. (1)) that considers
n actions and m evaluation criteria. For each criterion
gk(), the AHP creates a pairwise comparison matrix
(called a binary comparison matrix) with a size of
(n×n):



P(k)
(a1,a1)

P(k)
(a1,a2)

· · · P(k)
(a1,an)

P(k)
(a2,a1)

P(k)
(a2,a2)

· · · P(k)
(a2,an)

...
...

. . .
...

P(k)
(an,a1)

P(k)
(an,a2)

· · · P(k)
(an,an)


(2)

Each pairwise comparison matrix compares pairs
of actions based on their scalar values according to
the kth criterion. The element P(k)

(ai,a j)
in the matrix

represents the preference, or dominance, of action ai
over action a j with respect to the kth criterion. If
two actions have the same preference in the pairwise
comparison matrix, the entry P(k)

(ai,a j)
is equal to 1. The

preference P(k)
(ai,ai)

is always 1 for all i = 1, · · · ,n. Note

that the entries P(k)
(ai,a j)

and P(k)
(a j,ai)

satisfy the following
formula:

P(k)
(ai,a j)

=
1

P(k)
(a j ,ai)

(3)

In the AHP technique, the relative preference
P(k)
(ai,a j)

between two actions ai and a j according
to criterion gk() is quantified according to the
numerical Saaty scale, which ranges from 1 to
9. Level 1 corresponds to equal preference for
both actions, while level 9 corresponds to the
absolute preference of one action over another. The
intermediate values between these two limits represent
intermediate preference values. However, for our
vector ordering approach, the Saaty scale is not
appropriate because it is too restrictive, relies on
a human factor when attributing preference values,
and ignores the distance measurements between two
vectors. Therefore, we replace the classic AHP scale
with a new preference function P(k) (see Eq. (4)) that
uses a distance measurement without considering any
reference vector.


if gk(ai)> gk(a j) then P(k)

(ai,a j)
= (gk(ai)−gk(a j))+1

if gk(ai)< gk(a j) then P(k)
(ai,a j)

=
1

(gk(a j)−gk(ai))

if gk(ai) = gk(a j) then P(k)
(ai,a j)

= 1
(4)

The preference function P(k) proposed in Eq. (4)
is utilized only when searching for the supremum
pixel vector (i.e., maximizing the ranking objective).
On the other hand, when searching for the infimum
pixel vector (i.e., minimizing the ranking objective),
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the preference function must be inverted as shown in
Eq. (5).


if gk(ai)< gk(a j) then P(k)

(ai,a j)
= (gk(a j)−gk(ai))+1

if gk(ai)> gk(a j) then P(k)
(ai,a j)

=
1

(gk(ai)−gk(a j))

if gk(ai) = gk(a j) then P(k)
(ai,a j)

= 1
(5)

After constructing the pairwise comparison matrix
for the kth criterion, it is normalized using the
following formula:

P(k)
(ai,a j)

=
P(k)
(ai,a j)

∑
n
l=1 P(k)

(al ,a j)

(6)

This normalization process results in preference
values that lie within the interval of [0,1].

To determine the priority of each action ai based on
the kth criterion (denoted as α

(k)
i ) while considering the

normalized pairwise comparison matrix, the following
formula can be used:

α
(k)
i =

∑
n
l=1 P(k)

(ai,al)

n
(7)

To quantify the overall priority of each action ai
for all criteria simultaneously, the numerical overall
priority of each action is calculated using the following
formula:

P(ai) = (α
(1)
i ×w1)+ · · ·+(α

(k)
i ×wk)+ · · ·+(α

(m)
i ×wm)

(8)

The computed overall priority P(ai) indicates the
relative importance of an action ai compared to all
other actions according to the predefined ranking
objective. The overall action priorities (Eq. (8)) lead
to an AHP ranking list of the compared actions. This
list facilitates the selection of the most dominant action
(i.e., the action that maximizes the overall priority)
according to the predefined ranking objective. The
AHP method treats the multicriteria problem using
the same steps for both ranking objectives (i.e., for
the maximization and minimization objectives), only
adapting the preference function in the binary pairwise
comparison matrix to the chosen ranking objective.

In the AHP preference architecture, it is possible
to rank actions without using the relative criteria
coefficients. In this particular case, all criteria have

the same weight (wk = 1/m ∀ k ∈ [1,m]) in the
multicriteria analysis system. Both scenarios, using
different or similar criteria weights, are considered in
this paper.

The AHP is a complete aggregation method that
converts various action evaluations obtained according
to the set of criteria into a unique numerical number
that reflects the overall prioritization of this action.
Thus, the proposed ordering algorithm using the AHP
method can be considered a reduced vector ordering
approach since pixel vectors are compared by the AHP
based on their aggregated numerical values (i.e., their
overall priority indices).

PREFERENCE RANKING ORGANIZATION
METHOD FOR ENRICHMENT EVALUATION
(PROMETHEE)

Jean-Pierre Brans and Philippe Vincke developed
the PROMETHEE ranking method (Brans, 1985;
Brans et al., 1986) to address multicriteria problems
where conflicting criteria must be considered. This
method enables a finite number of actions to be ranked
based on several criteria.

The first step of the PROMETHEE method is to
construct an evaluation matrix D(n×m) (see Eq. (1)),
which allows actions to be compared.

The preference structure of the PROMETHEE
method is constructed from the evaluation matrix
D(n × m) by making pairwise action comparisons.
To compare two actions ai and a j via PROMETHEE
according to a criterion gk(), their preference degree
(or preference intensity) PF(k)

(ai,a j)
, which can vary

between 0 and 1, is evaluated. The preference
function PF(k) used to estimate the preference degree
between two actions takes the distance dk between the
compared actions ai and a j into account, as shown in
the following equations:

PF(k)
(ai,a j)

= PF(k)(dk(ai,a j)) (9)

where
dk(ai,a j) = gk(ai)−gk(a j) (10)

The preference degree PF(k)
(ai,a j)

between two
actions ai and a j determined according to criterion gk()
is influenced by the distance dk between them. A small
distance results in a small preference, while a large
distance leads to a large preference. When the distance
dk is null or negligible, there is no preference for either
of the two compared actions.
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Table 1: The Six Brans and Vincke Preference Functions.

Preference
functions

Mathematical Expression
for the Maximization
Ranking Objective

Thresholds Used by the
Preference Function

Usual function PF(k)
(ai,a j)

=

{
0 if dk(ai,a j)≤ 0
1 if dk(ai,a j)> 0

No threshold

U-shaped function PF(k)
(ai,a j)

=

{
0 if dk(ai,a j)≤ qk

1 if dk(ai,a j)> qk

Indifference
threshold qk

V-shaped function PF(k)
(ai,a j)

=


0 if dk(ai,a j)≤ 0
dk(ai,a j)

pk
if 0 < dk(ai,a j)≤ pk

1 if dk(ai,a j)> pk

Preference
threshold pk

Level function PF(k)
(ai,a j)

=


0 if dk(ai,a j)≤ qk
1
2

if qk < dk(ai,a j)≤ pk

1 if dk(ai,a j)> pk

Indifference
threshold qk
+
Preference
threshold pk

Linear function PF(k)
(ai,a j)

=


0 if dk(ai,a j)≤ qk
dk(ai,a j)−qk

pk −qk
if qk < dk(ai,a j)≤ pk

1 if dk(ai,a j)> pk

Indifference
threshold qk
+
Preference
threshold pk

Gaussian function PF(k)
(ai,a j)

=

0 if dk(ai,a j)≤ 0

1− (exp−(
dk(ai,a j)

2

2σ2
k

)) if dk(ai,a j)> 0

Gaussian
threshold σk
(an intermediate
value between
qk and pk)

Choosing an appropriate preference function PF(k)

is a crucial step since the results of the PROMETHEE
method depend on this function. Table 1 summarizes
the six preference functions proposed by Brans (1985)
for the PROMETHEE multicriteria method: the usual
function, U-shaped function, V-shaped function, level
function, linear function, and gaussian function.

The preference functions reported in Table 1 are
defined for the maximization objective. In the case
of minimization (i.e., when searching for the infimum
pixel vector), it is sufficient to reverse the selected
preference function.

After selecting a preference function PF(k), an
aggregated preference index ⊓P (ai,a j) is computed
for each pair of compared actions (ai,a j) (see
Eq. (11)).

The index ⊓P (ai,a j) gives the degree to which an
alternative ai is preferred over another alternative a j
when simultaneously considering all criteria:

⊓P (ai,a j) =
m

∑
k=1

(PF(k)
(ai,a j)

×wk) (11)

An aggregated preference index ⊓P (ai,a j) close
to 0 (close to 1) implies a weak preference (strong

preference) for action ai over action a j when
simultaneously considering all the criteria. Therefore,
with n actions, there are (n−1) aggregated preference
indices for each action ai.

The criterion weight wk is considered when
computing the ⊓P index. In the PROMETHEE
method, the criteria can have the same weights
(i.e., wk = 1/m ∀ k ∈ [1,m]) or different weights in
Eq. (11). It should be noted that both scenarios are
considered in our experimental section.

The next step in the PROMETHEE method is
to determine the outranking relations between the
compared actions. This involves computing three
outranking flows for each action ai.

The first is the positive outranking flow Φ+. The
Φ+ flow reflects how action ai outranks and dominates
all the other actions according to the predefined
ranking objective. It corresponds to the outranking
characteristic of action ai and is defined as follows:

Φ
+
ai
=

1
n−1 ∑

x∈A
⊓P(ai,x) (12)

where n is the number of actions in the comparison
set A.
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The second outranking flow is the negative
outranking flow Φ−. The Φ− flow reflects how action
ai is outranked and dominated by all other actions
according to the predefined ranking objective. It
corresponds to the outranked characteristic of action
ai and is computed by:

Φ
−
ai
=

1
n−1 ∑

x∈A
⊓P(x,ai) (13)

The net flow Φ (also called the global flow)
is defined as the arithmetic difference between the
positive and negative flows:

Φai = Φ
+
ai
−Φ

−
ai

(14)

The net flow is a measure of the overall outranking
degree of an action ai compared to the other actions in
the comparison set A.

To designate final action rankings, PROMETHEE
considers the net flow Φ values associated with the
compared actions. For all compared actions, there are
two possible ranking relations:

{
[ai P a j] if Φai > Φa j

[ai I a j] if Φai = Φa j

(15)

Here, P and I are the preference and indifference
situations, respectively, between the two actions ai
and a j. Note that there is no incomparability situation
involving the compared actions. This approach
provides a complete ranking relation in the comparison
architecture and is highly capable of extending MM to
multivalued images (Talbot et al., 1998).

The best preferred action according to the
ranking objective (the maximization or minimization
objective) is the action with the greatest net flow, which
is selected by the PROMETHEE method.

As previously mentioned, the PROMETHEE
method uses a preference function PF(k) to conduct
binary comparisons (see Table 1). The following part
of this subsection describes the preference functions
used by PROMETHEE in the present work.

In this paper, the first utilized preference function
is the standard usual function (see Table 1). It is a
binary function that does not use any threshold and
takes only two values: 0 for the indifference situation
between two actions and 1 for the total (or strict)
preference situation in favour of one action. The usual
function defined in Table 1 must be reversed for the
minimization context so that the formula for PF(k)

(ai,a j)

becomes:

PF(k)
(ai,a j)

=

{
0 if dk(ai,a j)≥ 0
1 if dk(ai,a j)< 0

(16)

The usual preference model suggests that even
the smallest differences dk(ai,a j) between actions can
indicate a preference situation.

To address this, we also use the U-shaped
function (see Table 1) in the PROMETHEE preference
architecture. The U-shaped function considers a small
distance dk(ai,a j) between actions as an indication
of indifference between the two actions for a given
criterion gk(). The indifference interval is delimited
by the indifference threshold value qk, above which
there is indifference and below which there is a total
(or strict) preference situation.

Employing the U-shaped preference model
requires the value of the indifference threshold qk to
be determined, which is not a trivial task and is usually
performed by a human operator. However, we develop
a strategy to use the U-shaped preference function
without specifying any indifference threshold value
for the qk parameter. This strategy is summarized by
the following formula:

PF(k)
(ai,a j)

=


0 if dk(ai,a j)< 0

or dk(ai,a j)≥ 0 and dk(ai,a j)≤ 0.1 ·gk(ai)

1 if dk(ai,a j)≥ 0 and dk(ai,a j)> 0.1 ·gk(ai)
(17)

where 0.1 ·gk(ai) corresponds to 10% of gk(ai).

When the ranking objective is to search for the
infimum extreme, the curve of the U-shaped preference
function must be inverted as follows:

PF(k)
(ai,a j)

=


0 if dk(ai,a j)≥ 0,

or dk(ai,a j)< 0 and |dk(ai,a j)| ≤ 0.1 ·gk(a j)

1 if dk(ai,a j)< 0 and |dk(ai,a j)|> 0.1 ·gk(a j)
(18)

The U-shaped function expresses indifference
between two actions or a strict preference (i.e., a
total preference or strong preference) for one action.
Therefore, the U-shaped preference model is unable
to distinguish between strong and weak preference
situations.

In contrast, the V-shaped, level, and linear
preference functions (see Table 1) consider both strong
and weak preference situations in the preference
model by using two distinct thresholds: an indifference
threshold qk, below which there is indifference
between two compared actions, and a preference
threshold pk, above which there is a strong preference
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for one of the two compared actions. These two
thresholds define an intermediate zone that represents
weak preference and marks the transition between
the indifference and strong preference situations.
However, it can be challenging to determine the
optimal values for qk and pk.

To avoid predefining the qk and pk thresholds,
we apply our elaborated strategy from the previous
U-shaped function to the level preference function.
We discard the use of the V-shaped and linear
preference functions in this work because they require
predefined values for qk and pk in the preference
value computation (see Table 1), which is not the
case for the level preference function. Therefore,
our proposed preference architecture using the level
preference function is defined as follows:

PF(k)
(ai,a j)

=



0 if dk(ai,a j)< 0
or dk(ai,a j)≥ 0 and dk(ai,a j)≤ 0.1 ·gk(ai)

1
2 if dk(ai,a j)≥ 0 and 0.1 ·gk(ai)< dk(ai,a j)

and dk(ai,a j)≤ 0.4 ·gk(ai)

1 if dk(ai,a j)≥ 0 and dk(ai,a j)> 0.4 ·gk(ai)
(19)

where 0.1 · gk(ai) and 0.4 · gk(ai) correspond to
10% and 40% of gk(ai), respectively.

When the ranking objective is to search for the
infimum extreme, the curve of the level preference
function must be inverted in the same way as that
applied to the U-shaped preference function.

The percentage values (0.1 for 10% and 0.4 for
40%) used in the level (see Eq. (19)) and U-shaped
(see Eq. (17) and Eq. (18)) preference functions are
experimentally determined and found to be effective
for the tested data. Different percentage values can be
used to delimit the indifference, strict preference, and
weak preference intervals. However, this topic is not
the focus of this paper.

The Gaussian preference function is another
preference function that takes both strong and weak
preference situations into account without requiring
the specification of indifference thresholds (qk)
or preference thresholds (pk) (see Table 1). The
Gaussian preference function allows preferences to
vary progressively from totally weak (nonexistent
preferences, i.e., PF(k)

(ai,a j)
= 0) to totally strong

(strict preferences, i.e., PF(k)
(ai,a j)

= 1), passing through
the intermediate preference values between these
two extremes. The Gaussian preference function is
associated with a Gaussian threshold σk, which is
defined as:

σk =

√
(gk(ai)−

dk(ai,a j)
2 )2 +(gk(a j)−

dk(ai,a j)
2 )2

2
(20)

When searching for the infimum extreme (i.e.,
searching for the infimum pixel vector), the Gaussian
preference function must be inverted as follows:

PF(k)
(ai,a j)

=

0 if dk(ai,a j)≥ 0

1− (exp−(
dk(ai,a j)

2

2σ2
k

)) if dk(ai,a j)< 0

(21)

The PROMETHEE method is an aggregation
technique that combines diverse action evaluations
determined by criteria into a single numerical value
that represents the overall action prioritization. As a
result, the proposed ordering algorithm utilizing the
PROMETHEE method can be viewed as a reduced
vector ordering approach since pixel vectors are
compared by the PROMETHEE method based on their
aggregated numerical values (i.e., their net flows).

In the previous section, we adapted two MCA
methods to our goal of ordering vectors in multivalued
MM computing process.

In the next section, we use the vector ordering
algorithms proposed based on the two presented
multicriteria analysis methods to generate spatial
descriptors using a multivalued morphological profile
(multivalued MP). A comparison between the
classification results obtained from the proposed
methods and those obtained from conventional vector
ordering methods is discussed in the following section.

EXPERIMENTAL RESULTS

This section aims to evaluate the efficiency
of the proposed vector ordering algorithms by
comparing the classification rates achieved using
spatial morphological descriptors. The morphological
descriptors are obtained by performing multivalued
MP computations using the proposed and conventional
vector ordering methods.

The multivalued MP (Benediktsson et al., 2003;
2005) generates morphological descriptors through
successive morphological opening and closing by
reconstruction with a structuring element (SE)
possessing an increasing size.

For the multivalued MP computations, we consider
seven vector ordering algorithms:

– The lexicographic vector ordering algorithm with
decreasing band weights
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– The lexicographic vector ordering algorithm with
increasing band weights

– The proposed AHP-based vector ordering
algorithm

– The proposed PROMETHEE vector ordering
algorithm using the usual preference function

– The proposed PROMETHEE vector ordering
algorithm using the U-shaped preference function

– The proposed PROMETHEE vector ordering
algorithm using the level preference function

– The proposed PROMETHEE vector ordering
algorithm using the Gaussian preference function

In all the experiments, widely known conventional
vector ordering schemes, namely, lexicographic vector
ordering schemes with decreasing and increasing
band weights, are used as comparison methods to
validate the proposed vector ordering algorithms.
These conventional schemes are chosen as comparison
references due to their efficiency, simplicity, and
common use in multivalued morphological image
analysis cases. These methods do not require
parameters and intuitively ordered image bands.
Additionally, the total order relation in the vector
comparison method is well suited for multivalued
MMs (Talbot et al., 1998) and is guaranteed by the
lexicographic vector ordering algorithms, as noted in
previous studies (Hanbury and Serra, 2001; Angulo,
2007; 2010).

The experimental results are obtained using two
multiband images acquired by ROSIS sensors over the
Pavia region in northern Italy. The images cover a
complex urban environment with a spatial resolution
of 1.3 metres and consist of 103 spectral bands for
Pavia University and 102 spectral bands for Pavia
Center (after the water absorption and noisy bands are
removed) (Tarabalka et al., 2009; 2010).

The multiband image of Pavia University consists
of 610*340 pixels and has a ground-truth image
that distinguishes the nine land cover classes on the
university campus: asphalt, meadows, gravel, trees,
painted metal sheets, bare soil, bitumen, bricks, and
shadows. Fig. 1 (a) and Fig. 1 (b) show the true colour
composites of the original multiband image and the
available ground-truth regions, respectively.

The multiband image of the Pavia Center has
spatial dimensions of 1096 by 715 pixels and has
a ground-truth map that distinguishes eight different
classes of urban objects: asphalt, meadows, trees, bare
soil, bitumen, brick roofs, parking lots, and water.
Figure 2 displays the Pavia Center image and its
corresponding ground-truth image.

The number of pixels per class composing the
ground-truth images is reported in Table 2 for the Pavia
University scene and in Table 3 for the Pavia Center
scene.

Asphalt Meadows
Gravel Trees
Painted metal sheets Bare soil
Bitumen Bricks
Shadows Unlabelled

(a) (b)

Fig. 1: Pavia University Scene. (a) True colour
composite of the original image. (b) Ground-truth
image with nine land cover classes: asphalt, meadows,
gravel, trees, painted metal sheets, bare soil, bitumen,
bricks, and shadows.

Before implementing the multivalued MP
computation, dimensionality reduction is applied to the
original multiband images using principal component
analysis (PCA). This step eliminates redundant and
highly correlated bands that represent superfluous
criteria and may compromise the robustness of the
multicriteria analysis process (Roy et al., 2002).

Thus, only the first three PCA components from
each image, which capture the majority of the spatial
information and account for more than 99% of the
total eigenvalues (as indicated in Tables 4 and 5), are
utilized for computing the multivalued MP.

Note that the percentages of the eigenvalues of the
selected PCA components in each reduced image are
considered the band weights (i.e., criteria weights) in
the multicriteria analysis architecture.
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Asphalt Meadows
Trees Bare soil
Bitumen Brick roofs
Parking lots Water
Unlabelled

(a) (b)

Fig. 2: Pavia Center Scene. (a) The true colour
composite of the original image. (b) The ground-
truth image with eight land cover classes: asphalt,
meadows, trees, bare soil, bitumen, brick roofs,
parking lots, and water.

Table 2: Ground-truth classes and numbers of test
samples for the Pavia University Scene.

Class Number of test samples

Asphalt 6631

Meadows 18649

Gravel 2099

Trees 3064

Painted metal sheets 1345

Bare soil 5029

Bitumen 1330

Bricks 3682

Shadows 947

The effectiveness of the compared vector ordering
algorithms is evaluated using the support vector
machine (SVM) classifier (Vapnik, 1998). The
SVM classification results are quantified using
three metrics, namely, the overall accuracy (OA),
the individual test accuracy (ITA), and the kappa
statistic rate (Rosenfield and Fitzpatrick-Lins, 1986;
Congalton, 1991; Congalton and Green, 2019).
High OA, ITA, and the kappa coefficient values
indicate accurate classification results (Congalton,
1991).

Table 3: Ground-truth classes and numbers of test
samples for the Pavia Center Scene.

Class Number of test samples

Asphalt 9248

Meadows 3090

Trees 7598

Bare soil 6584

Bitumen 7287

Brick Roofs 42826

Parking Lot 2685

Water 65971

Table 4: Eigenvalues and percentages of cumulative
spatial information for the PCA components of the
Pavia University Scene.

The PCA components
Eigenvalues
of the PCA
components

Percentage of
cumulative variance
(λk/∑

103
l=1 λl)

λ1 3.13×107 58.32%

λ2 1.94×107 36.10%

λ3 0.25×107 4.72%

λ4 +λ5 + · · ·+λ103 0.046×107 0.86%

Table 5: Eigenvalues and percentages of cumulative
spatial information for the PCA components of the
Pavia Center Scene.

The PCA components
Eigenvalues
of the PCA
components

Percentage of
cumulative variance
(λk/∑

102
l=1 λl)

λ1 4.51×107 70.23%

λ2 1.67×107 26.07%

λ3 0.18×107 2.83%

λ4 +λ5 + · · ·+λ102 0.056×107 0.87%

Spectral SVM classification is normally conducted
using the spectral bands of the reduced images.
Instead, spatial-spectral SVM classification uses both
spectral information and the spatial information
computed from multivalued MMs via seven compared
vector ordering algorithms.

The next subsections will discuss the classification
results obtained for both the Pavia University and
Pavia Center scenes.
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Table 6: Classification accuracies (percentages) achieved by different vector ordering algorithms using various
criteria weights for the Pavia University image.

Land Cover
Classes

Reduced
image
(spectral
classification)

Lexicographic
ordering
with
decreasing
band
weights

Lexicographic
ordering
with
increasing
band
weights

AHP
with
various
criteria
weights

PROMETHEE
using
the usual
preference
function with
various criteria
weights

PROMETHEE
using
the U-shaped
preference
function with
various criteria
weights

PROMETHEE
using
the level
preference
function with
various criteria
weights

PROMETHEE
using
the Gaussian
preference
function with
various criteria
weights

Asphalt 97.20 97.95 98.31 97.62 97.39 97.99 97.84 98.16

Meadows 93.55 95.77 97.75 98.54 96.92 96.11 95.78 97.16

Gravel 43.32 72.32 54.30 83.15 75.27 79.58 85.88 85.58

Trees 82.85 79.59 67.59 85.67 91.35 89.64 87.99 85.42

Painted metal 96.48 97.74 86.93 98.53 97.55 95.79 97.71 98.37

Bare soil 77.37 84.52 84.02 88.07 85.99 87.99 87.25 87.48

Bitumen 56.65 81.72 55.20 88.44 75.51 81.52 85.27 82.30

Bricks 84.41 90.83 86.80 89.76 86.99 87.20 86.15 88.50

Shadows 73.17 78.80 70.78 85.88 77.51 80.06 83.86 86.18

OA 82.82 90.53 85.36 93.34 90.81 91.47 92.06 92.69

Kappa 0.76 0.87 0.81 0.91 0.88 0.89 0.90 0.90

Table 7: Classification accuracies (percentage) attained by different vector ordering algorithms using the same
criteria weights for the Pavia University image.

Land Cover
Classes

Reduced
image
(spectral
classification)

Lexicographic
ordering
with
decreasing
band
weights

Lexicographic
ordering
with
increasing
band
weights

AHP
with
the same
criteria
weights

PROMETHEE
using
the usual
preference
function with
the same
criteria
weights

PROMETHEE
using
the U-shaped
preference
function with
the same
criteria
weights

PROMETHEE
using
the level
preference
function with
the same
criteria
weights

PROMETHEE
using
the Gaussian
preference
function with
the same
criteria
weights

Asphalt 97.20 97.95 98.31 97.24 97.74 97.60 96.97 97.18

Meadows 93.55 95.77 97.75 95.56 94.57 94.54 95.90 94.23

Gravel 43.32 72.32 54.30 67.11 43.42 45.72 51.07 64.14

Trees 82.85 79.59 67.59 84.84 84.59 85.15 81.28 84.76

Painted metal 96.48 97.74 86.93 97.16 97.11 94.53 97.55 96.88

Bare soil 77.37 84.52 84.02 83.32 79.92 79.96 80.72 82.53

Bitumen 56.65 81.72 55.20 58.96 50.92 52.21 57.86 61.84

Bricks 84.41 90.83 86.80 87.30 85.85 87.48 85.52 86.91

Shadows 73.17 78.80 70.78 79.87 77.11 78.39 79.83 83.65

OA 82.82 90.53 85.36 87.31 83.83 84.35 85.51 86.93

Kappa 0.76 0.87 0.81 0.83 0.79 0.79 0.81 0.83

Experiment 1: Pavia University scene

Table 6 and Table 7 provide a summary of the
results obtained by the proposed vector ordering
algorithms in two different scenarios: one where the
criteria weights vary and another where they are
similar. The first column of each table reports the

spectral classification accuracies attained for the Pavia
University scene using the SVM classifier.

The results show that using only spectral
information yields an OA of 82.82% and a kappa
coefficient of 0.76. However, incorporating the spatial
information obtained through the multivalued MP
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significantly improves the classification accuracies in
terms of both the OA and kappa rates, regardless of
the vector ordering scheme used in the multivalued MP
computation.

Table 6 shows that using various criteria weights in
the proposed multicriteria vector ordering algorithms
results in significantly higher classification accuracies
than those of the conventional algorithms, with an
OA rate of up to 90.80% and a kappa rate of
0.87. In contrast, when using the same criteria
weights, the proposed multicriteria vector ordering
algorithms result in lower classification rates than
does conventional lexicographic vector ordering with
decreasing band weights, as shown in Table 7.

The results also show that the classification results
of the PROMETHEE vector ordering algorithm vary
depending on the preference function used in the
PROMETHEE preference architecture, as illustrated in
the last four columns of Table 6 and Table 7.

The Gaussian preference function yields the
highest overall accuracy, followed by the level
preference function, which is comparable to the
Gaussian function, particularly when considering
various criteria weights. However, the usual preference
function yields lower OA and kappa values for
the PROMETHEE method, possibly because the
conventional Boolean logic of the usual preference
model excludes the intermediate level between strong
and weak preferences when comparing pixel vectors.

On the Pavia University dataset, the AHP-based
vector ordering method yields the best OA and kappa
classification rates, regardless of whether the same or
various criteria weights are used in the multicriteria
vector ordering architecture.

Considering the individual test accuracy (ITA)
rates, the influence of each vector ordering algorithm
on the individual classification results varies for
different thematic classes.

By comparing Tables 6 and 7, it is found that
when using various criteria weights in the multicriteria
vector ordering scheme, the proposed vector ordering
algorithms result in higher accuracies for most classes.
This is especially true for the gravel and asphalt
land cover types, which exhibit greater sensitivity
to class-specific accuracies for the criteria weighting
parameter.

When the proposed methods using the same
criteria weights are compared to the two conventional
lexicographic vector ordering methods, it is found that
the lexicographic methods outperform the proposed
methods for the majority of the land cover classes.
However, the use of various criteria weights in the

multicriteria vector ordering algorithms significantly
outperforms the lexicographic methods for 8 land
cover classes, including meadows, trees, bare soil,
brick roofs, parking lots, and water.

Among the proposed multicriteria vector ordering
algorithms that use various criteria weights, the
PROMETHEE method combined with a Gaussian
preference function and the AHP algorithm increase
the discrimination potential for individual classes.
However, several exceptions are noted, such as the
asphalt land cover type, which yields better individual
test accuracy for the conventional lexicographic vector
ordering algorithm with decreasing band weights
(98.31%); the brick class, which registers higher
individual test accuracy for the lexicographic vector
ordering algorithm with increasing band weights
(90.83%); and the high individual classification
accuracy obtained by the PROMETHEE vector
ordering algorithm with the U-shaped preference
function (91.35%) for the tree class.

The individual test accuracies obtained for
different land cover classes with the proposed vector
ordering algorithms using various criteria weights and
the same criteria weights are presented in Fig. 3 and
Fig. 4, respectively.

Experiment 2: The Pavia Center scene
The Pavia Center scene is an image of an

urban area that contains small and closely spaced
structures. Tables 8 and 9 summarize the overall
accuracies (OA), individual classification accuracies
(ITA), and Kappa coefficients achieved for the
Pavia Center image and show that the classification
process using the spatial information obtained by
different vector ordering algorithms provides some
classification improvement over the spectral strategy.
This classification improvement may or may not be
significant, depending on the vector ordering algorithm
used in the multivalued MP computing task.

Comparing Tables 8 and 9, we can see the that
multicriteria vector ordering algorithms incorporating
various criteria weights are not only more efficient than
those using the same criteria weights but also more
efficient than the conventional lexicographic vector
ordering methods.

The PROMETHEE method using the Gaussian
function outperforms all other vector ordering
approaches in both cases (using the same or various
criteria weights).

The impact of each vector ordering algorithm on
the individual classification results varies for different
thematic classes, as indicated by the individual test
accuracy (ITA) rates.
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Fig. 3: Individual test accuracies achieved for nine land-cover classes using the proposed vector ordering
algorithms with various criteria weights (MET1: lexicographic ordering with decreasing weights, MET2:
lexicographic ordering with increasing weights, MET3: the AHP method, MET4: PROMETHEE method with
the usual preference function, MET5: the PROMETHEE method with the U-shaped preference function, MET6:
the PROMETHEE method with the level preference function, and MET7: the PROMETHEE method with the
Gaussian preference function).
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Fig. 4: Individual test accuracies achieved for nine land cover classes using the proposed vector ordering
algorithms with the same criteria weights (MET1: lexicographic ordering with decreasing weights, MET2:
lexicographic ordering with increasing weights, MET3: the AHP method, MET4: the PROMETHEE method with
the usual preference function, MET5: the PROMETHEE Method with the U-shaped preference function, MET6:
the PROMETHEE method with the level preference function, MET7: the PROMETHEE method with the Gaussian
preference function).

For the meadow, tree, bare soil, and parking lot
classes, the best individual classification accuracies
are achieved by the PROMETHEE method using
the Gaussian preference function and incorporating
various criteria weights.

For the bitumen and brick roof classes, the best
individual classification accuracies are achieved when
applying the level preference function and various
criteria weights to the PROMETHEE vector ordering
method.

The proposed AHP-based vector ordering method
yields the best individual classification accuracies for

the water and asphalt land cover classes.

The individual test accuracies attained for the
Pavia Center image by the different proposed vector
ordering algorithms are presented in Figs. 5 and
6. Figure 5 shows the results obtained when using
various criteria weights, while Fig. 6 shows the results
obtained when using the same criteria weights.

From the results obtained in both experiments, the
same conclusions can be drawn for both datasets.

– Combining spectral information with spatial
information (i.e., morphological descriptors
computed by the multivalued MP) improves the
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Table 8: Classification accuracies (percentage) attained by different vector ordering algorithms using various
criteria weights for the Pavia Center image.

Land Cover
Classes

Reduced
image
(spectral
classification)

Lexicographic
ordering
with
decreasing
bands
weight

Lexicographic
ordering
with
increasing
bands
weight

AHP
with
various
criteria
weights

PROMETHEE
using
the usual
preference
function with
various criteria
weights

PROMETHEE
using
the U-shaped
preference
function with
various criteria
weights

PROMETHEE
using
the level
preference
function with
various criteria
weights

PROMETHEE
using
the Gaussian
preference
function with
various criteria
weights

Asphalt 76.57 76.99 78.35 85.62 84.22 84.97 84.50 84.93

Meadows 36.06 41.39 38.57 46.39 42.19 43.09 45.81 48.21

Trees 75.41 79.60 77.09 80.02 79.40 79.84 79.75 82.17

Bare soil 82.32 90.21 89.70 90.76 82.58 84.43 87.16 92.08

Bitumen 75.03 82.08 77.47 83.97 82.67 82.48 84.00 83.43

Brick roofs 99.41 99.88 99.57 99.77 99.55 99.67 99.89 99.70

Parking lots 42.25 48.67 56.26 52.98 53.04 53.67 56.11 56.82

Water 96.03 96.97 96.16 98.01 96.26 96.90 97.29 97.30

OA 89.31 91.24 90.93 92.66 91.27 91.63 92.28 92.83

Kappa 0.85 0.88 0.87 0.90 0.88 0.88 0,89 0,90

Table 9: Classification accuracies (percentages) achieved by different vector ordering algorithms using the same
criteria weights for the Pavia Center image.

Land Cover
Classes

Reduced
image
(spectral
classification)

Lexicographic
ordering
with
decreasing
bands
weight

Lexicographic
ordering
with
increasing
bands
weight

AHP with
the same
criteria
weights

PROMETHEE
using
the usual
preference
function with
the same
criteria
weights

PROMETHEE
using
the U-shaped
preference
function with
the same
criteria
weights

PROMETHEE
using
the level
preference
function with
the same
criteria
weights

PROMETHEE
using
the Gaussian
preference
function with
the same
criteria
weights

Asphalt 76.57 76.99 78.35 79.09 77.13 77.64 78.16 80.03

Meadows 36.06 41.39 38.57 39.76 39.14 39.78 39.52 40.73

Trees 75.41 79.60 77.09 78.51 78.24 78.46 78.73 79.69

Bare soil 82.32 90.21 89.70 79.27 71.87 74.93 78.67 84.16

Bitumen 75.03 82.08 77.47 81.36 81.42 81.79 81.49 82.70

Brick roofs 99.41 99.88 99.57 99.61 99.47 99.57 99.68 99.63

Parking lots 42.25 48.67 56.26 50.34 45.20 46.51 50.93 49.91

Water 96.03 96.97 96.16 96.59 96.02 96.71 96.59 96.98

OA 89.31 91.24 90.93 90.69 89.52 90.13 90.65 91.28

Kappa 0.85 0.88 0.87 0.87 0.85 0.86 0.87 0.88

classification accuracy achieved for all the classes.

– Most of our proposed vector ordering methods
attain improved classification accuracies over
those of conventional methods, especially when
incorporating the criteria weights into the
multicriteria analysis architecture.

– The incorporation of various criteria weights
results in greater classification improvements. This

is because the inclusion of band weights renders
the vector comparison system more realistic.

– Both PROMETHEE, which uses the Gaussian
preference function, and the AHP produce more
accurate results than do the other vector ordering
algorithms.
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Fig. 5: Individual test accuracies attained for the nine land cover classes in the Pavia Center scene dataset by
different proposed vector ordering algorithms with various criteria weights (MET1: lexicographic ordering with
decreasing weights, MET2: lexicographic ordering with increasing weights, MET3: the AHP algorithm using
various criteria weights, MET4: the PROMETHEE algorithm using the usual preference function and various
criteria weights, MET5: the PROMETHEE algorithm using the U-shaped preference function and various criteria
weights, MET6: the PROMETHEE algorithm using the level preference function and various criteria weights, and
MET7: the PROMETHEE algorithm using the Gaussian preference function and various criteria weights).
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Fig. 6: Individual test accuracies achieved for the nine land cover classes in the Pavia Center scene dataset
by different proposed vector ordering algorithms with the same criteria weights (MET1: lexicographic ordering
with decreasing weights, MET2: lexicographic ordering with increasing weights, MET3: the AHP algorithm
using the same criteria weights, MET4: the PROMETHEE algorithm using the usual preference function and the
same criteria weights, MET5: the PROMETHEE algorithm using the U-shaped preference function and the same
criteria weights, MET6: the PROMETHEE algorithm using the level preference function and the same criteria
weights, and MET7: the PROMETHEE algorithm using the Gaussian preference function and the same criteria
weights).

CONCLUSION

The multivalued mathematical morphology (MM)
compares pixels in a predefined local neighbourhood
using the supremum and infimum operators. However,
there is no consensus on the total order relation for
multivalued pixels, which is necessary for extending
MM to multiband images. In this paper, we propose
new vector ordering algorithms that use multicriteria
analysis systems to obtain a vector ordering scheme

and extend MM to multiband images. The main
idea of this work is to consider the vector ordering
problem as a multicriteria analysis problem. To define
our vector ordering scheme, we adapt two widely
used and approved multicriteria analysis methods: the
AHP and PROMETHEE. These methods compare
actions that have multiple values to select the best
action that satisfies the most criteria according to a
predefined objective (maximization or minimization).
In our context, they synthesize the vector components
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into a unique numerical value that represents the
vector priority and make vector comparisons possible.
Thus, the proposed vector ordering algorithms are
reduced vector ordering approaches. In the AHP
method, we replace the Saaty preference scale with our
preference scale, which expresses preferences in terms
of distance, making it more suitable for our working
context.

We apply the proposed vector ordering algorithms
to two multiband images (Pavia University and Pavia
Center images) to generate spatial descriptors using
the multivalued MP. The spectral/spatial classification
results exhibit improvements when using our proposed
methods with various criteria weights compared
to conventional vector ordering algorithms. This
demonstrates the importance of considering the
relative priority levels of the image bands during the
ordering process. Furthermore, the proposed vector
ordering algorithms preserve the initial vector set
and guarantee the uniqueness of the vector extremes
while also taking the correlations among the bands
into account by processing multidimensional data
simultaneously.

The PROMETHEE algorithm, which uses a
Gaussian preference function, and the AHP algorithm
provide more accurate classification rates than do
all the other vector ordering algorithms. However,
the proposed algorithms require the selection of
a preference function that determines the vector
outranking architecture.

The proposed vector ordering methods derived
from a multicriteria analysis system are suitable for
extending MM to multiband images.

In future research, we intend to include uncertainty
and imprecision, which are two inherent parameters
of satellite imagery analysis, in the AHP-based vector
ordering algorithm. Additionally, we aim to explore
other preference functions, such as V-shaped and
linear functions, in the PROMETHEE vector ordering
algorithm.
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