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ABSTRACT 

Cyclic federated learning based on distribution information sharing and knowledge distillation 
(CFL_DS_KD) aims to address the challenges of non-iid data distribution and reduce communication re-
quirements. However, when client data is extremely heterogeneous and scarce, it becomes challenging for 
clients to fully learn the distribution of local data using GANs, thereby affecting the overall model perfor-
mance. To overcome this limitation, we propose a transfer learning approach where clients first pretrain 
their generators on a source domain and then fine-tune them on their local datasets. Our results on the 
classification of Alzheimer’s disease demonstrate that this method effectively improves client distribution 
learning performance and enhances the overall model performance. 

Keywords: federated learning, medical image processing, transfer learning. 

INTRODUCTION  
Deep learning has found widespread applications in 

intelligent healthcare (Miotto et al., 2017), including 
disease prediction, diagnosis, treatment, and prognosis. 
However, training effective deep learning models often 
requires large centralized datasets, which pose a signifi-
cant challenge in areas where data privacy is crucial. 
Due to the sensitive nature of medical data, patient data 
from different hospitals cannot be exchanged or cen-
trally stored. As a result, traditional deep learning mod-
els lack publicly shared medical datasets for training. 
Federated learning has emerged as a promising solution 
to address the privacy concerns associated with data. By 
enabling distributed learning, federated learning allows 
multiple organizations to collaboratively train a global 
model while preserving data privacy (Yang et al., 2019). 
However, due to the non-iid nature of datasets from dif-
ferent institutions, local models trained on individual da-
tasets may overfit, leading to poor generalization of the 
global model. Distribution sharing among clients is a 
promising approach to address the non-iid problem. 
However, if the local client's data is scarce and ex-
tremely heterogeneous, the ability of the local client to 
learn the local distribution will be compromised, result-
ing in poor quality of the shared distribution infor-
mation. In this work, we propose to utilize transfer learn-
ing to improve the learning performance of client's local 
distribution. Specifically, we first utilize a GAN model 

to learn the data distribution in the source domain and 
then fine-tune it in the target domain. This process aims 
to enhance the ability of the GAN model to learn the lo-
cal data distribution. Subsequently, we apply the im-
proved GAN model in the cyclic federated learning 
method based on the distribution of information sharing 
and knowledge distillation (CFL_DS_KD) (Yu et al., 
2022) for classification of Alzheimer’s disease. 

RELATED WORKS 
The non-iid challenge in federated learning 
Federated learning (FL) (McMahan et al., 2017) in-

volves training statistical models over remote de-vices 
or siloed data centers, such as mobile phones or hospi-
tals, while keeping data localized. A major challenge in 
FL is that the data across clients is not identically and 
independently distributed (non-iid). In response to non-
iid problems, existing research has mainly solved the 
problems at the algorithm and data levels. The algo-
rithm-level solutions mainly include objective function 
modification and solution mode optimization. Objective 
function modification in-volves adding regularization 
terms on the client side. A trade-off has been achieved 
between optimizing local models and reducing the dif-
ferences between local models and global models to 
solve the non-independent homogeneous distribution of 
data at each node. For example, FedProx (Li et al., 2020) 
has been proposed to corrects the client-side drift that 
occurs in FedAvg (McMahan et al., 2017) by restricting 
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the Euclidean distances between local models and global 
models as proximal terms. This means that the local up-
dates do not excessively deviate from the global models, 
which alleviates any inconsistencies in the client-side 
data and improves the stability of global model conver-
gence. FedCurv (Shoham et al., 2019) uses Fisher infor-
mation from global models obtained during the previous 
rounds of training to weight the distances, which can re-
duce excessive errors in the model parameters. SCAF-
FOLD (Karimireddy et al., 2020) has been proposed to 
improve the FedProx by adding a control variable on the 
client side. This control variable can take either the gra-
dient norm of global models on local datasets or the Eu-
clidean distances between local and global models, thus 
preventing local models from deviating from the glob-
ally correct training direction. These methods can im-
prove the performance of federated learning for model 
learning on non-iid datasets to some extent, but the de-
gree of improvement is limited by the consistency of the 
client-side data sampling. 

In solution optimization, the good performance of 
federated learning models is mainly achieved by im-
proving the server-side aggregation method. FedAvg de-
termines client aggregation weights based on the size of 
clients ‘datasets. However, in non-iid scenarios, this ag-
gregation method leads to a significant decrease in the 
performance of the global model. For this reason, most 
scholars have aimed to seek better aggregation method. 

In ABAvg (Xiao et al., 2021), the server-side tests 
the accuracy of temporary models on validation datasets 
to obtain the accuracy of the models on the client side 
and then normalizes them before aggregating all param-
eters. FedMA (Wang et al., 2020) uses Bayesian non-
parametric methods to match and average weights in a 
hierarchical manner. FedAvgM (Tsu et al., 2019) ap-
plies momentum when updating global models on a 
server. FedNova (Wang et al., 2020) normalizes local 
updates before averaging. However, these methods have 
limited success in improving the performance of global 
models (Karimireddy et al., 2020), so some scholars 
have proposed approaches that evade this problem, such 
as personalized federated learning, multitask federated 
learning and federated meta-learning, which can also 
improve the performance of federated learning on non-
iid data to some extent. 

Transfer learning for medical data 
Transfer learning (TL) stems from cognitive re-

search, which uses the idea, that knowledge is trans-
ferred across related tasks to improve performances on 
a new task. The formal definition of TL is defined by 
Pan and Yang with the notions of domains and tasks. A 

domain consists of a feature space 𝒳𝒳 and marginal prob-
ability distribution 𝑃𝑃(𝑋𝑋), where 𝑋𝑋 = {𝑥𝑥1, … ,𝑥𝑥𝑛𝑛} ∈ 𝒳𝒳 . 
Given a specific domain denoted by 𝐷𝐷 = {𝒳𝒳,𝑃𝑃(𝑋𝑋)}, a 
task is denoted by 𝑇𝑇 = {𝒴𝒴, 𝑓𝑓(∙)}  where 𝒴𝒴  is a label 
space and 𝑓𝑓(∙) is an objective predictive function. Given 
a source domain 𝑫𝑫𝑺𝑺 and learning task 𝑻𝑻𝑺𝑺, a target do-
main 𝑻𝑻𝑺𝑺 and learning task 𝑻𝑻𝑻𝑻, transfer learning aims to 
improve the learning of the target predictive function 
𝑓𝑓𝑇𝑇(∙) in 𝑫𝑫𝑻𝑻 by using the knowledge in 𝑫𝑫𝑺𝑺 and 𝑫𝑫𝑺𝑺 (Pan. 
et al., 2020). 

There have been lots of studies applying transfer 
learning to medical image processing. Swati et al. use 
pre-trained deep CNN model and propose a block-wise 
fine-tuning strategy based on transfer learning which is 
evaluated on T1-weighted contrast-enhanced magnetic 
resonance images (CE-MRI) benchmark dataset. Exper-
imental results show that their proposed method outper-
forms state-of-the-art classification on the CE-MRI da-
taset. da Nóbrega et al. trained several CNN 
(e.g.VGG16, MobileNet, ResNet50, DenseNet169, etc.) 
on the ImageNet dataset, converted them into feature ex-
tractors and applied on the LIDC/IDRI nodule images. 
Hassan et al. proposed an efficient and accurate ap-
proach for medical image modality classification which 
is developed using transfer learning concept with pre-
trained ResNet50 Deep learning model for optimized 
features extraction followed by linear discriminant anal-
ysis classification (TLRN-LDA). Gessert et al. demon-
strate that convolutional neural networks and transfer 
learning can be used to identify cancer tissue with con-
focal laser microscopy and show that there is no gener-
ally optimal transfer learning strategy and model as well 
as task-specific engineering is required. 

METHOD 

Learning client data distribution through 
transfer learning 
To acquire knowledge about the distribution of hos-

pital data, deep learning-based generator models are 
commonly employed. Generators are highly effective 
for data augmentation as they can learn the distribution 
information of data and generate data that aligns with the 
actual distribution. Generative adversarial networks 
(GANs) are a prevalent class of deep neural network 
generators known for their re-markable capabilities in 
image enhancement and image-to-image conversion. In 
our study, we utilize GANs as data generators to capture 
the data distribution information from local clients. 
However, considering the limited availability and heter-
ogeneity of local data, allowing GANs to directly train 
on local data may pose challenges in fully capturing the 
underlying distribution. Therefore, we propose using 
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transfer learning to enhance the learning of distribution 
information by local clients. Specifically, as shown in 
Fig. 1, we first allow local generators to learn distribu-
tion knowledge in the source domain and then fine-tune 
them using data from local clients. 

Fig. 1. Improving the performance of GAN in learning 
client distributions through transfer learning. 

Model pre-training serves to minimize internal di-
mensions and implicitly influences the model's induc-
tion bias. In classical supervised learning, models often 
possess a strong inductive bias, such as the local connec-
tivity assumptions in convolutional neural networks 
(CNNs) and recurrent neural networks (RNNs). Pre-
training provides an inductive bias for downstream 
tasks, which often have limited labeled samples, ena-
bling the pre-trained model parameters (with hundreds 
of millions of samples) to generalize well when fine-
tuned with a small amount of data. The core idea of our 
method involves pre-training the GAN in the source do-
main to extract features and initialize the GAN network 
parameters. Subsequently, fine-tuning is performed in 
the target domain. Transfer learning, in this context, 
aims to enhance the model's performance by identifying 
differences between datasets and leveraging trans-
ferable knowledge. Generative adversarial networks, de-
signed to generate similar data by approximating the fea-
ture distribution of the target samples, typically require 
a sufficient number of target samples. When the target 
sample size is small, GANs often face mode collapse is-
sues. However, transfer learning can alleviate this prob-
lem in GANs and reduce the stringent requirement of 
similarity between the source and target domain data. 

In general, by leveraging transfer learning, GANs 
can effectively learn the distribution of local datasets, 
thereby enhancing the quality of generated medical im-
ages by local GANs. These improved models can then 
be applied in the context of cyclic federated learning. 

Transfer learning based CFL_DS_KD 
Once we have acquired a well-trained GAN model 

that effectively captures the data distribution of the cli-
ent through transfer learning, we can proceed to inte-
grate it into the cyclic federated learning method, which 
relies on the sharing of distribution information and 
knowledge distillation. The specific steps are as follows: 
Let 𝐶𝐶 represent the total number of clients participating 
in the federated learning task. Let 𝐷𝐷𝑐𝑐 = {𝑥𝑥𝑖𝑖|𝑖𝑖 =
1,2 … ,𝑁𝑁𝑐𝑐} be the local dataset of client 𝑐𝑐  (where 𝑐𝑐 =
1,2, … ,𝐶𝐶)  and 𝑁𝑁𝑐𝑐 = |𝐷𝐷𝑐𝑐| be the number of samples in 
the local dataset. Initially, the client c trains a generator 
through transfer learning which reflects the distribution 
information 𝐺𝐺𝑐𝑐 of local datasets 𝐷𝐷𝑐𝑐. Thus, 𝐶𝐶 clients are 
trained to obtain 𝐶𝐶  generator models. Then, client 𝑐𝑐 
transmit its generator 𝐺𝐺𝑐𝑐 to the client 𝑐𝑐 + 1, forming a 
ring-shaped communication link when 𝑐𝑐 = 𝐶𝐶  let 𝑐𝑐 +
1 = 𝑐𝑐. Then, the generator 𝐺𝐺𝑐𝑐 from the client 𝑐𝑐 can gen-
erate 𝑁𝑁′𝑐𝑐+1  virtually shared data points, i.e.,  𝐷𝐷′𝑐𝑐+1 =
{𝑥𝑥𝑙𝑙|𝑥𝑥𝑙𝑙 = 𝐺𝐺(𝑧𝑧𝑙𝑙), 𝑙𝑙 = 1,2, … ,𝑁𝑁′𝑐𝑐+1}. The distribution in-
formation sharing process is schematically illustrated in 
Fig. 2. Additionally, client 𝑐𝑐 transmits local pretrained 
model 𝜔𝜔𝑐𝑐 to the client 𝑐𝑐 + 1. 

Fig. 2. The process of client distribution sharing and vir-
tual dataset generation in cyclic federated learning. 

Then, the 𝑐𝑐 + 1 client employs knowledge distilla-
tion, utilizing 𝜔𝜔𝑐𝑐 as a teacher model to guide the training 
of 𝜔𝜔𝑐𝑐+1 on the virtual dataset 𝑁𝑁′𝑐𝑐+1, as shown in Fig. 3. 
After the process of knowledge distillation, the updated 
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model of client 𝑐𝑐 + 1 continues to train on the local da-
taset  𝐷𝐷𝑐𝑐+1. 

Fig. 3. The process of knowledge distillation on virtual 
shared data generated by GAN. 

The training goal of the cyclic federated learning 
method based on the distribution of information sharing 
and knowledge distillation was the minimization of the 
total loss function (1). 

𝑙𝑙(𝜔𝜔1,𝜔𝜔2, … ,𝜔𝜔𝑐𝑐) = ∑ 𝐿𝐿𝑐𝑐+1(𝜔𝜔𝑐𝑐+1
𝐶𝐶
𝑐𝑐=1 ) +

                                    𝜆𝜆∑ 𝑅𝑅𝑐𝑐+1(𝜔𝜔𝑐𝑐+1,𝜔𝜔𝑐𝑐)𝐶𝐶
𝑐𝑐=1     (1) 

𝐿𝐿𝑐𝑐+1(𝜔𝜔𝑐𝑐+1) = ∑ 𝑙𝑙𝑐𝑐+1(𝑥𝑥;𝜔𝜔𝑐𝑐+1)𝑥𝑥∈𝐷𝐷𝑐𝑐+1      (2) 

𝑅𝑅𝑐𝑐+1(𝜔𝜔𝑐𝑐+1,𝜔𝜔𝑐𝑐) = 𝛼𝛼𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝑐𝑐+1,𝜔𝜔𝑐𝑐) 

     +𝛽𝛽𝑙𝑙ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝜔𝜔𝑐𝑐+1)    (3) 

𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝑐𝑐+1,𝜔𝜔𝑐𝑐) = ∑ 𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥;𝜔𝜔𝑐𝑐+1,𝜔𝜔𝑐𝑐)𝑥𝑥∈𝐷𝐷′𝑐𝑐+1     (4) 

𝐿𝐿ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝜔𝜔𝑐𝑐+1) = ∑ 𝑙𝑙ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥;𝜔𝜔𝑐𝑐+1)𝑥𝑥∈𝐷𝐷′𝑐𝑐+1      (5) 

In (1), 𝑅𝑅𝑐𝑐+1 represents the loss of client 𝑐𝑐 + 1 dur-
ing training on the virtual dataset 𝐷𝐷′𝑐𝑐+1 using the model 
𝜔𝜔𝑐𝑐  of client 𝑐𝑐. As shown in equation (3), this loss in-
cludes both the soft loss during the knowledge distilla-
tion process and the hard loss of the student model. 𝐿𝐿𝑐𝑐+1 
represents the loss of client 𝑐𝑐 + 1 during training on the 
local dataset. Equations (4) and (5) describe the optimi-
zation process which indicates that 𝜔𝜔𝑐𝑐+1

(𝑘𝑘−1) is first opti-
mized through training on the virtual dataset to obtain 
the updated model 𝜇𝜇𝑐𝑐+1

(𝑘𝑘) , and then further updated on the 
local dataset to obtain the final model 𝜔𝜔𝑐𝑐+1

(𝑘𝑘) . Then, the 
updated model 𝜔𝜔𝑐𝑐+1

(𝑘𝑘)  transmits to next client. 

𝜇𝜇𝑐𝑐+1
(𝑘𝑘) = 𝜔𝜔𝑐𝑐+1

(𝑘𝑘−1) − 𝛼𝛼𝑘𝑘∇𝑅𝑅𝑐𝑐+1 �𝜔𝜔𝑐𝑐+1
(𝑘𝑘−1),𝜔𝜔𝑐𝑐

(𝑘𝑘−1)�    (6) 

𝜔𝜔𝑐𝑐+1
(𝑘𝑘) = 𝑎𝑎𝑎𝑎𝑎𝑎min

𝜔𝜔
𝐿𝐿𝑐𝑐+1(𝜔𝜔) + 𝜆𝜆

2𝛼𝛼𝑘𝑘
�𝜔𝜔 − 𝜇𝜇𝑐𝑐+1

(𝑘𝑘) �
2
    (7) 

EXPERIMENTAL RESULTS AND 
DISCUSSION 

Development environment and datasets 
Our deep learning model was constructed using the 

popular deep learning framework PyTorch, version 
1.6.0, along with Python, version 3.7.1. We adopted the 
identical network configuration as de-scribed in the ref-
erenced paper (L. Yu et al., 2022). Specifically, we em-
ployed a cyclic federated learning framework, utilizing 
a Kafka cluster as the medium for exchanging model pa-
rameters. The GAN model we used is a conditional Was-
serstein Generative Adversarial Network with Gradient 
Penalty (WGAN-GP). We utilized two distinct medical 
datasets: the Alzheimer's disease dataset from the 
Kaggle contest (url: https://www.kaggle.com/da-
tasets/tourist55/alzheimers-dataset-4-class-of-images) 
and the ADNI MRI dataset (url: https://adni.loni. 
usc.edu/data-samples/access-data/). The Alzheimer's 
disease dataset served as the target domain data, while 
the ADNI dataset was employed as the source domain 
data for transfer learning in pre-training the GANs. Spe-
cifically, The Alzheimer's disease dataset consists of 
four classes of MRI images in both the training and test-
ing sets, including mild demented, moderate demented, 
non demented, and very mild demented. We aim to train 
a general deep learning model via federated learning to 
be applied in Alzheimer's disease classification tasks. 
The ADNI MRI image dataset we utilized comprises 
brain MRI scans from Alzheimer's disease (AD) pa-
tients, Mild Cognitive Impairment (MCI) patients, and 
normal elderly individuals. These images provide de-
tailed information about brain structure, morphology, 
and pathology. We will employ this dataset to pretrain a 
WGAN-GP on client-side. 

Evaluation 
The performance of our algorithm is primarily eval-

uated based on the classification accuracy. Additionally, 
we utilize the maximum mean difference (MMD) to 
quantify the distribution discrepancy be-tween the gen-
erated virtual data and the target domain dataset. The 
squared MMD between two data distributions can be 
mathematically expressed as: 

𝑀𝑀𝑀𝑀𝐷𝐷2(𝑥𝑥, 𝑦𝑦) = ‖𝐸𝐸[𝜑𝜑(𝑥𝑥)]− 𝐸𝐸[𝜑𝜑(𝑦𝑦)]‖2    (8) 

Where 𝜑𝜑(∙) denotes the mapping to the regenerated Hil-
bert space (RKHS). 

Results 
In CFL_DS_KD, it is essential to ensure that GANs 

trained on the client's local datasets can adequately learn 
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the local distribution knowledge and generate high-qual-
ity virtual datasets. Due to the small and heterogeneous 
nature of the local client datasets, it is challenging for 
the local GANs to fully capture the local distribution 
knowledge. Therefore, we employ transfer learning to 
allow GANs to initially learn distribution knowledge 
from the source domain before fine-tuning them on the 
local datasets. Fig. 4 demonstrates a comparison of med-
ical images generated using GAN models with and with-
out transfer learning. 

     
(a)  (b)  (c) 

Fig. 4. (a). An image sample of the target domain da-
taset. (b). An image sample generated by the GAN gen-
erator without transfer learning. (c). An image sample 
generated by the GAN generator with transfer learning. 

Obviously, we can find that the GAN using transfer 
learning is better than the original GAN in terms of clar-
ity, contour, texture, etc. of the generated data. Further-
more, we can measure the quality of the data generated 
by the generator by calculating the MMD value between 
the generated data and the target domain data. 

Table 1. Distribution discrepancy between generated 
data and target domain data under different non-iid sce-
narios. 

Methods 
MMD 

0.5114 0.8630 1.0296 

T_GAN- 
Target Domain 0.5308 0.5858 1.0402 

GAN- 
Target Domain 0.6221 0.7397 1.1279 

As shown in the Table 1, the first row of the table 
presents the client MMD values measured under differ-
ent non-iid scenarios, while the second row represents 
the MMD between the data generated by GAN with 
transfer learning and the target domain data under dif-
ferent non-iid scenarios. The third row shows the MMD 
between the data generated by GAN without pre-train-
ing and the target domain data under different non-iid 
scenarios. It can be observed that the MMD between the 
data distribution of the GAN generated through transfer 
learning and the data distribution of the target domain is 
smaller. This indicates that the data generated by the 
GAN with transfer learning is more similar to the target 
domain data, thus better reflecting the client's data dis-
tribution.  

The aim of improving the learning performance of 
client's local distribution is to enable the clients in cyclic 
federated learning to share their respective real distribu-
tions. Therefore, we further evaluate the im-proved 
strategy from the algorithmic perspective to investigate 
the impact of transfer learning-based generators on al-
gorithm performance under different client distribution 
disparities. 

 
Fig. 5. The influence of transfer learning GAN and non-
transfer learning GAN on performance of CFL_DS_KD 
was evaluated at different MMD levels. 

 

Table 2. The influence of transfer learning-based GAN and non-transfer learning-based GAN on performance of 
CFL_DS_KD was evaluated at different MMD levels. 

Meth-
ods 

MMD 

0.4554 0.5144 0.8630 1.0296 1.2830 1.5468 1.8038 2.0593 

GAN 80.23% 79.95% 79.46% 79.56% 78.73% 78.60% 78.77% 78.05% 

T_GAN 79.99% 79.84% 79.58% 80.38% 79.67% 79.44% 79.40% 79.28% 
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As Fig. 5 and Table 2 show, it can be observed that 
when the MMD is below 0.5, indicating that the client 
data distributions are very similar, the GANs trained 
with transfer learning have a negative impact on algo-
rithm performance. When the MMD is be-tween 0.5 and 
1.2, indicating that there are some differences in client 
data distributions but not significant, both methods show 
similar performance, with a slight advantage for the 
transfer learning approach. However, when the MMD is 
greater than 1.2, indicating significant differences in cli-
ent data distributions, transfer learning shows a noticea-
ble improvement in algorithm performance. Fig. 6 spe-
cifically demonstrate the impact of transfer learning-
based GAN and non-transfer learning-based GAN on 
the performance of CFL_DS_KD under different MMD 
values. It can be observed that the performance of the 
transfer learning-based GAN is better than the non-
transfer learning-based GAN, and this effect becomes 
more prominent as the MMD increases. When the client 
distribution disparities are small, the transfer learning-
based generator does not provide an advantage. This 
could be due to the fact that after the GAN learns 

knowledge from the source domain, fine-tuning on the 
target domain does not enable the model to adapt well to 
the target domain distribution, resulting in the model pa-
rameters being biased towards the source domain and 
leading to a deterioration in performance. 

Furthermore, to further highlight the advantages of 
using transfer learning-based GAN, we compared it with 
other algorithms as shown in the box plot in Fig. 7, 
where the MMD increases from the top left corner to the 
bottom right corner. By dynamically increasing the 
MMD, we can observe that as the MMD increases, indi-
cating more inconsistent data distributions of clients, the 
performance of the cyclic federated averaging model 
(CFL_FedAvg) declines rapidly. The non-transfer learn-
ing-based GAN per-forms at an intermediate level, 
while the transfer learning-based GAN exhibits the best 
and most stable performance. Fig. 8 presents a perfor-
mance comparison of different methods under different 
communication rounds. It can also be observed that the 
transfer learning-based GAN achieves the greatest im-
provement in the algorithm, and its performance is on 
par with or even surpasses centralized learning methods. 

Fig. 6. The influence of transfer learning GAN and non-transfer learning GAN on performance of CFL_DS_KD was 
evaluated at different MMD levels. (a) MMD=0.863 (b) MMD=1.546. (c) MMD=1.803. (d) MMD=2.05. 

(a) (b) 

(c) (d) 
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Fig. 7. Comparison of accuracy box plots for different methods at MMD 

 

Fig. 8. Performance comparison of different meth-ods at 
different communication rounds. 

CONCLUSION 
In general, this work focuses on enhancing the 

learning performance of the client's local data distribu-
tion. To overcome the challenges posed by data scarcity 
and heterogeneous distributions among clients' datasets, 
we propose the utilization of trans-fer learning to assist 
GANs in better capturing the underlying data distribu-
tions of the clients. Subsequently, the adequately trained 
GANs are applied within the framework of cyclic feder-
ated learning, which incorporates distribution infor-
mation sharing and knowledge distillation. Through rig-
orous experimentation and evaluation, we provide evi-
dence of the effectiveness of transfer learning in improv-
ing the performance of GANs in learning the client's 
data distribution, thereby enhancing the overall algorith-
mic performance. 
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