
Image Anal Stereol 2025;44:111-129  doi: 105566/ias.3561 

Original Research Paper 

111 

 

RobustDeiT: NOISE-ROBUST VISION TRANSFORMERS FOR MEDICAL 
IMAGE CLASSIFICATION 

MEHDI TAASSORI 

Institute of Cyber-Physical Systems, John von Neumann Faculty of Informatics, Obuda University, Budapest, 

Hungary 

e-mail: taassori.mehdi@uni-obuda.hu 

(Received February 21, 2025; revised June 27, 2025; accepted June 27, 2025) 

ABSTRACT 

Effective classification of medical images is vital for accurate diagnosis and treatment, but noisy datasets 

remain a significant challenge, obscuring critical features and leading to unreliable predictions. To address 

this, we propose RobustDeiT, a noise-robust architecture based on the Data-efficient Image Transformer 

(DeiT), tailored for medical image classification in noisy environments. By integrating a multi-stage pre-

processing pipeline, our approach systematically reduces noise, enhances contrast, and highlights fine de-

tails, ensuring the preservation of essential features. Advanced denoising methods, contrast enhancement 

with Contrast Limited Adaptive Histogram Equalization, and sharpening via unsharp masking collectively 

improve image quality, enabling the model to extract meaningful patterns. Extensive evaluations demon-

strate that RobustDeiT achieves superior performance across diverse metrics, establishing its effectiveness 

in handling noisy medical imaging datasets and paving the way for reliable and accurate classification in 

real-world scenarios. 
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INTRODUCTION  

Medical image classification is a cornerstone of 

modern healthcare, serving as a key enabler for accurate 

diagnosis and effective treatment planning. Despite its 

critical importance, the task is often hindered by the per-

vasive presence of noise in medical imaging datasets, 

which can significantly impair the performance of clas-

sification models. Noise obscures essential diagnostic 

features, introducing ambiguity and reducing the relia-

bility of predictions. Addressing this challenge requires 

a delicate balance, mitigating noise effectively while 

preserving critical image details. Failure to manage this 

balance can result in over-smoothed images, where vital 

diagnostic features are blurred or lost, undermining the 

accuracy and robustness of classification models. Con-

sequently, the design of classifiers that can perform reli-

ably on noisy datasets has become a pressing need in the 

field. 

To overcome these challenges, we present a novel 

architecture rooted in the Data-efficient Image Trans-

former (DeiT), tailored specifically for the classification 

of noisy medical images. Our approach incorporates an 

advanced preprocessing pipeline, combining techniques 

such as edge-preserving filters, Gaussian and median fil-

tering, contrast enhancement via CLAHE, and 

sharpening through unsharp masking. These methods 

collectively mitigate the effects of noise while retaining 

critical diagnostic features essential for accurate classi-

fication. By leveraging the DeiT framework, our model 

utilizes the strengths of transformers to achieve robust 

and reliable performance in medical image classifica-

tion. Designed with noise-resilience at its core, our ap-

proach ensures dependable classification even in the 

presence of noisy datasets. 

Medical image classification involves the use of ad-

vanced computational models to identify patterns and 

features within images, allowing for the categorization 

of medical conditions. Recent advancements in deep 

learning have demonstrated significant improvements in 

classification accuracy. These models have shown great 

potential in automating the diagnostic process, reducing 

human error, and enabling faster decision-making in 

clinical settings. In (Ling et al., 2024), the authors pro-

pose a multi-task attention network (MTANet) to ad-

dress both medical image segmentation and classifica-

tion efficiently. Their model incorporates a reverse ad-

dition attention module for segmentation and an atten-

tion bottleneck module for classification, fusing image 

and clinical features. This reflects the trend of enhancing 

feature extraction in medical image classification, 



 TAASSORI M: Noise-Robust Transformers for Medical Imaging 

112 

 

aligning with our focus on improving classification per-

formance in noisy datasets using Vision Transformers.  

Noise in medical images can significantly hinder 

the performance of classification models. Noise in med-

ical images, whether from errors in labeling or from is-

sues during image capture, can reduce the quality of data 

used for training. This can lead to overfitting, reduced 

classification accuracy, and unreliable model predic-

tions. Researchers have explored various methods to 

mitigate the adverse effects of noise, focusing on label 

correction, dual-network learning, and uncertainty esti-

mation techniques to improve model robustness in the 

presence of noisy data. In (Penso et al., 2024), the au-

thors address the challenge of calibrating neural net-

works for medical image classification in the presence 

of label noise. They propose a noise-robust calibration 

procedure that estimates the noise level in the labels and 

integrates it into the training process. By incorporating 

the noise level into the network's accuracy estimation, 

the method ensures reliable calibration results, even 

when using noisy, unreliable labels. In (Liu et al., 2021), 

the authors propose a noise-tolerant medical image clas-

sification framework, Co-Correcting, to address the 

challenge of label noise, which often affects the accu-

racy of classifiers in medical image analysis. Their ap-

proach integrates dual-network mutual learning, label 

probability estimation, and curriculum label correcting 

to enhance classification accuracy, even under varying 

levels of noise. The framework demonstrates superior 

performance across multiple medical image datasets, 

showcasing its effectiveness in improving the robust-

ness of deep learning models in noisy environments. In 

(Ju et al., 2022), the authors explore the challenges of 

label noise in medical image datasets, specifically focus-

ing on two types: disagreement label noise from incon-

sistent expert opinions and single-target label noise from 

biased aggregation. They propose an uncertainty estima-

tion-based framework to manage these issues and intro-

duce a boosting-based curriculum training approach for 

robust learning. Their method is validated across various 

medical datasets, demonstrating its effectiveness in han-

dling noise and improving classification performance. 

In medical image classification, dealing with noisy 

data is a significant challenge, as noise can corrupt cru-

cial features and degrade model performance. To ad-

dress this, several robust architectures have been pro-

posed, specifically designed to handle noisy datasets 

more effectively. These architectures integrate innova-

tive methods to filter out noise, enhance feature extrac-

tion, and maintain classification accuracy, even in the 

presence of substantial data corruption. In (Zhu et al., 

2021), the authors present a noise-robust learning 

method for histopathology image classification. Their 

approach introduces a novel easy/hard/noisy (EHN) de-

tection model that distinguishes between informative 

hard samples and harmful noisy ones based on training 

history. By integrating this model into self-training ar-

chitecture, they gradually correct noisy labels and sup-

press noise during training. This method effectively han-

dles noisy labels without relying on a clean subset, mak-

ing it suitable for real-world noisy datasets. In (Xue et 

al., 2022), the authors tackle the issue of noisy-labeled 

data in medical image classification by introducing a 

collaborative training paradigm. Their method combines 

global and local representation learning to improve ro-

bustness against noisy labels. A self-ensemble model 

with a noisy label filter is employed to differentiate be-

tween clean and noisy samples, while a collaborative 

training strategy ensures that imperfect labels do not 

compromise the model's performance. This approach is 

particularly relevant to addressing the challenges posed 

by label noise in medical image classification, which 

aligns with our focus on developing noise-robust archi-

tectures. In (Li et al., 2021), the authors tackle the chal-

lenge of noise sensitivity in convolutional neural net-

works (CNNs) by incorporating wavelet transforms. 

Their proposed method, WaveCNets, replaces tradi-

tional down-sampling techniques like max-pooling with 

discrete wavelet transforms (DWT). This allows the 

model to separate the important low-frequency features, 

which carry key information about the object, from the 

high-frequency components, which often contain noise. 

By discarding the high-frequency components, 

WaveCNets improve noise robustness and classification 

accuracy, particularly in noisy image datasets. 

In our exploration of denoising techniques, we 

delve into several approaches that have shown promise 

in enhancing image quality. Each method plays a dis-

tinct role in preserving essential features while mitigat-

ing noise, ultimately contributing to improved classifi-

cation outcomes. By examining these established tech-

niques, we can better understand their efficacy and ap-

plicability in the context of medical image processing. 

Several studies have explored the application of edge-

preserving filters in enhancing image quality for better 

classification outcomes. In (Yang et al., 2021), the au-

thors introduce a global edge-preserving filter based on 

soft clustering, utilizing a restricted Gaussian mixture 

model to enhance image quality. Their approach effec-

tively suppresses intensity shift artifacts and handles 

halo effects common in local filters. The proposed 

method allows for flexible control over smoothing lev-

els, while maintaining low computational complexity. In 

(Wang et al., 2020), the authors address the fundamental 

problem of image denoising, emphasizing the need to 
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preserve significant geometric features, such as edges 

and textures, while filtering out noise. They introduce an 

edge detection function based on the Gaussian filtering 

operator and analyze the characteristics of the fractional 

derivative operator. Building on this, they establish a 

spatially adaptive fractional edge-preserving denoising 

model within a variational framework, discussing the 

existence and uniqueness of its solution and deriving the 

nonlinear fractional Euler-Lagrange equation. This ap-

proach represents a fractional order extension of tradi-

tional variational methods. In (Zhou et al., 2020), the au-

thors tackle the issue of preserving edge structures in sa-

lient object detection, a crucial preprocessing step in 

various computer vision tasks. They introduce the Hier-

archical and Interactive Refinement Network (HIRN), 

which aims to counteract the blurring effects of down-

sampling operations, such as pooling and striding, on 

edge detection. The proposed network features a multi-

stage and dual-path structure that estimates salient edges 

and regions from both low-level and high-level feature 

maps. This approach enhances the accuracy of predicted 

regions by improving weak edge responses while refin-

ing the semantic quality of edge predictions. Addition-

ally, they present an edge-guided inference algorithm to 

further refine the output regions based on the predicted 

edges.  

The Gaussian filter is widely utilized in image de-

noising due to its effectiveness in reducing random noise 

while preserving essential features like edges and tex-

tures. Its ability to apply a weighted average based on 

the Gaussian distribution allows for smoothening while 

minimizing distortion, making it a fundamental tool in 

various image processing applications. In (Zhu and Ng, 

2020), the authors address the challenge of mixed noise 

denoising, specifically focusing on images affected by 

both Gaussian and impulse noise. They propose two 

structured dictionary learning models that combine fi-

delity and regularization terms to recover corrupted im-

ages. By employing proximal alternating minimization 

methods, the study emphasizes the importance of accu-

rately fitting image patches while utilizing sparse coding 

to effectively mitigate the impact of noise, highlighting 

a significant advancement in the field of image restora-

tion.  

Median filtering is a widely used technique for im-

age denoising that effectively preserves edges while re-

moving noise, making it particularly suitable for appli-

cations where maintaining important features is crucial. 

In (Taassori and Vizvári, 2024), a novel hybrid approach 

is presented, combining multiple noise reduction strate-

gies to enhance the quality of medical images. This ap-

proach begins with an adaptive Kalman filter for initial 

noise attenuation and is followed by post-processing 

steps that include a non-local means (NLM) method and 

a median filter. The median filter plays a critical role in 

further refining the denoised images by effectively sup-

pressing residual noise while maintaining the integrity 

of important diagnostic features. Weighted median 

(WM) filters are often employed for tasks requiring en-

hanced noise suppression while preserving edges. In 

(Mishiba, 2023), the authors propose an efficient real-

time WM filter that avoids traditional histogram con-

struction challenges, achieving high-quality denoising 

performance. 

CLAHE (Contrast Limited Adaptive Histogram 

Equalization) is widely used in image processing to en-

hance contrast, particularly in medical images. It is ef-

fective in improving the visibility of subtle features by 

adjusting the contrast locally in different regions of an 

image, making it an essential tool for images with vary-

ing lighting conditions. This method is particularly ben-

eficial for enhancing medical images, where precise de-

tails are critical for accurate diagnoses. In (Chang et al., 

2018), the authors propose an automatic contrast-limited 

adaptive histogram equalization (CLAHE) method for 

image contrast enhancement. This approach automati-

cally sets the clip point based on the textureness of im-

age blocks and incorporates dual gamma correction to 

enhance contrast while maintaining naturalness. The 

method effectively redistributes histograms in each 

block, enhancing luminance, particularly in dark areas, 

while minimizing over-enhancement artifacts. Auto-

matic contrast-limited adaptive histogram equalization 

(CLAHE) is a widely used technique for enhancing im-

age contrast. It works by adjusting the contrast in local 

regions of an image, which helps improve visibility, es-

pecially in low-light conditions. Recent studies have ex-

plored various enhancements to CLAHE to further opti-

mize its performance in challenging environments, in-

cluding nighttime settings where visibility is critical for 

applications such as autonomous driving (Chen et al., 

2023). 

In image processing, sharpening is a crucial tech-

nique aimed at enhancing the clarity and detail of im-

ages. By increasing the contrast between adjacent pixels, 

sharpening helps to bring out important features, making 

images appear more defined and focused. This process 

is particularly beneficial in medical imaging, where pre-

cise details can significantly impact diagnosis and anal-

ysis. Various methods exist for sharpening, including 

unsharp masking and high-pass filtering, each offering 

unique advantages for different applications. In (Ye & 

Ma, 2018), the authors propose a highly adaptive un-

sharp masking method known as blurriness-guided 
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unsharp masking (BUM). This method utilizes esti-

mated local blurriness to perform pixel-wise enhance-

ment, addressing the challenges of over-enhancement in 

sharp regions and noise enhancement in blurred areas. 

The enhancement strength is adjusted based on the local 

blurriness, and a mapping process generates a scaling 

matrix from the blurriness map. Additionally, the study 

emphasizes the importance of the layer-decomposition 

filter used for creating base and detail layers, focusing 

on preventing artifacts through the choice between edge-

preserving and non-edge-preserving filters. In addition 

to denoising techniques, image sharpening plays a criti-

cal role in enhancing visual details. Unsharp masking 

(UM) has been widely adopted for this purpose. Recent 

studies have introduced new approaches to enhance 

sharpening performance while avoiding issues such as 

over- or under-enhancement. For instance, combining 

unsharp masking with histogram equalization has shown 

improved control over enhancement levels, maximizing 

image information and ensuring a balance in brightness 

distribution (Kansal, Purwar & Tripathi, 2018). 

Transformers have revolutionized the field of ma-

chine learning by introducing a novel approach to han-

dling sequential data, such as images and text, using 

self-attention mechanisms. Unlike traditional models 

that process data in a linear or hierarchical manner, 

transformers can simultaneously capture relationships 

between different parts of an input sequence, regardless 

of their distance. The attention mechanism plays a piv-

otal role in this, allowing the model to focus on relevant 

parts of the input when making predictions, significantly 

improving performance on tasks like classification, es-

pecially when dealing with complex patterns, such as in 

medical imaging. 

In (Vaswani, 2017), the authors propose the Trans-

former architecture, which leverages self-attention 

mechanisms and eliminates the need for recurrence or 

convolution. By eliminating recurrence and convolu-

tion, the Transformer architecture allows for more par-

allelization and significantly faster training. This archi-

tecture leverages self-attention to capture global depend-

encies in sequences, making it particularly effective in 

various sequence processing tasks, such as machine 

translation. Its ability to handle long-range dependencies 

efficiently has made it a foundation in deep learning, es-

pecially for tasks requiring high performance and scala-

bility. In (Dosovitskiy, 2020), the authors introduce Vi-

sion Transformers (ViTs) as a novel approach to image 

recognition, eliminating the need for convolutional neu-

ral networks (CNNs). Instead, they apply transformers 

directly to sequences of image patches, demonstrating 

their effectiveness in image classification tasks. This 

marks a shift from traditional CNN-based methods to a 

more flexible architecture, highlighting the potential of 

transformers in the domain of computer vision. The 

work emphasizes that transformers can be applied suc-

cessfully to image-based tasks, paving the way for fur-

ther advancements in vision-related applications. 

In this work, the architectural foundation is built 

upon the Data-efficient Image Transformer (DeiT), 

which is well-suited for image classification tasks. DeiT 

offers an efficient approach to Vision Transformer (ViT) 

models by optimizing training processes and reducing 

the dependence on large datasets, making it an appropri-

ate choice for medical image analysis. Its lightweight 

design and robust performance allow for improved gen-

eralization on noisy datasets, which aligns with the chal-

lenges addressed in this study. The reliability of deep 

learning models in medical diagnosis remains a signifi-

cant concern, particularly considering potential adver-

sarial attacks that could lead to severe consequences. To 

address these challenges, recent studies have explored 

hybrid architectures that combine the strengths of Con-

volutional Neural Networks (CNNs) and Transformers. 

For instance, one approach proposes a robust CNN-

Transformer hybrid model, which leverages the locality 

of CNNs alongside the global connectivity of Vision 

Transformers. This model enhances computational effi-

ciency through an optimized attention mechanism and 

aims to learn smoother decision boundaries (Manzari et 

al., 2023). Recent advancements in generative adversar-

ial models have demonstrated the effectiveness of con-

volutional neural networks (CNNs) in medical image 

synthesis tasks. However, CNNs' local processing capa-

bilities can hinder the learning of contextual features. To 

address this, researchers in (Dalmaz et al., 2022) pro-

pose the novel approach ResViT, which combines the 

contextual sensitivity of vision transformers with the 

precision of convolutional operators. Its generator incor-

porates aggregated residual transformer (ART) blocks, 

promoting diversity in representations while distilling 

relevant information. The model also includes a weight 

sharing strategy to reduce computational load, making it 

versatile for various modality. In (Song et al., 2023), the 

authors address the limitations of convolutional neural 

network-based methods in image dehazing by proposing 

DehazeFormer. They highlight that the popular Swin 

Transformer has key designs unsuitable for dehazing 

tasks. To improve performance, DehazeFormer incorpo-

rates modifications such as a new normalization layer, 

adjusted activation functions, and enhanced spatial in-

formation aggregation. Recent advancements in medical 

imaging have increasingly leveraged Vision Transform-

ers (ViTs) due to their ability to capture long-range de-

pendencies and global context, which offer clear 
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advantages over traditional convolutional neural net-

works (CNNs). The review by (Azad et al., 2023) pre-

sents an encyclopedic examination of the applications of 

Transformers in medical imaging, covering tasks such 

as classification, segmentation, and detection while 

highlighting the strengths and weaknesses of various 

strategies. Additionally, (Shamshad et al., 2023) pro-

vides a comprehensive survey of Transformer architec-

tures and their applications in medical imaging, discuss-

ing key challenges and promising future directions. 

These studies underscore the transformative potential of 

ViTs in enhancing medical image analysis, paving the 

way for further exploration in this domain. In (Touvron 

et al., 2021), the authors introduce an innovative frame-

work for training data-efficient vision transformers 

without the need for extensive datasets or significant 

computational resources. They propose a teacher-stu-

dent strategy specifically designed for transformers, em-

ploying a distillation token to enhance the learning pro-

cess. This approach not only facilitates effective 

knowledge transfer but also demonstrates the potential 

of vision transformers in various image understanding 

tasks.  

Despite significant advancements in medical image 

classification, the presence of noise in real-world da-

tasets remains a major challenge that undermines the re-

liability and accuracy of classification models. While 

much of the existing research focuses on improving clas-

sification performance under ideal conditions, few 

methods effectively address the impact of noise on med-

ical images. This highlights the critical importance of 

our work, which introduces a robust, noise-resilient 

model based on the DeiT framework. By incorporating 

advanced preprocessing techniques and leveraging the 

strengths of transformers, our approach enhances both 

the performance and reliability of medical image classi-

fication systems. This work has the potential to substan-

tially improve clinical decision-making, enabling more 

accurate and dependable diagnoses in noisy, real-world 

environments. 

Challenges in Noisy Medical Image Clas-
sification 

Noisy medical image classification presents signif-

icant challenges, as noise obscures critical diagnostic de-

tails, leading to reduced classifier accuracy and 

reliability. The loss of essential information, such as 

blurred edges or obscured lesions, makes it difficult for 

models to distinguish between healthy and affected tis-

sues, severely compromising diagnostic outcomes. 

Noise-induced misclassification further exacerbates the 

issue, where distorted features can cause incorrect pre-

dictions, increasing the risk of wrong diagnoses. Addi-

tionally, data imbalance, including the rarity of certain 

conditions, compounds the problem, as limited exam-

ples of underrepresented classes hinder a classifier's 

ability to learn distinguishing features. Noise, along with 

data collection biases and technological limitations, fur-

ther degrades performance, as inadequate imaging qual-

ity and computational constraints limit the efficacy of 

classification algorithms. Addressing these challenges is 

essential for developing robust classifiers capable of re-

liable clinical applications. 

METHODS 

We realized that noisy datasets, particularly in med-

ical image classification, introduce significant chal-

lenges that impact classifier performance. The presence 

of noise can obscure important features within the im-

ages, leading to misclassifications and reduced diagnos-

tic accuracy. This issue becomes especially critical in 

medical applications, where precise classification is es-

sential for patient outcomes. Understanding these chal-

lenges led to the creation of a robust architecture de-

signed to handle the complexities of noisy datasets.  

Edge Preserving Filter 

Edge-preserving filters smooth images while pre-

serving important features like edges and textures. These 

filters reduce noise without blurring edges, which is cru-

cial for applications like medical image processing, 

where structural details are vital for accurate diagnosis. 

This makes them valuable for enhancing noisy medical 

images while maintaining essential boundaries. Our ap-

proach uses a recursive filter as an edge-preserving 

method, chosen for its effectiveness in improving image 

quality and preserving key features for noisy medical 

image classification. The Edge-Preserving Filter algo-

rithm is outlined in Algorithm 1, which details the pro-

cess of noise reduction while maintaining edge integrity. 
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Algorithm 1 Edge-Preserving Filter 

1: Input: Image (in three R, G, and B channels), sigma_s (spatial smoothing parameter), sigma_r (range smoothing 

parameter)  

2: Output: edge_preserved image  

3: for channel in [R, G, B]: 

4: Initialize filtered_image with the original channel values 

5: # Horizontal Pass (Left to Right) 

6:        for each row in channel: 

7:            Initialize previous_filtered_value to the first pixel value in the row. 

8:            for each pixel from left to right:  

9:                gradient = abs (current_pixel - previous_pixel)  

10:              weight = exp (-gradient / sigma_r)  

11:              filtered_pixel = weight × current_pixel + (1 - weight) × previous_filtered_value  

12:              update previous_filtered_value = filtered_pixel 

13: # Horizontal Pass (Right to left) 

14:        for each row in channel: 

15:            Initialize previous_filtered_value to the last pixel value in the row. 

16:            for each pixel from right to left:  

17:                gradient = abs (current_pixel - previous_pixel)  

18:                weight = exp (-gradient / sigma_r)  

19:                filtered_pixel = weight × current_pixel + (1 - weight) × previous_filtered_value  

20:                update previous_filtered_value = filtered_pixel 

29: # Vertical Pass (top to bottom) 

30:       for each row in channel: 

31:           Initialize previous_filtered_value to the first pixel value in the col. 

32:           for each pixel from top to bottom:  

33:               gradient = abs (current_pixel - previous_pixel)  

34:               weight = exp (-gradient / sigma_r)  

35:               filtered_pixel = weight × current_pixel + (1 - weight) × previous_filtered_value  

36:               update previous_filtered_value = filtered_pixel 

37: # Vertical Pass (Bottom to Top) 

38:       for each row in channel: 

39:           Initialize previous_filtered_value to the last   pixel value in the col. 

40:           for each pixel from bottom to top:  

41:               gradient = abs (current_pixel - previous_pixel)  

42:               weight = exp (-gradient / sigma_r)  

43:               filtered_pixel = weight × current_pixel + (1 - weight) × previous_filtered_value  

44:               update previous_filtered_value = filtered_pixel 

45: Combined filtered_image channels (R, G, B) to produce final image 

 

Gaussian Filter 

Combining multiple denoising methods can signifi-

cantly enhance the overall quality of medical images by 

leveraging the strengths of each technique. For instance, 

using an edge-preserving filter in conjunction with a 

Gaussian filter allows for effective noise reduction while 

maintaining important structural details. This hybrid ap-

proach minimizes the risk of losing critical features dur-

ing the denoising process, resulting in images that are 

clearer and more informative. Furthermore, combining 
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methods can lead to improved robustness against vari-

ous types of noise, ultimately facilitating more accurate 

analyses and classifications in medical imaging tasks. 

Following the application of the edge-preserving 

filter, a Gaussian filter is utilized to further enhance the 

quality of the denoised medical images. The Gaussian 

filter is widely recognized for its effectiveness in reduc-

ing noise while preserving essential image features. In 

medical image processing, noise reduction is critical for 

improving the visibility of important structures and de-

tails within the images. By applying the Gaussian filter, 

high-frequency noise is effectively mitigated, resulting 

in a smoother image that retains critical information nec-

essary for accurate analysis. This enhancement is partic-

ularly beneficial for the subsequent classification pro-

cesses, where clear and well-defined features are essen-

tial for reliable outcomes. Moreover, the Gaussian filter 

provides a controlled method for smoothing images, as 

the standard deviation parameter allows for adjustments 

in the degree of blurring. This flexibility enables optimi-

zation based on the specific characteristics of the medi-

cal images being analyzed, ensuring that important de-

tails remain discernible while unwanted noise is mini-

mized. Overall, the application of the Gaussian filter sig-

nificantly contributes to improving the quality of medi-

cal images, thereby facilitating more accurate analyses 

and enhancing the performance of classification algo-

rithms. In Algorithm 2, the process of generating the 

kernel for the Gaussian filter is detailed. Algorithm 3 

presents the Gaussian filter, highlighting its key steps 

and parameters for spatial smoothing and noise reduc-

tion.  

 

Algorithm 2 Generating Filter Kernel  

1: Input: Kernel Size k, Standard Deviation (σ) 

2: Output: Kernel (k × k) 

3: center = (k - 1) / 2  

4: sum = 0  

5: for x in (0, k):  

6:     for y in range (0, k):  

7:         dx = x - center  

8:         dy = y - center  

9:         kernel[x][y]  =  
1

2πσ2 e
−

dx2+dy2

2σ2   

10:         sum += kernel[x][y]  

11: # normalize the kernel  

12: for x in (0, k):  

13:     for y in range (0, k):  

14: Kernel[x][y] /= sum 

15: return kernel (k × k) 

 

Algorithm 3 Gaussian Filter   

1: Input: Image (rows × cols), Gaussian Kernel (k × k) 

2: Output: Filterred_Image (rows × cols) 

3: Radius = k × k/2 

4: for each pixel (i,j) in Image : 

5:  Sum = 0 

6: for x in (-Radius, Radius+1): 

7:      for y in (-Radius, Radius+1): 

8:          if (i+x < rows and j+y < cols): 

9:                          Sum += image[i+x][j+y] × kernel[x+Radius][y+Radius] 

10:          Filtered_image[i][j] = sum 

11: return Filtered_image 
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Median Filter  

The median filter is a widely used non-linear filter 

in image processing. Instead of averaging pixel values, 

it replaces each pixel with the median value of its sur-

rounding pixels, ensuring that the noise is minimized 

while preserving important edges and details. This 

makes the median filter especially useful in scenarios 

where maintaining edge sharpness is crucial, as it effi-

ciently removes noise without excessively blurring the 

image. 

The combination of denoising methods, such as 

edge-preserving, Gaussian, and median filters, leverages 

the strengths of each technique. This approach improves 

noise reduction while maintaining critical features like 

edges and structural details. The sequential application 

of these filters provides enhanced robustness against 

various noise types, better feature preservation, and ulti-

mately results in clearer images, which is essential for 

accurate analysis. The algorithm for the Median Filter is 

illustrated in Algorithm 4. This diagram outlines the pro-

cedure and parameters used to apply the filter, which ef-

fectively reduces Gaussian noise while preserving the 

image's structural details. The process systematically 

calculates the median value within a defined kernel to 

achieve noise reduction. 

 

Algorithm 4 Median Filter 

1: Input: Image (rows × cols), Kernel size (k × k) 

2: Output: Filterred_Image (rows × cols) 

3: Radius = k × k/2 

4: for each pixel (i,j) in Image : 

5: # an empty to store neighbors 

6: neighbors = [] 

7: for x in (-Radius, Radius+1): 

8:      for y in (-Radius, Radius+1): 

9:          if (i+x < rows and j+y < cols): 

10:                        Neighbots.append (image [i+x][j+y]) 

11:         # sort neighbors and find the median 

12:         Filtered_image [i][j] = neighbors.sort.median 

13: return Filtered_image 

 

Advantages of Combining Denoising 
Method 

In image processing, no single denoising method ef-

fectively removes all types of noise while preserving 

crucial image details. Combining multiple techniques 

leverages their strengths, resulting in a more balanced 

and effective noise reduction approach (Taassori and 

Vizvári, 2024), (Taassori, 2024). This synergy enhances 

noise removal by targeting various noise types, such as 

impulse noise with median filtering and high-frequency 

noise with Gaussian filtering. Additionally, it helps pre-

serve important image features, preventing excessive 

blurring while retaining edges and textures. By increas-

ing robustness, combined methods adapt better to di-

verse noise conditions, ensuring consistent image qual-

ity. Furthermore, this approach enhances versatility, 

making it suitable for various image types and tasks. 

Contrast Limited Adaptive Histogram 
Equalization (CLAHE) 

Contrast Limited Adaptive Histogram Equalization 

(CLAHE) is a powerful technique for improving image 

contrast, particularly in images with varying lighting 

conditions. Unlike traditional histogram equalization, 

which can produce over-enhancement and amplify 

noise, CLAHE operates on small, localized regions of 

the image, known as tiles. This localized approach al-

lows for better contrast enhancement while preserving 

important details and avoiding the introduction of arti-

facts.  

CLAHE enhances contrast by applying a contrast-

limiting algorithm to prevent over-amplification of spe-

cific intensity levels, ensuring uniform enhancement 

without introducing artifacts. This is especially useful 

for medical image classification, as it helps highlight 
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subtle features critical for accurate diagnosis, improving 

classification model performance. 

The CLAHE process begins with a denoised input 

image, which is converted to LAB color space to sepa-

rate the luminance (L) channel from the color channels 

(A and B). Contrast is enhanced independently in the L 

channel by dividing it into small tiles, computing histo-

grams for each, and applying a clip limit to prevent noise 

amplification. The enhanced tiles are merged into a 

single luminance channel, which is combined with the 

original A and B channels and converted back to RGB, 

preserving natural color while improving contrast. 

CLAHE enhances local contrast, making it a valuable 

tool for medical imaging. The CLAHE algorithm is de-

tailed in Algorithm 5, outlining the steps for contrast en-

hancement while avoiding noise over-amplification. 

 

 

Algorithm 5 Contrast Limited Adaptive Histogram Equalization  

1: Input: Image, Clip_Limit, Tile_Grid_Size   

2: Output: Color_Corrected_Image   

3: if Image is in RGB format:  

4:     Convert Image to LAB color space   

5: Split the LAB image into L, A, B channels   

6:     L, A, B = SplitChannels(LAB_Image)   

7: Initialize: Clip_Limit and Tile_Grid_Size for CLAHE   

8: for each tile in the L channel: 

9:     Compute the histogram of pixel intensities in the tile   

10:     if histogram exceeds Clip_Limit:   

11:         Redistribute the excess pixels evenly across bins   

12:     Equalize the histogram of the tile   

13: Recombine CLAHE-enhanced L channel with A and B to form LAB_Image 

14: LAB_Image = MergeChannels(L_CLAHE, A, B)  

15: Convert LAB_Image back to RGB color space 

16: Color_Corrected_Image = ConvertToRGB(LAB_Image) 

17: return Color_Corrected_Image   

 

Sharpening 

This contribution focuses on enhancing the clarity 

and detail of the image, which is essential for accurate 

interpretation in medical image classification tasks. By 

refining image features and emphasizing important de-

tails, this step significantly improves the quality of the 

processed images. Sharpening enhances the visibility of 

fine details, making them more prominent and aiding in 

the interpretation and analysis of medical images. It also 

improves edge clarity, highlighting critical structures 

and contributing to more precise diagnoses. Addition-

ally, the sharpening process is designed to enhance im-

portant features without amplifying noise, ensuring the 

final image maintains high integrity. This contribution 

plays a key role in preparing medical images for further 

analysis and classification, resulting in better diagnostic 

outcomes. 

In our proposed method, sharpening was performed 

using the unsharp mask technique. First, we generated a 

Gaussian Blur of the input image using the Gaussian fil-

ter. The blurring process involves convolving the image 

with a Gaussian kernel defined by the formula: 

 
𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛_𝐵𝑙𝑢𝑟(𝑥, 𝑦)

=  ∑ ∑
1

2𝜋𝜎2 𝑒
−

𝑢2+𝑣2

2𝜎2

𝑘

𝑣=−𝑘

𝑘

𝑢=−𝐾

⋅ 𝐼𝑛𝑝𝑢𝑡_𝐼𝑚𝑎𝑔𝑒(𝑥 − 𝑢, 𝑦 − 𝑣) 

(1) 

The kernel size is controlled by K, and the parame-

ter σ determines the spread of the Gaussian filter, which 

influences the amount of blurring applied to the image. 

Once the Gaussian Blur is computed, the sharpened 

image is obtained by emphasizing the difference 
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between the input image and the Gaussian Blur, which 

can be expressed using the following formula: 

 

𝑆ℎ𝑎𝑟𝑝𝑒𝑛𝑒𝑑_𝐼𝑚𝑎𝑔𝑒[𝑖, 𝑗]  

=  (1 +  𝑊𝑒𝑖𝑔ℎ𝑡)  

∗  𝐼𝑛𝑝𝑢𝑡_𝐼𝑚𝑎𝑔𝑒[𝑖, 𝑗]  

− (𝑊𝑒𝑖𝑔ℎ𝑡 

∗  𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛_𝐵𝑙𝑢𝑟[𝑖, 𝑗]) 

(2) 

The weight parameter controls the strength of the 

sharpening effect, with higher values of weight in-

creasing the enhancement of edges and fine details. 

This approach, commonly known as unsharp mask-

ing, emphasizes high-frequency components by am-

plifying the difference between the original and 

blurred images, resulting in a sharper appearance. 

Unsharp masking offers several benefits for med-

ical imaging, particularly in edge enhancement. It 

sharpens edges for clearer distinction between adja-

cent areas without over-enhancing non-edge regions, 

ensuring accurate fine details. The scaling factor can 

be adjusted for controlled sharpness, meeting specific 

enhancement needs. Additionally, it allows selective 

noise management, enhancing important details while 

minimizing noise to preserve critical information. 

Customizable parameters reduce artifacts, enabling 

practitioners to fine-tune the effect and maintain es-

sential image characteristics while improving detail 

visibility. Algorithm 6 presents the sharpening pro-

cess, which utilizes the kernel generated in Algorithm 

2.  

 

Algorithm 6 Sharpening 

1: Input: Image (row × col), Kernel_Size, Sigma, Sharpening_Weight 

2: Output: Sharpened_Image 

3: Compute a blurred version of the image 

4: for each pixel (i,j) in Image (row × col): 

5:           for i in (0, row): 

6:                for j in (0, col):  

7:                        Sum = 0 

8:                        for x in (0,k) do   # kernel (k × k): 

9:                              for y in (0,k): 

10:                                 if (0 <= i+x-k/2 < row and 0< j+y-k/2 < col): 

11:                                        Sum += image [i+x-k/2][j+y-k/2] × kernel[x][y] 

12:                             Gaussian_blur[i,j] = sum 

13: Calculate the sharpened image 

14: for each pixel (i, j) in Image (row × col): 

15:     Compute the weighted combination of original and blurred images: 

16: Sharpened_Image[i, j]  =  (1 +  Weight)  ×  Image[i, j]  − (Weight ×  Gaussian_Blur[i, j]) 

17:     if Sharpened_Image values exceed allowed range:  

18:         Clip values to valid intensity range (e.g., 0 to 255) 

19: return Sharpened_Image 

 

Normalization 

Normalization is a critical step in the image pro-

cessing pipeline that ensures the pixel intensity values 

are scaled to a specified range, enhancing the overall vis-

ual quality of the image. In this method, the normalized 

image is adjusted to fit within the range of 0 to 255, 

which is standard for 8-bit images. In the proposed 

method, normalization is performed to adjust the pixel 

intensity values of the sharpened image. The 

normalization process can be mathematically repre-

sented by the following formula: 

 

𝐼𝑛𝑜𝑟𝑚(𝑥, 𝑦) =
𝐼(𝑥, 𝑦) − 𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛
× (𝑁𝑒𝑤𝑚𝑎𝑥 − 𝑁𝑒𝑤𝑚𝑖𝑛)

+ 𝑁𝑒𝑤𝑚𝑖𝑛 

(3) 

Where 𝐼𝑛𝑜𝑟𝑚(𝑥, 𝑦) is the normalized pixel value at 

position (𝑥, 𝑦), 𝐼(𝑥, 𝑦) is the original pixel value at po-

sition (𝑥, 𝑦) , 𝐼𝑚𝑖𝑛  is the minimum pixel value in the 
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image, 𝐼𝑚𝑎𝑥 is the maximum pixel value in the image, 

𝑁𝑒𝑤𝑚𝑎𝑥 and 𝑁𝑒𝑤𝑚𝑖𝑛 define the desired output range, 

typically 0 and 255 for 8-bit images.  

Normalization in the proposed approach enhances 

contrast, improves feature visibility, and optimizes pixel 

value utilization, benefiting low-contrast images. It also 

standardizes images for consistency, facilitating effec-

tive processing and analysis. This step is crucial for im-

proving classification performance. The normalization 

process, detailed in Algorithm 7, scales pixel values to a 

specified range, ensuring uniform intensity levels and 

better visual quality. 

 

Algorithm 7 Normalization 

1: Input: Image 

2: Output: Normalized_Image 

3: Initialize input image (Image) 

4: Set the target minimum intensity value as New_Min_Value 

5: Set the target maximum intensity value as New_Max_Value 

6: Apply normalization 

7: Min_Value and Max_Value are the minimum and maximum pixel values in the image, while New_Min_Value and 

New_Max_Value define the target intensity range 

8: for pixel (i,j) in Image: 

9:    Normalize the pixel value to the target range [New_Min_Value, New_Max_Value] using the formula: 

 

Normalized_Image[i, j] =  
(Image[i, j] − Min_Value)

Max_Value −  Min_Value
× (New_Max_Value − New_Min_Value) + New_Min_Value 

 

10: return Normalized_Image 

 

Fine-Tuning Vision Transformer for Medi-
cal Image Classification 

Unlike traditional convolutional neural networks 

(CNNs), which extract features hierarchically, ViT 

treats images as sequences of patches, using self-atten-

tion mechanisms to capture global relationships. This 

approach is particularly effective in medical image clas-

sification, where subtle, dispersed patterns are critical 

for diagnosis. The self-attention mechanism enables ViT 

to focus on important areas, improving performance 

even in complex images with small or varying textures. 

ViTs also offer scalability, efficiently handling 

large datasets and adapting to growing data and compu-

tational resources. Their transfer learning capabilities, 

where models pretrained on large datasets are fine-tuned 

for specific medical tasks, further enhance their effec-

tiveness, even with limited labeled data. Additionally, 

ViTs generate attention maps, improving interpretability 

and supporting clinical decision-making, which builds 

trust among healthcare professionals. 

In ViT, images are divided into n patches, repre-

sented as vectors in the input matrix, which the self-

attention mechanism processes to capture complex rela-

tionships within the visual data. 

 

𝑋 = [𝑥1 , 𝑥2, … , 𝑥𝑛 ] ∈ 𝑅𝑛×𝑑 (4) 

 

where n is the number of patches and d is the dimen-

sion of each patch representation. The model learns 

three separate weight matrices, 𝑊𝑄 , 𝑊𝐾 , and 𝑊𝑉 , to 

generate the query Q, key K, and value V matrices from 

X as follows: 

 
𝑄 = 𝑋𝑊𝑄 , 𝐾 = 𝑋𝑊𝐾, 𝑉 = 𝑋𝑊𝑉 (5) 

 

The attention scores are computed using the dot 

product of the query and key matrices, scaled by the 

square root of the key dimension √𝑑𝑘, followed by ap-

plying the softmax function: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘

)𝑉 (6) 
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The output of this self-attention mechanism com-

bines the value vectors weighted by the attention scores, 

enabling the model to selectively focus on the most rel-

evant parts of the input. This capability enhances the 

ViT's ability to understand and interpret visual infor-

mation effectively, making it a powerful tool for various 

image classification tasks. 

Data-Efficient Image Transformers (DeiT) 

The Data-Efficient Image Transformer (DeiT) is an 

advanced Vision Transformer (ViT) designed to opti-

mize training while minimizing the need for large da-

tasets. Unlike traditional ViTs, which require extensive 

data for effective training, DeiT achieves competitive 

performance with fewer samples, making it ideal for 

scenarios with limited labeled data. 

A key innovation in DeiT is the teacher-student dis-

tillation framework, where the model benefits from the 

guidance of a more powerful model, typically a CNN, 

acting as the teacher. This mechanism improves 

knowledge transfer, allowing DeiT to learn robust fea-

tures and generalize well, even with limited data. This is 

particularly valuable in medical imaging, where labeled 

data is scarce and costly to obtain. 

In medical image classification, DeiT improves 

learning from smaller datasets, optimizing the trans-

former architecture without the need for extensive data. 

This is particularly useful for medical tasks with limited 

labeled data. Fine-tuning a pretrained DeiT model en-

hances efficiency, allowing the model to extract mean-

ingful patterns while maintaining accuracy and reducing 

data requirements. 

DeiT is designed to optimize training with smaller 

datasets, addressing challenges in medical image classi-

fication. It excels with limited data, benefiting from 

knowledge distillation, where a CNN guides the model’s 

learning, improving generalization and performance. 

Additionally, DeiT requires fewer computational re-

sources and less time, making it highly efficient for med-

ical image tasks with scarce labeled data. 

Fig. 1 provides an overview of the proposed Ro-

bustDeiT approach, illustrating each stage, from prepro-

cessing (edge-preserving filtering and Gaussian blur-

ring) to sharpening and normalization. This workflow 

demonstrates how the integrated operations enhance im-

age quality, improving classification accuracy in noisy 

datasets. 

 

 

 

Fig. 1: Pipeline of RobustDeiT 

 

RESULTS 

This study aims to develop a robust classification 

framework for medical images within noisy datasets, en-

hancing diagnostic accuracy and reliability. Using a 

Data-efficient Image Transformer (DeiT) and a multi-

stage preprocessing pipeline, the proposed method 

improves image quality by reducing noise, enhancing 

contrast, and standardizing intensity, thereby facilitating 

accurate feature extraction and classification in chal-

lenging clinical environments. The dataset includes 

breast ultrasound images collected in 2018 from 600 fe-

male patients between the ages of 25 and 75. It consists 

of 780 images with an average resolution of 500 × 500 
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pixels, stored in PNG format. The images are catego-

rized into three classes: 487 labeled as benign, 210 as 

malignant, and 133 as normal (Al-Dhabyani et al., 

2020). 

Gaussian noise is applied to the dataset at standard 

deviations of 15, 25, 35, and 45 to simulate realistic im-

aging conditions. By incorporating Gaussian noise, we 

evaluate the robustness of the proposed classification 

framework under different noise levels, reflecting chal-

lenges faced in practical clinical settings. 

The dataset is split into three parts: a training set, a 

validation set, and a test set. The training set is used to 

train the model, while the validation set is used to tune 

the model's hyperparameters and assess its performance 

during training. Finally, the test set is reserved for eval-

uating the model's performance on unseen data, ensuring 

that the results are reliable and generalizable. 

The output of each stage of the proposed method 

is shown in Fig. 2, illustrating the sequential 

transformations applied to noisy images. The pipeline 

includes edge-preserving filtering, Gaussian blur, me-

dian filtering, CLAHE for contrast enhancement, and 

sharpening. Each stage contributes uniquely to image 

refinement: the initial stages (edge-preserving filter-

ing, Gaussian blur, and median filtering) effectively 

suppress noise while maintaining essential structural 

details, minimizing the risk of over-smoothing. In 

contrast, the later stages (CLAHE and sharpening) en-

hance contrast and highlight finer details, ensuring 

key features become more prominent. The figure un-

derscores the cumulative benefits of this sequential 

pipeline, revealing how each stage complements the 

others. It also demonstrates the potential drawbacks 

of skipping stages, such as amplified noise or dimin-

ished feature clarity. These results emphasize the ne-

cessity of applying all stages collectively for optimal 

image preparation and improved classification out-

comes. 

 

 

Fig. 2: Progressive Image Refinement through Sequential Processing Stages 

 

To evaluate the classification model's performance, 

we employ four essential metrics: accuracy, precision, 

recall, and F1 score. Their corresponding formulas are 

presented in Equations (7), (8), (9), and (10), respec-

tively. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (7) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (8) 
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𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (9) 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒

= 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(10) 

Where TP (True Positives) represents the number of 

correctly classified positive instances, TN (True Nega-

tives) denotes the correctly classified negative instances, 

FP (False Positives) refers to negative instances mistak-

enly predicted as positive, and FN (False Negatives) cor-

responds to positive instances incorrectly predicted as 

negative. 

 

Table 1: Model Performance Metrics with Gaussian Noise (σ = 15) 

Metric VGGNet GoogLeNet ResNet RobustDeiT 

Accuracy 0.72 0.74 0.79 0.85 

Precision 

Benign 0.69 0.73 0.84 0.88 

Malignant 0.74 0.81 0.72 0.76 

Normal 1.00 0.73 0.78 0.95 

Recall 

Benign 0.92 0.89 0.80 0.86 

Malignant 0.45 0.55 0.84 0.81 

Normal 0.45 0.55 0.70 0.90 

F1-Score 

Benign 0.79 0.80 0.82 0.87 

Malignant 0.56 0.65 0.78 0.78 

Normal 0.62 0.63 0.74 0.92 

 

 

Table 2: Improvement of RobustDeiT against Baseline Architectures (σ = 15) 

Metric VGGNet (%) GoogLeNet (%) ResNet (%) 

Accuracy 18.06 14.86 7.59 

Precision 

Benign 27.54 20.55 4.76 

Malignant 2.70 -6.17 5.56 

Normal -5.00 30.14 21.79 

Recall 

Benign -6.52 -3.37 7.50 

Malignant 80.00 47.27 -3.57 

Normal 100.00 63.64 28.57 

F1-Score 

Benign 10.13 8.75 6.10 

Malignant 39.29 20.00 0.00 

Normal 48.39 46.03 24.32 

 

 

Table 3: Model Performance Metrics with Gaussian Noise (σ = 25) 

Metric VGGNet GoogLeNet ResNet RobustDeiT 

Accuracy 0.79 0.72 0.78 0.86 

Precision 

Benign 0.76 0.72 0.78 0.86 

Malignant 0.89 0.69 0.86 0.86 

Normal 0.78 0.77 0.70 0.89 

Recall 

Benign 0.92 0.85 0.89 0.91 

Malignant 0.55 0.58 0.58 0.77 

Normal 0.70 0.50 0.70 0.85 

F1-Score 

Benign 0.84 0.78 0.83 0.88 

Malignant 0.68 0.63 0.69 0.81 

Normal 0.74 0.61 0.70 0.87 
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Table 4: Improvement of RobustDeiT against Baseline Architectures (σ = 25) 

Metric VGGNet (%) GoogLeNet (%) ResNet (%) 

Accuracy 8.86 19.44 10.26 

Precision 

Benign 13.16 19.44 10.26 

Malignant -3.37 24.64 0.00 

Normal 14.10 15.58 27.14 

Recall 

Benign -1.09 7.06 2.25 

Malignant 40.00 32.76 32.76 

Normal 21.43 70.00 21.43 

F1-Score 

Benign 4.76 12.82 6.02 

Malignant 19.12 28.57 17.39 

Normal 17.57 42.62 24.29 

 

Table 5: Model Performance Metrics with Gaussian Noise (σ = 35) 

Metric VGGNet GoogLeNet ResNet RobustDeiT 

Accuracy 0.68 0.73 0.77 0.83 

Precision 

Benign 0.72 0.72 0.80 0.84 

Malignant 0.56 0.88 0.85 0.77 

Normal 0.65 0.60 0.63 0.89 

Recall 

Benign 0.76 0.88 0.85 0.86 

Malignant 0.45 0.48 0.55 0.74 

Normal 0.75 0.60 0.85 0.85 

F1-Score 

Benign 0.74 0.79 0.82 0.85 

Malignant 0.50 0.62 0.67 0.75 

Normal 0.70 0.60 0.72 0.87 

 

Table 6: Improvement of RobustDeiT against Baseline Architectures (σ = 35) 

Metric VGGNet (%) GoogLeNet (%) ResNet (%) 

Accuracy 22.06 13.70 7.79 

Precision 

Benign 16.67 16.67 5.00 

Malignant 37.50 -12.50 -9.41 

Normal 36.92 48.33 41.27 

Recall 

Benign 13.16 -2.27 1.18 

Malignant 64.44 54.17 34.55 

Normal 13.33 41.67 0.00 

F1-Score 

Benign 14.86 7.59 3.66 

Malignant 50.00 20.97 11.94 

Normal 24.29 45.00 20.83 

 

Table 7: Model Performance Metrics with Gaussian Noise (σ = 45) 

Metric VGGNet GoogLeNet ResNet RobustDeiT 

Accuracy 0.66 0.68 0.73 0.80 

Precision 

Benign 0.68 0.70 0.75 0.83 

Malignant 0.62 0.71 0.79 0.83 

Normal 0.60 0.53 0.60 0.72 

Recall 

Benign 0.83 0.83 0.83 0.86 

Malignant 0.52 0.48 0.48 0.61 

Normal 0.30 0.45 0.75 0.90 

F1-Score 

Benign 0.75 0.76 0.79 0.84 

Malignant 0.56 0.58 0.60 0.70 

Normal 0.40 0.49 0.67 0.80 
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Table 8: Improvement of RobustDeiT against Baseline Architectures (σ = 45) 

Metric VGGNet (%) GoogLeNet (%) ResNet (%) 

Accuracy 21.21 17.65 9.59 

Precision 

Benign 22.06 18.57 10.67 

Malignant 33.87 16.90 5.06 

Normal 20.00 35.85 20.00 

Recall 

Benign 3.61 3.61 3.61 

Malignant 17.31 27.08 27.08 

Normal 200.00 100.00 20.00 

F1-Score 

Benign 12.00 10.53 6.33 

Malignant 25.00 20.69 16.67 

Normal 100.00 63.27 19.40 

 

The proposed RobustDeiT model demonstrated 

strong performance across all noise levels, achieving the 

highest accuracy compared to the other models. At σ = 

15, RobustDeiT achieved an accuracy of 0.85, and while 

the accuracy slightly decreased with higher noise levels, 

it maintained a high accuracy of 0.80 at σ = 45. In com-

parison, other models showed greater drops in perfor-

mance. This consistent accuracy across varying noise 

levels demonstrates RobustDeiT's ability to classify data 

correctly even under noisy conditions, making it more 

reliable than the other models. 

In terms of precision, the proposed RobustDeiT 

model consistently outperformed the other models 

across all classes and noise levels. At a noise level of σ 

= 15, RobustDeiT achieved a high precision of 0.88 for 

the Benign class, 0.76 for the Malignant class, and 0.95 

for the Normal class. As noise levels increased, Ro-

bustDeiT maintained strong precision values, with only 

a slight decrease observed at higher noise levels, achiev-

ing 0.83, 0.83, and 0.72 for the Benign, Malignant, and 

Normal classes, respectively, at σ = 45. The precision 

results further emphasize RobustDeiT's effectiveness in 

minimizing false positives, ensuring that its predictions 

are consistently accurate for the target classes even in 

the presence of noise.  

Regarding recall, the proposed RobustDeiT model 

demonstrated resilience across increasing noise levels, 

maintaining relatively high recall values for all classes. 

At a noise level of σ = 15, RobustDeiT achieved recall 

rates of 0.86 for the Benign class, 0.81 for the Malignant 

class, and 0.90 for the Normal class, outperforming the 

other models. Even as the noise increased to σ = 45, Ro-

bustDeiT sustained competitive recall scores, reaching 

0.86 for Benign, 0.61 for Malignant, and 0.90 for Nor-

mal, highlighting its robustness in capturing relevant 

patterns in the presence of noise. This consistent recall 

performance indicates that RobustDeiT effectively min-

imizes missed detections compared to other models un-

der varied noise conditions.  

Regarding the F1-score, the proposed RobustDeiT 

model exhibited strong and consistent performance 

across varying noise levels. At a noise level of σ = 15, 

RobustDeiT achieved F1-scores of 0.87 for Benign, 0.78 

for Malignant, and 0.92 for Normal, outperforming all 

other models. As noise increased to σ = 45, RobustDeiT 

maintained competitive F1-scores, with values of 0.85 

for Benign, 0.70 for Malignant, and 0.80 for Normal. 

These results demonstrate RobustDeiT’s ability to bal-

ance precision and recall effectively, minimizing both 

false positives and false negatives. Even under more 

challenging noise conditions, RobustDeiT continued to 

deliver reliable, high-quality predictions across all clas-

ses, confirming its robustness and effectiveness in han-

dling noisy data. 

While some specific metrics display negative im-

provements for the proposed RobustDeiT model com-

pared to baseline architectures, these are limited to cer-

tain instances and are outweighed by notable gains 

across other metrics. For example, while precision may 

have declined slightly for certain classes, such as malig-

nant, the model achieves compensating gains in preci-

sion for benign and normal cases, alongside substantial 

improvements in recall and F1-score, as seen in Tables 

2, 4, 6, and 8. These gains collectively result in higher 

overall accuracy and robustness, even under increased 

Gaussian noise levels. 

The performance metrics across different noise lev-

els, previously summarized in tables, are also depicted 

in Fig. 3 using line plots. These plots provide a clear vis-

ual comparison of the models’ performance trends, in-

cluding accuracy, precision, recall, and F1-score for 

each class, as the noise level increases. The vertical axis 

represents the metrics, while the horizontal axis indi-

cates the noise levels. By illustrating the results in this 

format, Fig. 3 facilitates a more intuitive understanding 

of how each model responds to varying levels of noise, 

highlighting RobustDeiT's overall superior performance 

across metrics and noise levels compared to the other 
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models. This visualization emphasizes the robustness 

and reliability of the proposed approach under noisy 

conditions.  

Moreover, the incremental improvements at higher 

noise levels illustrate the proposed model’s resilience 

against noise, achieving consistently higher accuracy 

than baseline models. The overall advantage across key 

metrics, including accuracy, precision, recall, and F1-

score, indicates that the proposed RobustDeiT model of-

fers a balanced improvement, excelling in noisy condi-

tions where traditional architectures like VGGNet, 

GoogLeNet, and ResNet exhibit performance drops. 

This overall performance confirms that the proposed 

model is not only competitive but also robust across a 

range of challenging conditions, thereby underscoring 

its potential effectiveness for practical applications in 

noisy environments. 

 

 

 

Fig. 3: Models' Performance across Noise Levels 
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DISCUSSION 

While the current study evaluates RobustDeiT ex-

clusively on breast ultrasound images, the design of the 

proposed method does not rely on any specific imaging 

modality or organ characteristics. By focusing on noise 

reduction and feature enhancement at a more general im-

age-processing level, RobustDeiT is inherently applica-

ble across various medical imaging techniques, includ-

ing CT, MRI, and others. 

Different modalities introduce distinct noise pat-

terns and artifacts, for example, speckle noise in ultra-

sound versus motion artifacts in MRI. Similarly, ana-

tomical differences between organs and disease-specific 

features may pose unique challenges. Our approach aims 

to be robust against such variations by enhancing image 

quality and extracting meaningful patterns. 

False negative predictions, where a disease is pre-

sent but not detected by the model, pose a critical risk in 

medical diagnosis. In the context of ultrasound and other 

imaging modalities, low contrast, poor image quality, or 

subtle lesions can contribute to missed detections. Ro-

bustDeiT aims to reduce false negatives by enhancing 

image clarity and emphasizing relevant features, even in 

noisy conditions. However, no model can entirely elim-

inate such errors, particularly in cases with atypical 

presentation or borderline visual cues. Future evaluation 

on more diverse and clinically challenging datasets will 

be essential to assess and further minimize false negative 

risks in real-world applications. 

 

CONCLUSION 

In this study, we have developed novel classifica-

tion architecture for medical images, utilizing the Data-

efficient Image Transformer (DeiT) to handle noisy da-

tasets effectively. Our approach integrates a comprehen-

sive preprocessing pipeline that includes advanced de-

noising techniques, color correction, sharpening, and 

normalization. The combination of edge-preserving fil-

ters, Gaussian blur, and median filtering significantly 

improves image quality by reducing noise while main-

taining essential details. Contrast Limited Adaptive His-

togram Equalization (CLAHE) enhances visual clarity 

and feature extraction, while the unsharp mask tech-

nique sharpens edges to make features more discernible. 

Normalization ensures consistent brightness and con-

trast across the dataset, further enhancing classification 

reliability. The integration of these preprocessing tech-

niques with the DeiT model has demonstrated signifi-

cant improvements in handling noisy medical images, 

leading to more accurate and reliable classification out-

comes. Our findings underscore the effectiveness of this 

approach in advancing medical image analysis, provid-

ing a robust solution for challenging, noisy environ-

ments. Future work could explore additional optimiza-

tions and adaptations of this framework to further en-

hance performance and applicability in diverse medical 

imaging contexts.  
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