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ABSTRACT

Falls are a significant concern among the elderly population, with 25% of individuals over 65 years old
experiencing a fall severe enough to require a visit to the emergency department each year. Early detection
of falls can prevent serious injuries and complications, making it an important problem to address. There are
various methods for detecting falls, utilizing different types of sensor input data. However, when considering
factors such as ease of setup, accessibility, and accuracy, utilizing cameras for fall detection is a highly effective
approach. In this study, a novel video-based fall detection algorithm that relies on skeleton joints is introduced.
The results of pose estimation are preprocessed into an image representation and ShuffleNet V2 model with the
addition of a Deformable Layer is employed for classification. Experiments were carried out on four distinct
datasets: URFD, UP-Fall Detection, Le2i, and NTU RGB+D 60, which encompass individuals engaged in
various activities, including falls. The results showcase exceptional performance across all these datasets,
affirming the efficacy of the approach in accurately detecting falls in video footage.

Keywords: Computer Vision, Deep Learning, Fall Detection, Pose Estimation.

INTRODUCTION

According to the Centers for Disease Control and
Prevention (CDC), falls are the leading cause of injury-
related deaths among individuals aged 65. In 2018,
there were an estimated 52 million older adults in the
United States, and of those, 36 million experienced
falls. In excess of 8 million of these falls led to
injuries necessitating medical attention or restricting
the individual’s activity for a minimum of one day.
This number is expected to increase in the future,
as the older adult population is projected to reach
73 million in 2030. It’s estimated that 52 million
falls will occur in that year, resulting in 12 million
injuries (Moreland et al., 2020). Falls are also a
leading cause of hospitalization and long-term care
facility admission among the elderly. This can cause
physical and psychological trauma and can potentially
be life-threatening, particularly for older individuals
(Jager et al., 2000; Sterling et al., 2001). The high
number of falls and injuries highlights the importance
of fall detection and prevention, as early detection can
prevent serious injuries and complications.

Given the significant impact of falls on the health
and well-being of elderly individuals, the development
of fall detection algorithms has been an active area
of research. Throughout the years, various techniques
for detecting falls have been proposed. One common

approach is the use of sensors, which can be worn
by the user or placed within the environment being
monitored (Nooruddin et al., 2021). However, sensor-
based fall detection methods rely on the user to
consistently wear the device or stay within proximity
range of the sensors. If the user neglects to wear the
device or steps away from a stationary sensor, such
as a walker with built-in sensors, the system may
misinterpret this as a fall and trigger an unnecessary
alarm (Delahoz and Labrador, 2014). An alternative
strategy involves the use of cameras, capable of
offering continuous data without necessitating the user
to wear any devices.

In recent years, researchers have used cameras
to detect falls using Convolutional Neural Networks
(CNNs) on RGB camera images (Martı́nez-Villaseñor
et al., 2019; Espinosa et al., 2019). While image-based
approaches have demonstrated promising results, they
are limited by the quality and resolution of the video,
as well as the presence of occlusions and clutter in the
environment (Singh and Vishwakarma, 2018).

Skeleton-based fall detection methods offer a
promising alternative to traditional video-based
approaches by relying on information about the
body’s joint positions, abstracting the representation
of human movement and sidestepping issues related
to video quality, occlusions, and clutter. By focusing
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on skeleton data rather than visual information,
these methods provide a more efficient and robust
solution for fall detection, as they are less susceptible
to environmental factors. The abstract nature of
skeleton data and the continuous improvement in
pose estimation algorithms contribute to the accuracy
and reliability of these methods. Moreover, the
reduced computational requirements and minimized
privacy concerns make skeleton-based approaches a
compelling choice for fall detection systems.

Notable efforts, utilizing pose estimation
algorithms like AlphaPose (Fang et al., 2016), show
promise, with single-frame analyses achieving high
accuracy (Ramirez et al., 2021; Serpa et al., 2020).
However, these studies focus on single-frame to detect
falls, and it is very important to acquire information
from multi-frame to understand the change of the body
over time, since fall action is a temporal event and it
is not enough to look only one frame to classify the
action as fall. Additionally, single frame methods may
correctly detect falls in some frames, but even one false
positive detection in a non-fall sequence can greatly
impact the prediction of the entire video, making it an
inefficient approach.

Research addressing this gap explores temporal
information analysis across multiple frames. Studies
employing pose estimation models with Transformer
and Long Short-Term Memory (LSTM) models
showcase improved accuracy, while others using time-
based CNN and Gated Recurrent Unit (GRU) based
models yield varying fall detection rates (Juraev et al.,
2022; Yadav et al., 2022; Taufeeque et al., 2021).
Despite high accuracy, potential trade-offs between
precision and recall exist, emphasizing the need for
optimization. Moreover, computational intensity and
time consumption with LSTM and GRU models
may limit real-world applications (Weytjens and
De Weerdt, 2020).

This paper introduces an innovative approach
dedicated to real-time fall detection in camera feeds.
The primary objective of our proposed method is
to achieve exceptional accuracy in fall detection
while maintaining real-time processing with minimal
hardware requirements. Our methodology differs from
conventional approaches by eliminating the reliance
on sensors or wearable devices, addressing and
overcoming limitations present in prior literature
methods. A distinctive feature of our method is
its capacity to outperform existing approaches in
terms of accuracy, without compromising on speed.
Our extensive experimental analysis conducted across
four public datasets (The University of Rzeszow
Fall Detection (URFD) Dataset (Kwolek and Kepski,
2014), UP-Fall Detection (Martı́nez-Villaseñor et al.,

2019), Le2i Fall Detection Dataset (Charfi et al.,
2013), and NTU RGB+D 60 (Shahroudy et al., 2016)),
attests to the superior performance of our method.

Significantly, our study highlights the effective
performance of our model and emphasizes the
importance of converting temporal skeletal joint inputs
into images for a thorough understanding of fall
detection. This transformation improves the strength
and adaptability of our approach, establishing a
standardized representation of human actions across
various datasets. The results confirm the effectiveness
of our approach, demonstrating that high-accuracy,
low-latency fall detection is attainable solely through
camera inputs. By presenting these findings, we
contribute to existing research and make a significant
advancement in methodology.

MATERIALS AND METHODS

METHODOLOGY OVERVIEW
Our fall detection algorithm, harnessing video-

based pose estimation, underwent rigorous evaluation
across four diverse datasets: URFD, UP-Fall
Detection, Le2i FDD, and NTU RGB+D 60. The
methodology encompasses multi-step processes,
including object detection, multi-object tracking
(MOT), pose estimation utilizing YOLO-V8n-pose
(Jocher et al., 2023) with BoT-SORT (Aharon
et al., 2022), and subsequent image representation
of skeleton joints. These image representations were
further processed using the ShuffleNet V2 (Ma et al.,
2018) model with Deformable Layers (Dai et al.,
2017), showcasing enhanced adaptability to complex
transformations.

DATASETS
In our exploration of fall detection using RGB

videos, we extensively utilized a variety of datasets,
each offering distinctive characteristics and advantages
for training and validating fall detection algorithms.

The University of Rzeszow Fall Detection (URFD)
Dataset (Kwolek and Kepski, 2014) consists of 30
fall sequences and 40 ADL (Activities of Daily
Living) sequences captured by two Kinect sensors.
It encompasses falls from both standing and sitting
positions, while ADL activities include common
movements like walking, sitting, and lying down. With
different perspectives and actions from both standing
and sitting positions, this dataset aids in training
models to distinguish falls from various postures. The
videos in this dataset have similar lengths, allowing for
the direct selection of the same number of frames from
each video.
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The UP-Fall Detection Dataset (Martı́nez-
Villaseñor et al., 2019) involves 11 activities
performed in three trials per activity, gathered using
wearable, ambient sensors, and vision devices. It
includes various daily activities and different fall types
performed by 17 healthy adults. This dataset offers a
wide array of activities and fall types, facilitating the
training of models to discern falls amid diverse daily
activities and environmental settings. In order to create
uniformity in video lengths for training, all videos
within this dataset have been standardized to a duration
of 10 seconds. While the fall videos were originally
10 seconds in length, the remaining videos were
condensed to fit this 10-second duration, capturing
individuals performing their respective activities. 10-
second segments were manually selected to ensure
the presence of ADL (Activities of Daily Living)
activities. This careful selection is crucial for the fall
detection model to discern the distinction between
normal and falling videos especially when there are no
other differences in video specifications. Each video is
labeled as fallen or unfallen based on the presence of a
fall.

The Le2i Fall Detection Dataset (Le2i FDD)
(Charfi et al., 2013) comprises 131 fall videos
and 59 ADL videos. These videos encompass three
distinct types of falls (forward falls, balance loss,
falls from sitting) and various ADL activities such as
sitting, walking, and standing, among others. These
activities were performed in different environmental
conditions, considering factors like light, clothing,
textures, and camera viewpoints. This dataset provides
a diverse range of fall scenarios and daily activities
in various settings, enabling effective training of
models to recognize falls in diverse environmental
conditions. For precise training, the dataset has been
meticulously labeled to indicate the specific frame
at which a fall begins in the videos where falls are
observed. To maintain uniformity in video length
for training, 5-second videos were created manually
where individuals perform falls and other associated
activities. This process has led to the dataset being
divided into two segments: videos with falls and those
without, both of equal duration. Each video is clearly
labeled as ”fallen” or ”unfallen” based on the presence
or absence of a fall, respectively.

The NTU RGB+D Dataset (Shahroudy et al.,
2016) contains 56,880 samples of 60 action classes
from 40 subjects, encompassing daily, health-related,
and mutual actions performed in 17 different scene
conditions using three cameras with varying horizontal
imaging viewpoints. This dataset enables the training
of models to recognize falls amid various actions and
environmental conditions due to its broad spectrum

of actions, including specific health-related actions
like falling down. The videos in this dataset have
similar lengths, eliminating the need for modifications.
While training our model with all labels, our primary
focus was on evaluating our approach’s performance
in detecting falls.

The diversity in environmental settings, fall types,
and ADL activities across these datasets provides a
robust foundation for our fall detection algorithm. The
inclusion of different viewpoints, varied fall types, and
diverse activity contexts demonstrates capacity of the
approach for generalization and accurate recognition
of falls across varying scenarios, enhancing the
robustness and reliability of our fall detection system.

POSE ESTIMATION
The detection of skeleton points in our approach

is a multi-step process involving Object Detection,
Multi-Object Tracking (MOT), and Pose Estimation.
The latest YOLO architecture YOLO-V8 (Jocher
et al., 2023) model known for its high accuracy
and speed on object detection. This model utilizes
advanced techniques such as Cross Stage Partial
Network (CSPN) and Feature Pyramid Network (FPN)
to enhance performance.

Multi-Object Tracking (MOT) is essential for
maintaining continuity across frames in scenarios
with multiple individuals. MOT involves detecting
and predicting the spatial-temporal trajectories of
multiple objects within a video stream. BoT-SORT
(Aharon et al., 2022), the state of the art in MOT,
known for its robustness in challenging situations with
crowded scenes and occlusions, combining motion and
appearance information for precise tracking.

Pose estimation serves as a pivotal methodology
for fall detection, leveraging its ability to encapsulate
comprehensive human body structure, posture, and
motion information. This technique adeptly captures
the spatial and temporal characteristics of human
actions, encompassing essential elements like body
part locations, orientations, and movements. The
significance of pose estimation lies in its capacity to
facilitate a multifold analysis of human actions. This
analytical versatility allows for a reduction in input
data complexity and noise, enabling a focused study on
the fundamental features inherent in human actions.

The chosen pose estimation architecture is
Ultralytics’ YOLO-V8n-pose model with BoT-SORT,
known for its accuracy and speed. This model does
not require an additional object detection model and
achieves an 80.1 mAP 50 on the MS COCO val
dataset (Lin et al., 2014). It runs at 10 ms per
frame on an NVIDIA T4 GPU. The YOLO-V8n-pose
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model provides x and y coordinates for each keypoint,
indicating spatial information, along with a confidence
score reflecting the accuracy of keypoint detection.
This pre-trained model forms the basis for our pose
estimation process, extracting crucial information on
human body poses necessary for subsequent stages in
our fall detection algorithm.

IMAGE REPRESENTATION OF SKELETON
JOINTS
The datasets contain videos of varying lengths,

capturing falling actions with additional frames
of preceding and subsequent activities. To ensure
uniformity in training data length for effective
comparison, videos underwent specific editing
procedures outlined in the datasets section.

Following data editing, we performed pose
estimation using multi-object tracking to track the
skeleton points of individuals in the video, represented
in the widely accepted COCO pose annotation format.
This format employs (x, y) coordinates to define 17
keypoints covering crucial body parts such as the
head, neck, shoulders, elbows, wrists, hips, knees,
and ankles. The pose estimation results, locations of
keypoints, were normalized based on the maximum
and minimum x and y values of each individual,
ensuring a uniform range between 0 and 1. The
normalized results were then scaled by 255 to convert
them into RGB format.

In situations where multiple individuals are present
in a video, certain person-tracking algorithms have the
capability to identify and track more than one person
concurrently. However, when exclusively tracking the
keypoints of a single individual in such instances, there
exists a potential oversight in accurately capturing
fall events. Moreover, within the NTU RGB+D
60 dataset, activities portraying interactions among
multiple individuals further underscore the need for a
comprehensive approach.

To address this challenge, our methodology
incorporates the inclusion of keypoints associated with
other identified individuals into the array. Recognizing
that the videos in the datasets under consideration
may involve up to 5 individuals, we standardized
the arrays to accommodate a maximum of 5 people,
ensuring the inclusion of pertinent information in
scenarios involving multiple individuals. In instances
where the number of detected individuals was less
than 5, keypoint values were designated as 0, 0,
0, representing the x, y coordinates, and confidence
score. It is important to note that, for datasets with
greater crowd density, adjustments to the array length
may be made to suit the specific characteristics of

the dataset. This adaptive approach ensures a robust
and comprehensive representation, particularly when
dealing with diverse and dynamic scenarios.

The aggregated results were used to generate
images with dimensions corresponding to the number
of frames, 17 keypoints of 5 individuals, location and
accuracy values. The standardization of image size
necessitated a careful selection of frames, and various
methodologies for achieving this were considered.
These methods encompassed options such as choosing
a random interval, employing repetitions appended to
the end of the video, and adopting uniform sampling
between frames. In the context of these alternatives,
the study conducted by Duan et al (Duan et al.,
2022). prominently highlighted that uniform sampling
yields optimal results. Consequently, our approach
aligns with this recommendation, utilizing the uniform
sampling method for standardizing image sizes.

This comprehensive approach transformed each
video into an image, establishing a standardized
representation of human actions. The resulting matrix,
with dimensions reflecting frames, joint groups,
and position with confidence scores, served as the
foundation for our supervised learning-based fall
detection algorithm.

The labeled representations, categorized as
”fallen” or ”unfallen,” constituted the training dataset.
Converting pose estimation data into an image-
like format facilitated the application of established
image processing techniques and convolutional neural
networks, capitalizing on their efficacy in identifying
patterns crucial for accurate fall detection.

SHUFFLENET V2 MODEL WITH
DEFORMABLE LAYERS

The moderate depth of ShuffleNet V2,
paired with its adeptness in capturing crucial
features while avoiding challenges such as
vanishing gradients, establishes a balance between
computational efficiency and representation capacity.
This characteristic makes ShuffleNet V2 an ideal
foundation for our fall detection algorithm, ensuring
an effective framework.

In our pursuit to enhance the efficacy of the fall
detection algorithm, we incorporated Deformable
Layers from the Deformable Convolutional Neural
Network architecture (Dai et al., 2017). These
layers address challenges in handling large,
unknown transformations in visual recognition tasks.
Deformable Layers improve upon traditional CNN
limitations by introducing deformable convolution and
deformable Region-of-Interest (RoI) pooling.
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Fig. 1. Image Representation Processes - A visual depiction of the key steps involved in converting video inputs
into standardized image representations for fall detection.

The deformable convolution allows for flexible
sampling, adapting to complex transformations in
human actions, facilitating local, dense, and adaptive
deformations based on input features. Similarly, the
deformable RoI pooling enables a more adaptable
localization of body parts, crucial for accurately
identifying variations in body poses associated with
falls among individuals with different shapes and sizes.

EXPERIMENTS

EVALUATION METRICS
In order to evaluate the performance of our

fall detection algorithm, we used several standard
evaluation metrics: accuracy (1), precision (2), recall
(3), and F1-score (4). These metrics are calculated as
follows:

A = (T P+T N)/(T P+T N +FP+FN) (1)

P = T P/(T P+FP) (2)

R = T P/(T P+FN) (3)

F1 = 2x(PxR)/(P+R) (4)

where TP, TN, FP, and FN represent the number of
true positive, true negative, false positive, and false
negative predictions, respectively.

EVALUATION
Experiments to assess the efficacy of our proposed

fall detection approach were conducted on Google

Colab (Bisong and Bisong, 2019) using the NVIDIA
T4 GPU. The dataset sizes varied, with 70 videos
from URFD, 1118 from UP-Fall, 190 from Le2i, and
56880 from NTU RGB+D. A 70/30 train/validation
split was applied to all four datasets, ensuring a
judicious partitioning strategy for powerful model
training and effective performance evaluation. This
division ensures a substantial portion for training
the algorithm while maintaining a separate set for
validation, contributing to the overall reliability and
generalizability of the model. Our ShuffleNet V2
model with Deformable Layers underwent training on
relevant sets and evaluation on validation sets, with
performance metrics including accuracy, precision,
recall, and F1 score.

During training, a fixed batch size of 64 was
employed. It was found to be effective in achieving
a balance between computational efficiency and
model convergence. After thorough experimentation,
we found that the ADAM (Kingma and Ba, 2014)
optimizer provided the best results for our ShuffleNet
V2 model with Deformable Layers. With a systematic
search, we identified that a learning rate of 0.005
yielded optimal performance. This value was chosen
based on its ability to converge effectively during
training. To further enhance the learning process, we
employed a learning rate step planner with a gamma
value of 0.75. This strategy involved decreasing the
learning rate by a factor of 0.75 every 10 epochs.
This dynamic adjustment contributed to the model’s
adaptability over the course of training, potentially
improving overall performance.

The loss plots in Fig. 2 indicate training over
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(a) URFD (b) UP-Fall Detection

(c) Le2i FDD (d) NTU RGB+D 60

Fig. 2. Loss Plots - The training and validation losses for our proposed fall detection method are illustrated
across four datasets.

50 epochs with tracking of loss values. Stabilization
around the 30th epoch suggests that the model
achieved a certain level of convergence. To strike a
balance between model convergence and preventing
overfitting, we determined that training the model for
50 epochs produced the best results.

Additionally, for real-time application
considerations, our model’s computational speed was
analyzed. In real-time, the object detection and pose
estimation models for each frame take approximately
10 milliseconds on the T4 GPU. The fall detection
model, deployed on this subset of frames, operates in
less than 1 milliseconds.

MODEL SELECTION
During the model selection process, we assessed

the performance of three distinct models. Initially,
a basic CNN model was implemented, featuring

three convolutional layers and two fully connected
layers. However, the results obtained fell short of
expectations, as evidenced by the CNN model’s
accuracy of 82.3% on the Le2i FDD dataset, thereby
underscoring its limitations.

Subsequently, our evaluation focused on
ShuffleNet V2 and ResNet18 (He et al., 2015), both
recognized for their efficacy in feature extraction and
recognition tasks. Unexpectedly, despite ResNet18’s
deeper architecture and increased parameters,
ShuffleNet V2 demonstrated marginally superior
performance. On the same Le2i FDD dataset,
ShuffleNet V2 achieved an accuracy of 95.2%, while
ResNet18 reached 94.4%. Given ShuffleNet V2’s
efficiency, it was selected over ResNet18 and the CNN
model.

On the Le2i FDD dataset, integrating Deformable
Layers into the ShuffleNet V2 model significantly
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improved accuracy from 95.2% to 98.95%. This
underscores the effectiveness of Deformable Layers
in handling intricate transformations in fall detection
tasks, empowering the system to accurately identify
falls with adaptability to pose variations.

RESULTS

To further substantiate the effectiveness of our
proposed model, we conducted a comparative analysis
against several other fall detection algorithms, as
revealed in Table 1. This comparison showcases the
performance of our approach concerning existing
methodologies in the literature. The experimental
results indicate the exceptional performance of our
proposed fall detection algorithm across four diverse
datasets.

In the URFD dataset, our method achieved a
flawless 100% accuracy, surpassing or matching
established approaches (Zhao et al., 2022; Wang et al.,
2020; Dentamaro et al., 2021; Li et al., 2022; Zahan
et al., 2023; Galvao et al., 2021). Precision, recall,
and F1-Score also hit the 100% mark, showcasing the
model’s robustness in accurately identifying falls with
minimal false positives.

Similar success was observed in the UP-Fall
Detection dataset, where our algorithm outperformed
other methods (Zahan et al., 2023; Yadav et al.,
2022; Taufeeque et al., 2021; Galvao et al., 2021;
Zhao et al., 2022; Ramirez et al., 2023; Li et al.,
2022). The accuracy reached an impressive 99.7%,
demonstrating exceptional performance in conjunction
with high precision, recall, and F1-Score metrics.
This demonstrates the consistency and effectiveness
of our algorithm across different datasets with varying
activities and fall types.

In the Le2i Fall Detection Dataset, our
approach attained an accuracy of 98.95%, surpassing
competitors (Wang et al., 2020; Dentamaro et al.,
2021; Yuan et al., 2022). Precision, recall, and F1-
Score metrics matched the high accuracy at 98.95%,
reinforcing our algorithm’s ability to detect falls in
varied scenarios.

In the NTU RGB+D 60 Dataset presented a
more challenging environment with diverse actions
and conditions. Yet, our approach demonstrated
outstanding performance in the falling subset with
a 99.98% accuracy.Precision, recall, and F1-Score
metrics were also impressive,standing at 99.65%,
98.94%, and 99.29%, respectively, highlighting the
adaptability and reliability of our algorithm in complex
situations.

Our study demonstrates a harmonious balance
between accuracy, speed, and adaptability across
diverse datasets, outperforming or matching
established methodologies such as OpenPose-based
skeleton extraction (Zhao et al., 2022), handcrafted
feature approaches (Wang et al., 2020), and advanced
techniques like Kinematic Theory (Dentamaro et al.,
2021) and adaptive keypoint attention modules (Li
et al., 2022). The proposed methodology, with its
emphasis on efficient pose estimation and subsequent
image representation, stands as a promising solution
for real-time fall detection applications.

In terms of preprocessing, our model integrates
object detection, multi-object tracking, and pose
estimation processes seamlessly, showcasing a
comprehensive and efficient pipeline. Compared
to models relying on handcrafted features (Wang
et al., 2020) or complex feature extractions involving
the Kinematic Theory (Dentamaro et al., 2021),
our approach streamlines the preprocessing stage,
contributing to the model’s overall speed and
efficiency.

In assessing model complexity, our study strikes a
balance, achieving high accuracy with a streamlined
architecture. While advanced models, such as those
incorporating adaptive keypoint attention modules (Li
et al., 2022) or complex GCN architectures (Zahan
et al., 2023), may have higher parameter counts, our
model’s efficient design, featuring YOLO-V8n-pose
and BoT-SORT, demonstrates competitive accuracy
with lower computational complexity. This makes our
approach not only effective but also resource-efficient.

The real-time computational efficiency of our
model, operating in less than 1 milliseconds, further
emphasizes its practical applicability for real-world
scenarios. This quick processing time, combined with
high accuracy, positions our algorithm as a promising
solution for real-time fall detection applications.

DISCUSSION

To reinforce the robustness of our fall detection
algorithm, we tested it across diverse datasets,
including URFD, UP-Fall Detection, Le2i FDD, and
NTU RGB+D 60. The effectiveness of our proposed
fall detection algorithm is evident in a comparative
analysis against multiple fall detection algorithms,
as presented in Table 1. This analysis not only
provides technical insights into our approach but also
demonstrates its superior performance in accuracy,
precision, recall, and F1-Score. Furthermore, the
computational efficiency and real-time performance of
our model enhance its practical utility, making it a
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Table 1. Comparison of fall detection algorithms across 4 Datasets.
Method Accuracy Precision Recall F1-Score
URFD
(Zhao et al., 2022) 97 - 98.5 -
(Wang et al., 2020) 97.33 97.78 97.78 97.78
(Dentamaro et al., 2021) 99.6 98.28 98 99.6
(Li et al., 2022) 99.73 - 99.74 -
(Zahan et al., 2023) 100 100 100 100
(Galvao et al., 2021) 100 100 100 100
Ours 100 100 100 100
UP-Fall Detection
(Zahan et al., 2023) 88.71 90.55 92.94 88.27
(Yadav et al., 2022) 96.7 96.9 96.7 96.6
(Taufeeque et al., 2021) 98.22 89.76 95.62 92.56
(Galvao et al., 2021) 98.62 92.5 92 93
(Zhao et al., 2022) 98.85 - 95.43 -
(Ramirez et al., 2023) 99.5 86.49 85.79 87.2
(Li et al., 2022) 99.62 - 99.26 -
Ours 99.7 100 99.37 99.68
Le2i FDD
(Wang et al., 2020) 96.91 96.79 96.51 97.08
(Dentamaro et al., 2021) 98 97.6 97.2 98
(Yuan et al., 2022) 98.43 - - -
Ours 98.95 98.95 98.95 98.95
NTU RGB+D 60
Ours 85.63 85.78 85.63 85.64
Falling Subset of NTU RGB+D 60
(Zhao et al., 2022) 94.5 - 97.5 -
(Tsai and Hsu, 2019) 99.2 99.1 98.9 99
(Gutiérrez et al., 2023) 99.24 - 99.16 -
Ours 99.98 99.65 98.94 99.29

promising candidate for real-world applications where
timely and accurate fall detection is crucial.

The success of our fall detection algorithm can
be attributed to several key factors. The utilization
of skeleton joints for fall detection provides a
robust and efficient representation of human actions.
Pose estimation, facilitated by the YOLO-V8n-pose
model with BoT-SORT, accurately captures spatial
and temporal characteristics, allowing for a focused
analysis of essential features in fall detection.

The decision to transform skeleton joint inputs
into image representations enhances the algorithm’s
strength and adaptability. This transformation,
achieved through scaling, normalization and sampling,
enables the use of established CNN based image
processing techniques.

Challenges exist in classifying falls using images
derived from skeleton points due to the uneven
distribution of joint positions and orientations in
the feature matrices. However, our incorporation of

deformable convolution and deformable RoI pooling
modules in the ShuffleNet V2 with Deformable Layers
model effectively addresses this challenge, enabling
the model to adaptively sample input data and achieve
high accuracy in fall detection.

While our study yields promising results, there are
avenues for further improvement. An identified issue
is the difficulty the pose estimation model faces in
capturing individuals at the camera’s field of view
limits, leading to classification errors. To mitigate
this, further research and refinement of the pose
estimation algorithms could enhance accuracy in these
scenarios. Additionally, optimizing camera angles to
comprehensively cover the action area proves effective
in minimizing errors attributed to incomplete scene
coverage.

While the choice of neural network architecture
is effective, it can be further explored to optimize
for specific datasets. Experimenting with different
architectures and more comprehensive hyperparameter
tuning could potentially yield even better results.
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(a) URFD (b) UP-Fall Detection

(c) Le2i FDD (d) NTU RGB+D 60

Fig. 3. Accuracy Plots - The training and validation accuracies for our proposed fall detection method are
illustrated across four datasets.

In terms of computational efficiency, the model
runs in real time, but there is also room for
additional optimization to shorten processing times.
This optimization can increase the practicality of
deploying the algorithm when there are constrained
resources.

Future research could also evaluate the robustness
of our approach in different scenarios, such as outdoor
settings or cluttered backgrounds. Additionally,
extending our approach to diverse populations, like
children or athletes, would provide valuable insights
into its generalizability.

CONCLUSION

In this paper, we presented a novel approach for
detecting falls in video footage of individuals using

machine learning techniques. Our approach involves
the use of image representation of skeleton joints, and a
ShuffleNet V2 with Deformable Layers model for fall
detection. Our results demonstrate the effectiveness
of our approach in detecting falls with high speed,
high accuracy and low false positive rate, and we
have shown that it outperforms existing fall detection
approaches in the literature. Our approach has the
potential to significantly improve the safety and well-
being of elderly individuals, and we plan to further
develop and apply in real-world scenarios.
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