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ABSTRACT

The acquisition and transmission of magnetic resonance images are susceptible to noise, particularly impulse
noise. Although the method based on the ℓ0-norm and overlapping group sparse total variation (ℓ0-OGSTV) is
effective for impulse noise image restoration, it can only mitigate the staircase artifacts to a certain extent. To
boost the impulse noise removal performance of ℓ0-OGSTV, we propose a new restoration model that consists
of two terms. Specifically, in the first term, we keep using the ℓ0-norm as the data fidelity term to eliminate
impulse noise. In the second term, we first introduce an overlapping group sparsity fractional-order total
variation regularizer to eliminate staircase artifacts while preserving structural information. Then, we adopt
the minimax-concave penalty to further accurately estimate the image edges. Finally, we employ an alternate
direction method of multipliers to solve the proposed optimization model. Clinical experiments demonstrate
its effectiveness in denoising medical images.

Keywords: fractional-order total variation, image denoising, ℓ0-norm, minimax-concave penalty, overlapping
group sparsity.

INTRODUCTION

Due to the reasons of acquisition technology
and system, noise and artifacts are introduced in
magnetic resonance (MR) images, and impulse noise
is one of the main noises. The impulse noise may
be misunderstood as an anomaly of the human health
system, and denoising can enrich the visual quality
of images. Denoising plays a crucial role in medical
imaging and scanning, where even a small amount
of noise can be misinterpreted as an anomaly in
the human health system. However, removing noise
is a complex process because it can sometimes
compromise the visual effect and details of the image.
Therefore, the restoration of MR images destroyed by
impulse noise has become a prominent area of research
in the field of image processing.

Many methods have been proposed for medical
image denoising, one of the most popular image
restoration methods is total variation (TV) model

(Rudin et al., 1992), which could preserve edges
and remove image noise in homogeneous regions.
However, it tended to produce staircase artifacts
in smooth regions. To solve this problem, various
solutions have been proposed. For example, high-order
TV methods (Adam et al., 2021; Ge et al., 2023), the
overlapping group sparsity total variation (OGSTV)
methods (Liu et al., 2014; Shi et al., 2016), fractional
TV methods (Lian and Liu, 2023; Rahman Chowdhury
et al., 2020; Zhu et al., 2022) and the minimax-
concave (MC) penalty methods (Du and Liu, 2018;
Chen and Zhao, 2023).

Among these methods, the OGSTV method excels
in image restoration due to its structural sparsity. In
(Ge et al., 2023), a method that combined the hyper-
Laplacian prior regularization with OGSTV and non-
convex second-order TV, performed well in removing
noise from MR images. Ji and Zhao (2023) proposed a
novel model with a non-convex penalty that combined
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the OGS regularizer and the MC penalty (OGS-
MCTV). The non-convex MC penalty could preserve
edges. Therefore, this method demonstrated a superior
image denoising effect compared to other models.
Bhutto et al. (2023) proposed an image denoising
algorithm that cleverly integrated the advantages of
the fractional-order variation domain with an OGS
measure, which acted as its regularization component.
The fidelity term of these models used the ℓ2-norm,
which is commonly used to restore images degraded
by additive Gaussian noise. In addition, the ℓ2-
norm is sensitive to outliers and can easily result in
unsatisfactory image restoration.

To effectively remove impulse noise, as described
in (Gao et al., 2018), Bayesian statistical rules
suggested that the ℓ1-norm fidelity was more suitable
for restoring images corrupted by impulse noise than
the ℓ2-norm. In (Yang et al., 2009), the fidelity term
of the ℓ1-norm was utilized to restore the fuzzy multi-
channel image damaged by impulse noise. Chan et
al. (2010) proposed a two-phase image restoration
method based on TV regularization combined with
the ℓ1-norm data fidelity term for impulse noise
removal. Numerical results proved that the proposed
method makes good progress in restoration capability.
Although the ℓ1-norm has demonstrated significant
advantages in sparse signal processing and image
restoration, it may overly penalize the obtained
solution in impulse noise removal (Kuang et al., 2018).

To address the aforementioned issues, a method for
removing impulse noise using ℓ0 total variation (ℓ0-
TV) was proposed in (Yuan and Ghanem, 2017). It can
be depicted as

min
u

∥o⊙ (Ku− f )∥0 +λφTV (u) (1)

where u ∈ Rn×m is the desired original clean image,
f ∈ Rn×m is the degraded image, λ > 0 is the
regularization parameter, o ∈ {0,1}n is specified by
the user, ⊙ denotes an elementwise product, K ∈Rn×n

is a linear operator. In this paper, we are concerned
with K = I, the identity operator, which constitutes a
denoising problem.

Recently, the ℓ0-norm data fidelity term has been
used to remove impulse noise in (Yin et al., 2022). The

OGSTV serves as a regularizer to effectively eliminate
staircase artifacts, making this model highly proficient
in image restoration tasks even under high impulse
noise levels. Sun and Liu (2023) integrated both the ℓ0-
norm data fidelity term and the nonconvex generalized
regularizer, demonstrating not its remarkable ability
to suppress impulse noise and its superior capability
in preserving sharp contours while reducing staircase
artifacts. These models collectively demonstrate the
suitability of ℓ0-norm for restoring images corrupted
by impulse noise.

According to the literature survey above, the
existing methods primarily focus on restoring natural
images. However, when it comes to medical image
restoration, more emphasis is placed on preserving
intricate textures to ensure clinical diagnostic
value. Therefore, this paper primarily investigates
boosting MR image impulse noise removal. The
model comprises an ℓ0-norm data fidelity term, a
regularizer of overlapping group sparse fractional-
order total variation (OGS-FOTV) and the MC penalty.
Our proposed method combines the advantages
of the fractional-order variation domain with the
OGS measure, which can effectively measure
complex texture details and reduce staircase artifacts.
Additionally, the MC penalty can improve the sparsity
of images in the gradient domain and improve
the estimation of high-frequency components, that
is, preserve edges. To address the computational
challenges stemming from the model’s complexity, we
employ the alternate direction multiplier algorithm to
solve the subproblems. Finally, we conduct numerical
experiments to analyze the effectiveness of our
proposed model.

The rest of this article is organized as follows.
Section 2 presents some elementary concepts and
preliminaries related to the proposed algorithm. In
Section 3, we propose a new model for impulse noise
removal and derive an efficient algorithm to solve the
corresponding minimization problem. In Section 4,
the superiority of the proposed method is proved by
numerical experiments. Finally, a conclusion is made
in Section 5.

54



Image Anal Stereol 2024;43:53-66

PRELIMINARIES

In order to better describe the model, in this
section, we introduce the definition of the ℓ0

fidelity term, the Moreau envelope, the MC penalty,
overlapping group sparsity, discrete fractional-order
difference and the ADMM framework.

THE ℓ0 FIDELITY TERM

First, we give some basic definitions and properties
related to the ℓ0-norm fidelity term. The o ∈ {0,1}n is
specified by the user. More specifically, when oi = 0,
the pixel at position i is an outlier, and when oi = 1, the
pixel at position i is a potential outlier. For this paper,

we set oi =

{
0, fi = umin or umax

1, otherwise
for the salt-and-

pepper impulse noise.

The following lemma, as delineated in (Yuan
and Ghanem, 2017), presents the variational
characterization of the ℓ0-norm.

Lemma 1 For any given w ∈ Rn, it holds that

∥w∥0 = min
0≤z≤1

< 1,1− z >, s.t. z⊙|w|= 0, (2)

and z∗ = 1−sign(|w|) is the unique optimal solution to
problem (2). Here, the standard signum function sign
is employed in component form, and sign(0) = 0.

THE MINIMAX-CONCAVE PENALTY

Definition 1 Let b ≥ 0, we define ϕb(x) : RN → R as
the Moreau envelope of function f (Selesnick, 2017)

ϕb(x) = min
v

{
b
2
∥x− v∥2

2 + f (v)
}

(3)

The Moreau envelope is convex, continuous,
differentiable and real valued (Zhou and Zhao, 2021).

Definition 2 Let b ≥ 0, the minimax-concave penalty
of ∥x∥2 with parameter b is the function ϕ̂b(x) : RN →
R which is given by (Du and Liu, 2018)

ϕ̂b(x) = ∥x∥2 −min
v

{
b
2
∥x− v∥2

2 +∥v∥2

}
(4)

where the function ϕ̂b(x) is non-convex (Ji and Zhao,
2023; Shen et al., 2021).

OVERLAPPING GROUP SPARSITY

Liu et al. (2015; 2014) expanded the OGSTV
function as a new regularizer from the one-
dimensional signal denoising problem (Selesnick and
Chen, 2013) to the general two-dimensional case. This
approach effectively reduces staircase artifacts. They
also defined a K×K point group of the image g ∈Rn2

.

g̃i, j,K =


gi−ml , j−ml gi−ml , j−ml+1 · · · gi−ml , j+mr

gi−ml+1, j−ml gi−ml+1, j−ml+1 · · · gi−ml+1, j+mr
...

...
. . .

...
gi+mr , j−ml gi+mr , j−ml+1 · · · gi+mr , j+mr


∈ RK×K ,

(5)

where ml = ⌊K−1
2 ⌋,mr = ⌊K

2 ⌋ and ⌊x⌋ denotes the
largest integer less than or equal to x. The center of
g̃i, j,K is (i, j). Let gi, j,K be a vector which is obtained
by stacking the K columns of the matrix g̃i, j,K , i.e.,
gi, j,K = g̃i, j,K(:). Then the OGS regularizer can be
defined by

φOT (g) = ∑
i, j+1

∥g(i, j)K∥2 (6)

DEFINITION OF DISCRETE FRACTIONAL-

ORDER DIFFERENCE

There exist multiple interpretations of fractional
differences, and the Grünwald-Letnikov (G-L)
fractional-order derivative (Zhang et al., 2012) is
among the prevalent methods. Defined by G-L, let the
size of an image u be N ×M. Thus, the discrete form
of the fractional-order gradient ∇αu can be evaluated
by

∇
αu = [Dα

x u,Dα
y u], (7)

where α is the fractional order and we set 1 ≤ α < 2
in this paper. The discrete gradients Dα

x u,Dα
y u∈RN×M

along the x-axis and the y-axis are given by{
(Dα

x u)i, j = ∑
K−1
k=0 (−1)kCα

k ui−k, j

(Dα
y u)i, j = ∑

K−1
k=0 (−1)kCα

k ui, j−k
(8)
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with 1 ≤ i ≤ N,1 ≤ j ≤ M. Here K is the number of
adjacent pixels that are used to calculate the fractional-
order derivative at each pixel. The coefficients
{Cα

k }
K−1
k=0 are given by Cα

k = Γ(α+1)
Γ(k+1)Γ(α+1−k) with the

Gamma function Γ(x). Furthermore, the conjugate
operator of the fractional-order gradient operator is
(∇α)∗ = (−1)αdivα . In the discrete case, the vector
p = (p(1), p(2)) ∈ RN×M ×RN×M discrete fractional-
order divergence is defined as (Rahman Chowdhury et
al., 2020; Bhutto et al., 2023)

(divα p)i, j =(−1)α
K−1

∑
k=0

(−1)kCα
k (p(1)i+k, j+ p(2)i, j+k). (9)

THE ALTERNATING DIRECTION

METHOD OF MULTIPLIERS

The alternating direction method of multipliers
(ADMM) is to solve the following constrained
separable optimization problems:

min
x,y

ξ1(x)+ξ2(y) s.t. Ax+By = d, x,y ∈ χi (10)

where ξi(·) : χi → R are closed convex functions,
A,B ∈ Rl×n and d ∈ Rl is a given vector. The
augmented Lagrangian function (Hestenes, 1969) for
the problem (10) is

LA (x,y; µ) =ξ1(x)+ξ2(y)+µ
T (Ax+By−d)

+
δ

2
||Ax+By−d||22,

(11)

where µ ∈Rl is the Lagrange multiplier and δ > 0 is a
penalty parameter. The objective is to find the saddle
point of LA by alternatively minimizing LA with
respect to x, y and µ . The ADMM algorithm to solve
problem (10) is presented as Algorithm 1.

Algorithm 1 ADMM for minimizating the problem
(10).

1: initialization x0, y0, λ 0 and δ > 0,
2: iteration:

xk+1 = argminx ξ1(x)+ δ

2 ||Ax+Byk −d + µk

δ
||22,

yk+1 = argminy ξ2(y)+ δ

2 ||Axk+1+By−d+ µk

δ
||22,

µk+1 = µk +δ (Axk+1 +Byk+1 −d),
k = k+1

3: until a stopping criterion is satisfied.

THE PROPOSED ALGORITHM

In this section, we first introduce the proposed
MR Image denoising model, and then solve it in the
ADMM framework.

MODEL

The proposed MR Image denoising model is as
follows

min
u

∥o⊙ (u− f )∥0 +Φ
K
b (u), (12)

where ΦK
b (u) is a new non-convex penalty based on the

MC penalty (Ji and Zhao, 2023) and the overlapping
group sparse fractional-order total variation (OGS-
FOTV) (Bhutto et al., 2023), which is defined as
follows

Definition 3 Let λ1,λ2 ≥ 0, 1 ≤ α < 2, we define
ΦK

b (u) : RN×N → R with parameter λ1,λ2 as follows

Φ
K
b (u) = λ1

N

∑
i, j=1

∥∥[∇α u]i, j,K
∥∥

2−

λ2

N

∑
i, j=1

min
vi, j,K

{
b
2

∥∥[∇α u]i, j,K − vi, j,K
∥∥2

2 +
∥∥vi, j,K

∥∥
2

}
= λ1φ(∇α u)−λ2 min

v

{
b
2
∥∇

α u− v∥2
2 +φ(v)

}
(13)

where φ(·) is the OGS regularizer as defined by
Eq. (6). And φ(∇αu) represents the OGS-FOTV
regularizer, ∇αu is the fractional-order gradient as
defined by Eq. (7).

Next, according to Eq. (13), we proposed model
(12) can be reformulated as

min
u

{
∥o⊙ (u− f )∥0 +

[
λ1φ(∇αu)

−λ2 min
v

(b
2
∥∇

αu− v∥2
2 +φ(v)

)]} (14)

OPTIMIZATION

We use the variable splitting method together with
Lemma 1 to transform problem (14) into the following
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constrained optimization problem

min
u,z,x

max
v

< 1,1− v >+λ1φ(x)− bλ2

2
∥x− v∥2

2 −λ2φ(v)

s.t. x = ∇
α u, y = u− f , z⊙|o⊙ y|= z⊙o⊙|y|= 0.

(15)

To solve (15), we adopt ADMM (Boyd et al., 2011;
Wang et al., 2019) and transform Eq. (15) into the
following augmented Lagrangian function

LA (u,z,x,y; µ,δ ,η)

=< 1,1− v >+λ1φ(x)− bλ2

2
∥x− v∥2

2 −λ2φ(v)+

< ∇
α u− x,µ >+

β1

2
∥∇

α u− x∥2
2+< u− f − y,δ >+

β2

2
∥u− f − y∥2

2+< z⊙o⊙|y|,η >+
β3

2
∥z⊙o⊙|y|∥2

2

(16)

where µ , δ , η are Lagrangian multipliers, β1, β2, β3

are penalty parameters. To solve Eq. (15), we utilize
the ADMM framework and iteratively update each
variable by minimizing Eq. (16). This iterative process
can be decomposed into several subproblems.

u-subproblem

The u-subproblem

uk+1 = argmin
u

β1

2

∥∥∥∇
α u− xk

∥∥∥2

2
+< ∇

α u− xk,µk >

+
β2

2

∥∥∥u− f − yk
∥∥∥2

2
+< u− f − yk,δ k >

= argmin
u

β1

2

∥∥∥∥∇
α u− xk +

µk

β1

∥∥∥∥2

2

+
β2

2

∥∥∥∥u− f − yk +
δ k

β2

∥∥∥∥2

2

(17)

Subproblem (17) is a least squares problem, we can
solve the equivalent normal equation,

(β1(∇
α)T (∇α)+β2I)u =

(∇α)T (β1xk −µ
k)+β2yk +β2 f −δ

k
(18)

For the periodic boundary condition of u, (∇α)T ∇α

is the block circulant with circulant blocks, which
can be diagonalized by 2D discrete Fourier transform
(Wu and Tai, 2010). Therefore, through a fast
Fourier transform (FFT) operation and a FFT inverse

operation, we can obtain the optimal u as follows

uk+1 = F−1
(

F [(∇α)T (β1xk −µk)+β2yk +β2 f −δ k]

β2I +β1F [(∇α)T (∇α)]

)
(19)

x-subproblem

The x-subproblem is the overlapping group sparse
problem, we have

xk+1 = argmin
x

λ1φ(x)− bλ2

2

∥∥∥x− vk
∥∥∥2

2
+< ∇

α u− xk,µk >

+
β1

2

∥∥∥∇
α u− xk

∥∥∥2

2

= argmin
x

β1 −bλ2

2

∥∥∥∥x− β1∇α u−bλ2vk +µk

β1 −bλ2

∥∥∥∥2

2

+λ1φ(x)
(20)

The problem (12) can be solved iteratively by the
majorization-minimization (MM) algorithm, and the
process of solving the related problem is discussed
in detail in (Yin et al., 2022). Here, we express it in
lemma 2, as follows

Lemma 2 we consider a minimization problem of
the form minv P(v) = 1

2 ∥v− v0∥2
2 +ρΦ(v), where ρ

is a positive parameter and the functional Φ(v) =
∑

n
i, j=1

∥∥g(i, j),K
∥∥

2. In order to minimize P(v), the MM
algorithm is continuously iteratively solved to obtain

vk+1 =
(

I +ρΛ(vk)T
Λ(vk)

)−1
v0 (21)

v-subproblem

The v subproblem can be written as

vk+1 = argmax
v

{
−bλ2

2

∥∥∥xk+1 − v
∥∥∥2

2
−λ2φ(v)

}
= argmin

v

bλ2

2

∥∥∥xk+1 − v
∥∥∥2

2
+λ2φ(v)

(22)

The algorithm for v-subproblem is the same as the
algorithm for x-subproblem.

z-subproblem

The z-subproblem is of the following form
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zk+1 = argmin
z

1
2

β3o⊙ yk ⊙ yk ⊙ z2 +(ηk ⊙o⊙|yk|−1)z
(23)

The solution zk+1 can be computed using projection as:

zk+1 = min
{

1,max
(
−ηk ⊙o⊙|yk|−1

β3o⊙ yk ⊙ yk ,0
)}

(24)

y-subproblem

The y-subproblem can be solved by a soft
thresholding with the shrink operatorction. Besides,
this subproblem shares the following form

yk+1 = argmin
y

β2

2

∥∥∥∥y−
(

uk+1 − f +
δ k

β2

)∥∥∥∥2

2

+
β3

2

∥∥∥∥zk+1 ⊙o⊙|y|+ ηk

β3

∥∥∥∥2

2

(25)

which can be simplified as

yk+1 = argmin
y

1
2

∥∥∥∥∥∥y−
β2(uk+1 − f + δ k

β2
)

β2 +β3(zk+1 ⊙o)2

∥∥∥∥∥∥
2

2

+
zk+1 ⊙o⊙ηk

β2 +β3(zk+1 ⊙o)2 ⊙|y|

(26)

Subproblem (26) can be calculated by

yk+1 = shrink

 β2(uk+1 − f + δ k

β2
)

β2 +β3(zk+1 ⊙o)2 ,
zk+1 ⊙o⊙ηk

β2 +β3(zk+1 ⊙o)2


(27)

where shrink(x,y) = sgn(x) ·max{∥x∥1 −y,0} , and
sgn(·) denotes the signum function.

Updating Lagrangian multipliers

Finally, the Lagrange multipliers are updated by
the following

µk+1 = µk +β1(∇
αuk+1 − xk+1)

δ k+1 = δ k +β2(uk+1 − f − yk+1)

ηk+1 = ηk +β3(zk+1 ⊙o⊙|yk+1|)

(28)

The proposed method is presented as Algorithm 2.
And for this algorithm, we have two remarks.

Algorithm 2 solving the minimization problem (12).

1: input f ,λ1 > 0,λ2 > 0,α,Group size K,β1,β2,β3
2: initialization u0,x0,v0,z0,y0; µ0,δ 0,η0

3: iteration:
Compute uk+1according to Eq. (19),
Compute xk+1according to Eq. (21),
Compute vk+1according to Eq. (21),
Compute zk+1according to Eq. (24),
Compute yk+1according to Eq. (27),
Update µk+1,δ k+1,ηk+1 according to Eq. (28),
k = k+1;
until a stopping criterion is satisfied.

Remark 1 When α = 1, the fractional-order TV is
reduced to the standard TV, so the Eq. (13) is degraded
into the OGS-MCTV penalty in (Ji and Zhao, 2023). In
the experimental section, we discuss in detail the effect
of the value of α on the denoising performance of the
proposed model.

Remark 2 When K = 1, the Eq. (13) is degraded
into the MC penalty of the fractional-order TV term
in (Chen and Zhao, 2023). Different K values lead
to different denoising results, specific experiments are
shown in the following section.

NUMERICAL EXPERIMENTS

In this section, we present several experimental
results to verify the effectiveness of the proposed
method for image denoising. The test image is real
MR images, as shown in Fig. 1. All the test images
are from the Department of Radiology, Maanshan
People’s Hospital, Maanshan, China. The experiment
is under Windows 10 and MATLAB R2021a operating
system, and the CPU is AMD R7 5800H 3.20GHz
and 16GB RAM. MR images used for analysis were
corrupted by salt-and-peppe noise levels of 30%,
50%, 70%. All denoising methods measure the quality
of recovered images by Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity (SSIM) indices,
which reflect human subjective sensory and visual
perception quality respectively (Irum et al., 2015;
Kuang et al., 2018).

The stopping criterion for all tested algorithms is
set to

∥uk+1 −uk∥
∥uk∥

≤ 1×10−4 (29)
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(a) abdomen (b) pelvic (c) sacroiliac (d) head (e) ankle (f) mrcp

Fig. 1: MR images used for the experiments.

Table 1: The PSNR and SSIM values for denoised images by different methods when 30% noise level.

Noise level Image
Denoised

HNHOTV-OGS ℓ1-OGSTV ℓ0-OGSTV Proposed

30 abdomen 35.01/0.950 32.93/0.919 39.62/0.982 40.92/0.985
pelvic 29.97/0.936 31.08/0.930 37.90/0.985 39.20/0.986
sacroiliac 31.10/0.894 31.45/0.891 38.04/0.974 38.40/0.973
head 29.19/0.955 29.53/0.943 36.51/0.989 37.62/0.991
ankle 25.33/0.907 26.93/0.913 33.13/0.981 34.42/0.983
mrcp 32.74/0.969 32.90/0.952 39.40/0.991 41.78/0.993

Table 2: The PSNR and SSIM values for denoised images by different methods when 50% noise level.

Noise level Image
Denoised

HNHOTV-OGS ℓ1-OGSTV ℓ0-OGSTV Proposed

50 abdomen 29.13/0.839 29.20/0.827 35.73/0.956 36.86/0.963
pelvic 27.69/0.871 27.81/0.874 34.20/0.966 35.35/0.968
sacroiliac 27.56/0.788 28.60/0.808 34.70/0.943 34.87/0.941
head 24.07/0.873 24.84/0.873 32.59/0.973 33.72/0.977
ankle 22.83/0.812 23.67/0.8287 29.67/0.956 30.93/0.960
mrcp 28.01/0.910 28.74/0.901 35.77/0.977 38.06/0.981

Table 3: The PSNR and SSIM values for denoised images by different methods when 70% noise level.

Noise level Image
Denoised

HNHOTV-OGS ℓ1-OGSTV ℓ0-OGSTV Proposed

70 abdomen 21.51/0.499 26.00/0.679 31.85/0.900 32.46/0.909
pelvic 24.42/0.745 25.66/0.807 30.45/0.930 31.53/0.932
sacroiliac 23.27/0.597 25.93/0.715 31.19/0.886 30.90/0.878
head 17.92/0.583 20.42/0.720 28.45/0.935 29.79/0.945
ankle 19.26/0.603 21.38/0.697 26.28/0.907 27.24/0.914
mrcp 23.04/0.714 25.53/0.811 31.98/0.949 33.93/0.957
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Table 4: Denoising results of different MM iterations (N).

noise level Image N PSNR SSIM Iter Time(s)

30% abdomen 1 40.81 0.984 638 4.980
5 40.92 0.985 637 7.586
10 16.79 0.980 1000 17.630
100 14.95 0.977 1000 118.748

50% head 1 33.71 0.976 1000 7.547
5 33.72 0.977 1000 11.793
10 29.06 0.975 1000 17.625
100 33.51 0.976 1000 116.814

where uk+1 and uk are the restored image at the current
iterate and previous iterate respectively.

RESULTS AND ANALYSIS

The experimental results of our proposed model
are compared with three related methods: ℓ0-OGSTV
(Yin et al., 2022), ℓ1-OGSTV (Liu et al., 2015)
and HNHOTV-OGS (Adam et al., 2021). Their
regularizers are closely related to the proposed method
in this paper.

In the whole experiment, we fixed α = 1.9, K = 3,
N = 5, λ1 = 20, λ2 = 30, b=200, and other parameters
were manually selected to obtain the most satisfactory
restoration quality. For better comparison, HNHOTV-
OGS and ℓ0-OGSTV keep within the scope of the
authors suggest the parameters. For ℓ1-OGSTV, we
manually select the parameters to get the best PSNR
or SSIM value.

The effectiveness of this method on salt-and-peppe
noise noise denoising is verified by experiments. Three
different noise levels 30%, 50% and 70% are added to
the test image respectively to generate each observed
image. The obtained PSNR and SSIM values are
shown in Table 1, Table 2 and Table 3.

In each table, we observed that even at different
noise levels, compared with the denoising results of
the other three methods, the PSNR and SSIM values
of the proposed method were almost higher than those
of the other three methods. Only about the picture
“sacroiliac” performs slightly worse than ℓ0-OGSTV.

In Figs. 2-4, we show the comparison of the
denoised images of the three methods for the MR
Images “abdomen” and “pelvic” at 30% noise level,

“sacroiliac” and “head” at 50% noise level, and
“ankle” and “mrcp” at 70% noise level, respectively.
From the results, ℓ1-OGSTV image denoising effect
is not ideal, there are still slight blocky artifacts,
and some important texture edges are blurred. The
closest competitor to our method is ℓ0-OGSTV, whose
recovered images remove impulse noise well and
reduce staircase artifacts due to the use of ℓ0-norm.
However, as the noise level increased, our method still
achieved better results. Because our method similarly
uses the ℓ0-norm and combines the advantages of
the overlapping group sparse fractional-order total
variation and MC penalty term, it can well remove
staircase artifacts and preserve detail edges even at
high noise levels.

PARAMETER SENSITIVITY ANALYSIS

The parameters that affect the performance mainly
include the fractional order α , the group size K, the
number of MM iterations N, MC penalty parameter b
and parameters λ1, λ2, and these parameters need to be
carefully tuned to get more accurate results. Therefore,
we selected some images to test under different
noise conditions to demonstrate the sensitivity of the
proposed model to these parameters.

Firstly, in order to test the sensitivity of iteration
number N, other parameters are fixed. Table 4 shows
the influence of different MM iteration number N on
PSNR, SSIM, overall algorithm iteration number and
time, and the best result is obtained when N=5.

The variation of the value of the group size K is
important for the quality of the recovered image, and
it can be obtained from Fig. 5 that when the group size
K=3, the performance is the best, and the image quality
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(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)

(a4) (b4) (c4) (d4)

Fig. 2: The first and third lines are the recovered results for “abdomen” and “pelvic” with the 30% noise level,
respectively, while the second and fourth lines show the fragments corresponding to the zoomed images. (a1)-(a4)
noisy image, (b1)-(b4) ℓ1-OGSTV restored, (c1)-(c4) ℓ0-OGSTV restored, (d1)-(d4) proposed restored.
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(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)

(a4) (b4) (c4) (d4)

Fig. 3: The first and third lines are the recovered results for “sacroiliac” and “head” with the 50% noise level,
respectively, while the second and fourth lines show the fragments corresponding to the zoomed images. (a1)-(a4)
noisy image, (b1)-(b4) ℓ1-OGSTV restored, (c1)-(c4) ℓ0-OGSTV restored, (d1)-(d4) proposed restored.
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(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)

(a4) (b4) (c4) (d4)

Fig. 4: The first and third lines are the recovered results for “ankle” and “mrcp” with the 70% noise level
respectively, while the second and fourth lines show the fragments corresponding to the zoomed images. (a1)-
(a4) noisy image, (b1)-(b4) ℓ1-OGSTV restored, (c1)-(c4) ℓ0-OGSTV restored, (d1)-(d4) proposed restored.
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does not continue to improve if the K value continues
to increase.

Fig. 5: PSNR and SSIM values for images denoised by
my method with different K (set 30% salt-and-pepper
noise, inner iteration N = 5).

In our experiment, the range of values about
fractional order α is 1 ≤ α < 2. In Fig. 6, we test two
images at 30% and 50% noise levels respectively. The
figures show the PSNR and SSIM values increase with
the α value. Therefore, α = 1.9 can obtain the best
PSNR and SSIM results.

Fig. 6: PSNR and SSIM values for images denoised by
my method with different α (set 30% and 50% salt-
and-pepper noise, inner iteration N = 5, group size
K=3).

In this paper, the parameters λ1 and λ2 respectively
control the weight of the overlapping group sparse
fractional-order total variation and MC penalty
terms. Because the new regularizer is based on
the overlapping group sparse fractional-order total
variational minus the MC penalty term, the new
regularizer is more successful in generating sparsity.
According to the experimental test, when λ1 and λ2 are
[20, 30], the denoising effect of the model is relatively
ideal. In Fig. 7, the recovery results of “abdomen” at
50% noise level and “head” at 70% noise level are
shown for different values of λ1 and λ2, respectively,
where (c1)-(c2) perform the best, and we set λ1=20 and
λ2=30.

Finally, the analysis is about the parameter b in
the MC penalty term. As shown in Fig. 8, we test the
effect of different b values on PSNR and SSIM values
at two noise levels, and it is observed that b=200 is the
optimal choice.

(a1) (b1) (c1)

(a2) (b2) (c2)

Fig. 7: Denoising results of different λ1,λ2 for
”abdomen” (50% noise level) and ”head” (70% noise
level). (a1)-(a2) λ1 > λ2, (b1)-(b2) λ1 = λ2, (c1)-(c2)
λ1 < λ2.

CONCLUSION

In this paper, we propose a novel denoising model
for MR images aimed at effectively removing impulse
noise and staircase artifacts. We demonstrate the
effectiveness of using the ℓ0-norm as a data fidelity
term to eliminate impulse noise, while the combination
of the overlapping group sparse fractional-order
total variation and MC penalty as regularizers can
mitigate staircase artifacts and preserve important
edges. To solve the proposed model, we employ the
alternating direction method of multipliers. Numerical
experiments validate that our proposed method
outperforms three alternative methods in terms of
PSNR and SSIM across varying levels of noise. In
future work, we aim to extend our proposed method to
address other types of noise and reduce computational
time.
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(a1)

(b1)

(a2)

(b2)

Fig. 8: Denoising results of different b. (a1)-(b1) 30%
noise level, (a2)-(b2) 70% noise level.
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