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ABSTRACT

Immunohistochemistry (IHC) is essential in diagnostic pathology but is often constrained by cost, time, and
limited tissue availability. Virtual IHC staining, which predicts IHC stains from standard hematoxylin and
eosin (H&E) images, presents a promising alternative. This study introduces a novel Conditional Generative
Adversarial Network (cGAN) architecture based on a U-Net with depthwise separable convolutions to enhance
the accuracy and efficiency of virtual IHC staining. This architectural refinement improves computational
efficiency while preserving high image quality. We trained and evaluated our model using the BCI and MIST
datasets and compared its performance against established image-to-image translation techniques, including
Pix2Pix, CycleGAN, and a U-Net variant with standard convolutions. Performance was assessed using
quantitative metrics such as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM),
Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Fréchet Inception Distance (FID). The
results showed that our model outperformed these benchmarks, achieving higher PSNR and SSIM scores,
lower MAE and RMSE values, and a significantly reduced FID, indicating superior image quality and closer
resemblance to ground-truth IHC images. Furthermore, the integration of depthwise separable convolutions
led to a notable decrease in inference time and model size, improving its feasibility for clinical applications.
These findings highlight the potential of our method as a significant advancement in virtual IHC staining,

offering improved accuracy, efficiency, and suitability for broader clinical use.
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INTRODUCTION

Breast cancer continues to be one of the most
formidable global health challenges of our time,
with epidemiological data from the Global Cancer
Observatory (GLOBOCAN) revealing approximately
2.3 million new cases diagnosed in 2020 alone,
accounting for almost 25% of all cancer diagnoses
among women worldwide (Sung et al, 2021).
The disease demonstrates remarkable molecular and
clinical heterogeneity, encompassing multiple distinct
subtypes that vary significantly in their biological
behavior, treatment responsiveness, and long-term
outcomes. This biological diversity has made the
accurate assessment of predictive and prognostic
biomarkers an indispensable component of modern
breast cancer management. Current international
guidelines, including those from the American
Society of Clinical Oncology (ASCO) and the
College of American Pathologists (CAP), mandate
routine immunohistochemical (IHC) evaluation of
three critical biomarkers: estrogen receptor (ER),
progesterone receptor (PR), and human epidermal
growth factor receptor 2 (HER?2) status (Allison et al.,
2020; Wolff et al., 2018). These molecular markers not

159

only define clinically relevant subtypes but also serve
as crucial therapeutic targets, with ER/PR-positive
tumors typically demonstrating responsiveness to
endocrine therapies such as selective estrogen receptor
modulators (e.g., tamoxifen) or aromatase inhibitors
(e.g., letrozole), while HER2-positive cancers derive
substantial benefit from targeted therapies like
trastuzumab and pertuzumab (Group et al, 2015;
Slamon et al., 2001).

The conventional THC workflow represents a
complex, multi-step process that begins with tissue
fixation and extends through sectioning, antigen
retrieval, primary antibody incubation, secondary
antibody application, chromogenic development, and
final interpretation by a qualified pathologist (Taylor
and Levenson, 2006). Each of these steps requires
specialized laboratory infrastructure, expensive
reagents, and highly trained technical personnel, often
resulting in diagnostic delays ranging from several
days to weeks in routine clinical practice (Howat
et al., 2014). Moreover, the process is vulnerable to
numerous pre-analytical variables including tissue
fixation time (with both under-fixation and over-
fixation posing problems), processing methods,



storage conditions, and antibody lot variability, all
of which can significantly impact staining quality
and subsequent interpretation (Goldstein et al., 2003;
Engel and Moore, 2011). These technical challenges
are particularly acute in low- and middle-income
countries where access to consistent, high-quality
IHC testing remains constrained by infrastructure
limitations, reagent costs, and workforce shortages
(Orlandini et al., 2021). The development of robust
alternative methods capable of accurately predicting
biomarker status while reducing reliance on traditional
IHC could therefore have transformative clinical
impact, potentially improving diagnostic turnaround
times, reducing costs, and making precision oncology
more accessible in resource-limited settings.

Hematoxylin and eosin (H&E) staining represents
the most fundamental and universally available
technique in diagnostic pathology, having served as
the cornerstone of histopathological diagnosis for
over a century since its introduction in the late 1800s
(Fischer et al., 2008). This remarkably durable staining
method provides comprehensive morphological
information through differential coloration of nuclear
(hematoxylin) and cytoplasmic (eosin) components,
enabling pathologists to evaluate tissue architecture,
cellular morphology, and pathological changes with
exceptional clarity (Bancroft and Gamble, 2008).
The universal adoption of H&E staining across
pathology laboratories worldwide, combined with
its standardized protocols, relatively low cost,
and routine availability in both prospective and
archival specimens, makes it an ideal substrate for
computational analysis (Gurcan et al., 2009). Recent
revolutionary advances in artificial intelligence,
particularly in deep learning and computer vision,
have demonstrated that convolutional neural networks
can extract latent information from H&E images
that extends far beyond human visual perception,
enabling remarkably accurate prediction of molecular
features, tumor grade, metastatic potential, and clinical
outcomes. These developments have given rise to the
rapidly evolving field of computational pathology,
which seeks to augment and potentially transform
traditional diagnostic paradigms through quantitative,
data-driven image analysis.

The emergence of generative artificial intelligence,
particularly generative adversarial networks (GANs)
and more recently diffusion models, has opened
unprecedented new possibilities in computational
pathology (Goodfellow et al., 2020). These
sophisticated deep learning architectures can
learn complex, nonlinear mappings between H&E
morphological patterns and corresponding protein
expression profiles traditionally detected by IHC
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through their unique ability to model high-dimensional
data distributions (Rivenson et al., 2019). Several
pioneering studies have convincingly demonstrated the
feasibility of virtual IHC (vIHC), in which remarkably
fidelity synthetic IHC images can be generated
directly from H&E-stained tissue sections without
the need for physical staining procedures (BenTaieb
and Hamarneh, 2017). This innovative approach
could potentially eliminate the requirement for
additional tissue sections and physical IHC staining,
simultaneously reducing costs, shortening diagnostic
turnaround times, and enabling biomarker assessment
in cases where tissue quantity is limited. Recent
work has shown particular promise in predicting
ER status from H&E images, with some advanced
models achieving area under the curve (AUC) scores
exceeding 0.90 in independent validation cohorts,
approaching the performance of actual IHC testing
in some scenarios (Wilm et al., 2022).

Despite  these  remarkable  technological
advancements, significant challenges must be
rigorously addressed before virtual THC can be
implemented in routine clinical practice. The
generalizability of the model across different
institutions with varying staining protocols, scanner
systems, and tissue processing methods remains
a critical concern, as demonstrated by studies
showing performance degradation when models
trained on the data of one institution are applied
to that of another (Holzinger et al., 2019). The
interpretability of predictions and identification of
specific morphological features driving biomarker
classification are essential both for gaining pathologist
acceptance and for meeting increasingly stringent
regulatory requirements for explainable Al in medical
applications. Furthermore, comprehensive clinical
validation studies involving large, multi-institutional
cohorts with diverse patient populations will be
required to demonstrate sufficient robustness and
reliability to meet regulatory standards for diagnostic
use. Addressing these challenges systematically
will be crucial for translating computational
pathology advancements into tangible clinical benefits
and ensuring equitable global access to these
transformative technologies.

In this study, we present a comprehensive deep
learning framework for predicting breast cancer
biomarker status directly from routine H&E-stained
whole slide images. Our approach leverages state-
of-the-art conditional generative adversarial networks
(cGANs) with depthwise separable convolutions to
enhance to produce high-quality virtual IHC images
while maintaining robust performance across diverse
datasets. Specifically, we propose to predict virtual
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IHC staining in breast cancer using two publicly
available datasets that focusing on predicting ER,
PR, HER?2, and Ki67 from H&E-stained images. We
performed extensive experiments

RELATED WORK

Various unsupervised techniques have
been developed for generating high-resolution
histopathology images. For instance, Hou et al. (Hou
et al., 2019) proposed an unsupervised segmentation
approach for histopathology images, where they
synthesized diverse training patches to represent
different tissue types. A key aspect of this method
is a re-weighting strategy applied to the training loss,
which reduces the bias in generalization across the
true data distribution. This innovation allowed for
the use of a random polygon generator to create
synthetic cellular structures, such as nuclear masks,
in cases where real data was insufficient for specific
tissue types, a scenario where GAN-based methods
are often limited. Furthermore, the authors introduced
a hybrid synthesis pipeline that merges textures from
actual histopathology patches with those generated
by GAN models, addressing the challenges of tissue
texture variability. This strategy significantly improved
generalization, particularly for cancer types with
limited available training data. In the recent study,
DoanNgan et al., (DoanNgan et al., 2022) proposed
a deep learning-based virtual HER2 IHC staining
method utilizing a GAN to convert autofluorescence
images of breast tissue into bright-field equivalent
images, effectively replicating standard chemical
staining. This approach eliminates the need for labor-
intensive and costly histotechnological processing,
significantly reducing analysis time. Validation by
board-certified pathologists demonstrated that the
virtual staining method achieves accuracy comparable
to conventional immunohistochemical staining.

Peng et al. (Peng et al., 2024) introduced a GAN-
based virtual staining approach that integrates domain-
specific knowledge of HER2 scoring, focusing on
nuclei distribution and membrane staining intensity.
Their method incorporates a nuclei density estimator
to enhance cell alignment between real and generated
images and a dedicated branch to improve membrane
staining consistency. Using the RegH2I dataset,
which includes 2,592 paired H&E-IHC images,
they demonstrated the model’s effectiveness through
extensive experiments on internal and external
datasets. This approach addresses limitations in prior
virtual staining methods, improving HER2 scoring
accuracy and facilitating downstream analysis. Qu et

161

al. (Qu et al., 2024) proposed a deep learning-based
approach for synthesizing IHC-HER2 slides from
H&E-stained tissue sections, addressing challenges
in multi-magnification pathology image processing.
Their model integrates attention mechanisms and
a multi-magnification processing strategy to extract
and utilize critical information effectively, enhancing
image translation quality. The attention module
further prioritizes essential features while reducing
irrelevant details, improving HER2 biomarker
visualization. Rigorous evaluation on a publicly
available breast cancer dataset demonstrated superior
performance over existing methods, establishing this
model as a state-of-the-art solution for virtual IHC
staining. Liu et al. (Liu er al., 2020) developed a
deep convolutional network model to predict Ki-
67 expression directly from H&E-stained slides,
demonstrating that molecular-level differences are
encoded in tissue morphology. Using a dataset of
Ki-67 positive, negative, and background cell images
extracted from H&E whole slide images (WSIs), the
model was trained and evaluated on both classification
and quantification performance. The model achieved a
precision of 0.9371 in distinguishing Ki-67 positive
and negative cells, with a correlation coefficient
of 0.80 between predicted Ki-67 quantification and
IHC-derived measurements. This study highlights the
potential of deep learning to bridge morphological and
molecular information in histopathology.

In (Stepec and Skolaj, 2020), the authors
explored and evaluated advanced high-resolution
generative models originally designed for face
synthesis, demonstrating their effectiveness in the
complex domain of digital pathology. Their findings
revealed significant improvements in image synthesis,
with enhanced quality and resolution of generated
images, outpacing traditional approaches compared
to supervised models. In a related study, Ma
et al. (Ma et al, 2022) proposed using high-
resolution RGB images as a guide for super-
resolution reconstruction of hyperspectral images.
They developed a simple, yet efficient, unsupervised
network that combines spatial information from high-
resolution RGB images with spectral data from
low-resolution hyperspectral images. This technique
not only reduces the acquisition time and storage
requirements for hyperspectral images but also
addresses issues with low-quality spectral bands,
enabling the use of hyperspectral imaging in WSI and
automated histopathological cancer detection.

In the study presented by (Rizvi et al., 2022), the
Histopathology DatasetGAN (HDGAN) framework
was introduced as an extension of the semi-supervised
DatasetGAN approach, specifically designed for



image generation and segmentation of large-resolution
histopathology images. Key modifications were made
to the original framework, including enhancements to
the generative backbone, selective extraction of latent
features from the generator, and a shift to memory-
mapped arrays. These changes resulted in significant
reductions in memory usage, making the framework
more efficient and suitable for medical imaging
applications. HDGAN’s performance was evaluated
using a high-resolution thrombotic microangiopathy
tile dataset, demonstrating its strong capabilities
in generating image annotations. Similarly, in (Li
et al., 2022), Li et al. introduced a multi-scale
GAN for generating and segmenting large-scale, high-
resolution histopathology images. This model employs
a pyramid of GAN architectures, each focused on
generating and segmenting images at different scales.
Using semantic masks, the generative model excelled
in synthesizing visually realistic histopathological
images. More recently, a coarse-to-fine sampling
strategy was proposed in (Harb et al., 2024) to
address the challenge of generating high-resolution
whole-slide images (WSIs). This method involves
starting with a low-resolution image and progressively
increasing its resolution, incorporating finer details at
each step using a diffusion model to refine the image
quality.

Although several deep learning methods for
generating IHC images have been proposed, their
effectiveness is limited by complex tissue architecture,
variability in cellular morphology, potential for
nonspecific staining, and differences in antibody
reactivity. To overcome these challenges, we propose
the novel cGAN model, which integrates generative
adversarial networks with depthwise convolution
techniques to enhance the generation of high-quality
IHC images.

PROPOSED METHOD

In this study, we employed a ¢cGAN to predict
IHC staining images from H&E stained tissue images.
The architecture of the cGAN is composed of two
main components: the generator network (G) and the
discriminator network (D). The generator is designed
with an encoder-decoder architecture, consisting of
seven encoding layers and seven decoding layers, as
illustrated in Fig. 1-up. A key feature of this design
is the use of depthwise separable convolutions in the
encoder components, which substantially improve the
model’s computational efficiency and effectiveness.

In the encoder network, each layer is constructed
using depthwise separable convolutions, which are
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followed by batch normalization and a leaky ReLU
activation function with a slope of 0.2. Depthwise
separable convolutions break down the traditional
convolution operation into two distinct steps: the
depthwise convolution and the pointwise convolution
(1 x 1). In the depthwise convolution, a separate filter
is applied to each input channel independently. This
operation captures the spatial features of each channel
individually, making it more computationally efficient.
Afterward, a pointwise convolution (1 x 1 kernel) is
applied across all the channels, combining the outputs
from the depthwise convolution. This step enables the
model to capture inter-channel relationships, learning
how different feature maps interact.

The use of depthwise separable convolutions
provides significant advantages, particularly in terms
of computational efficiency and reduced model
size. By decomposing the standard convolution into
two simpler operations, the number of parameters
and computations is drastically reduced compared
to traditional convolutional layers, especially when
working with a large number of input channels. This
reduction leads to faster training and inference times,
as well as lower memory requirements. These factors
make the model more suitable for deployment on
resource-constrained devices, such as edge devices or
systems with limited processing power and memory.

In this architecture, the first and last encoding
layers (En; and En;) do not incorporate batch
normalization. This design choice differentiates them
from the other encoding layers, which helps prevent
overfitting and allows the model to generalize better.
The decoding layers mirror the structure of the
encoder but employ transposed depthwise separable
convolutions to upsample the feature maps generated
during encoding. The decoding layers are followed
by batch normalization, dropout (applied only in the
first three decoding layers, Dn|, Dn;, and Dn3), and
ReLU activation functions to further refine the image
generation process.

The final decoding layer (Dn7) does not include a
skip connection, which is commonly used in encoder-
decoder architectures to maintain high-resolution
features across layers. Instead, this design choice aims
to focus on producing the final output of the network
without overly relying on previous layer features,
which could lead to unnecessary complexity. The
depthwise separable convolution layers in the encoder
reduce the activation map size by a factor of 2, while
the transposed depthwise separable convolutions in
the decoder increase the map size by a factor of 2,
effectively preserving spatial dimensions during the
encoding and decoding processes.
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Fig. 1. lllustration of the proposed model.

Finally, the network employs a TanH activation
function in the last layer to generate the predicted
IHC images from the input H&E images. The TanH
function is suitable for this task as it maps the output
values to a continuous range between -1 and 1, which
matches the expected range of pixel values in the
generated IHC images. The overall design of this
network allows for the efficient transformation of H&E
images into high-quality virtual IHC images, offering
a promising solution for automating the process of
IHC staining while reducing the computational load
and memory requirements compared to traditional
methods.

The discriminator network (D), shown in Fig. 1-
down, also benefits from the computational efficiency
offered by depthwise separable convolutions,
consisting of five such layers. These layers follow
a structure similar to the encoding layers of the
generator network. Specifically, each layer comprises
a depthwise convolution followed by a pointwise
convolution, batch normalization (applied after the
second, third, and fourth convolutional layers, Cn,,
Cns, and Cny), and a leaky ReLLU activation function
with a slope of 0.2. However, the final layer in the
discriminator is an exception, as it uses a sigmoid
activation function instead of the leaky ReLU,
transforming the output to a probability value between
0 and 1. The output of the discriminator is a 30 x 30
matrix, with each element representing the probability
that a corresponding 70 x 70 patch from the input
image is a genuine IHC image. This matrix indicates
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whether a given patch is classified as real (from the
actual IHC images) or fake (generated by the model).
The decision made by the discriminator about the
authenticity of each patch is a critical step in the
adversarial training process, guiding the generator to
improve its ability to produce realistic IHC images.

The generator loss function ({g,.,) incorporates
three key components: adversarial loss, L1 loss, and
Structural Similarity Index Measure (SSIM) loss, each
contributing to different aspects of image quality and
realism in the generated outputs.

eGen(GvD) = Ex,y,z [_ IOgD(xv G(x7 Z))]
+ A By (001 (v, G(x,2))]

+o Ex,y,z [ESSIM (ya G(X, Z) )]

ey

Where x denote the input H&E image, y represent
the corresponding ground truth THC image, and z
be the random noise input fed into the generator.
The generator produces an IHC image G(x,z) based
on these inputs, while D(x,G(x,z)) indicates the
discriminator’s probability that the generated image is
real. The loss function is weighted by A and o, which
control the relative importance of the L1 loss and the
SSIM loss, respectively. The L1 loss term minimizes
the pixel-wise differences between the generated and
ground truth IHC images, promoting overall image
similarity. The adversarial loss drives the generator
to create images with realistic high-frequency details



that can deceive the discriminator. Meanwhile, SSIM
loss focuses on enhancing the structural similarity
and boundary sharpness of the generated images,
capturing perceptual qualities that go beyond pixel-
wise accuracy. In this study, the values of A and a were
set at 100 and 75, respectively, ensuring a balanced
contribution of each loss component in optimizing the
generator.

The discriminator loss function (¢p;s.) is defined
as:

EDisc(GyD) = IE:x,y [ - lOgD(X,y)]

+E.y [ —log(l —D(x,G(x,2)))] @

where D(x,y) represents the discriminator’s
probability that the real IHC image is real. The loss
function trains the discriminator to correctly tell apart
real IHC images from generated ones. By minimizing
—log(D(x,y)), the discriminator learns to recognize
real JHC images. At the same time, by minimizing
—log(1 — D(x,G(x,z))), the discriminator learns to
identify the generated images as fake. This back-and-
forth training process helps the generator create more
realistic IHC images over time.

EXPERIMENTAL RESULTS AND
DISCUSSION

DATASET

In this study, we made use of two publicly available
datasets to evaluate the proposed model. The first
dataset, BCI (Liu et al., 2022a) consists of 4,872 pairs
of aligned H&E and IHC pathology image patches,
specifically for the HER2 biomarker. The IHC images
for 977 test samples are not available as they were
not released by the challenge organizers. These image
patches were sourced from the WSIs of more than 300
patients, as described in (Liu et al., 2022a). To ensure
a well-rounded evaluation, this dataset was randomly
partitioned into three subsets: 3,396 pairs for training,
200 pairs for validation, and 300 pairs for testing.

This division allowed us to train and assess
the model’s performance on distinct sets of images.
The second dataset used in this study is the MIST
dataset (Li et al., 2023), which includes image
patches corresponding to four different breast cancer
biomarkers: estrogen receptor (ER), progesterone
receptor (PR), Ki67, and HER2. This dataset contains
a total of 4,153, 4,139, 4,361, and 4,642 training
patches for each respective biomarker, along with
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1,000 testing patches derived from 64 WSIs. All the
image patches in this dataset are non-overlapping
and have a fixed size of 1024 x 1024 pixels. In
the case of this dataset, the model was trained and
evaluated separately for each biomarker, allowing
for a focused analysis of its performance across
different types of cancer biomarkers. Fig. 2 provides
six example images from both datasets, showcasing
H&E stained images alongside their corresponding
IHC stained patches. This comparison helps visualize
the differences between the two types of staining and
provides a clear context for understanding the model’s
performance in generating IHC-like images from H&E
stained slides.

IMPLEMENTATION DETAILS

In our proposed model, the input images were
first resized to a standard size of 512 x 512 pixels
to ensure consistency and facilitate processing. After
resizing, the pixel values of the images, originally in
the range of 0-255, were normalized to a scale of 0-
1. This normalization process ensures that the model
can learn the features of the images more effectively
by working with values that are easier to handle and
more consistent across different inputs. We chose the
ADAM optimizer for training, starting with an initial
learning rate of 0.0001. ADAM optimizer was selected
due to its efficiency and ability to adapt the learning
rate during training, which is particularly useful for
optimizing complex models. The model was trained
from scratch over the course of 500 epochs, with
a batch size of 2 images per iteration. This choice
of batch size allows for more frequent updates to
the model’s weights and helps with the convergence
process, while also being computationally feasible
given the available resources. The proposed model
took seven hours to train and has nine million trainable
parameters.

To enhance the training process and prevent
overfitting, data augmentation techniques were applied
to artificially increase the size of the training dataset.
These techniques included 90-degree rotations,
horizontal flipping, and random scaling of the
images with a probability of 0.5. By introducing
such transformations, the model was exposed to a
wider variety of image features, which improved
its ability to generalize to unseen data and made it
more robust in recognizing patterns across different
image variations. For performance evaluation, we
utilized three widely-recognized metrics in image
generation tasks: Peak Signal-to-Noise Ratio (PSNR)
in dB, Structural Similarity Index (SSIM), and Fréchet
Inception Distance (FID). PSNR measures the quality
of the generated images in comparison to the original,
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Fig. 2. lllustration of six example images from the both the datasets (BCI and MIST) showing H&E stained images
alongside their corresponding patches stained with IHC.

SSIM evaluates the structural similarity between the
images, and FID provides a measure of how similar
the generated images are to real images in terms of
feature distribution. These metrics are essential for
quantitatively assessing the performance of image
generation models. The model was implemented using
the PyTorch framework, which provides flexibility and
scalability for deep learning tasks. The training process
was carried out on a system with 32GB of RAM and
CUDA version 11.2 to leverage GPU acceleration.
Specifically, we used an NVIDIA RTX2080Ti GPU
with 11GB of video RAM to handle the computational
demands of training and evaluation, allowing for
efficient processing of the high-resolution images
involved in this task.

RESULTS

The quantitative results of the virtual IHC staining
models are presented in Table 1. We compared the
performance of our proposed cGAN architecture
with depthwise separable convolutions against
several established image-to-image translation models,
including Pix2Pix, Pyramid Pix2Pix, CycleGAN, and
a U-Net variant employing standard convolutions.
Performance was evaluated using a range of metrics,
including PSNR, SSIM, MAE, RMSE, and FID.

As shown in Table 1, the proposed cGAN
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model incorporating depthwise separable convolutions
demonstrated higher performance across most metrics.
To ensure the robustness of the proposed model,
we applied five-fold cross-validation. The model
achieved the highest PSNR (32.27 dB) and SSIM
(0.90), indicating improved pixel-level accuracy
and structural similarity to the ground truth IHC
images. Furthermore, it shows the lowest MAE
(0.04) and RMSE (0.08), confirming reduced pixel-
wise differences and a better fit to the target
distribution. The significantly lower FID score (31.8)
for the proposed model with depthwise separable
convolutions compared to the other models indicates
a closer alignment of the generated IHC image
feature distribution with that of the real IHC images,
suggesting more realistic and visually plausible
outputs.

The use of depthwise separable convolutions not
only improved the quality of the generated images
but also significantly enhanced the model’s efficiency.
The proposed model achieved the fastest inference
time (0.15 s/image) among all tested models. This
demonstrates the computational advantages of this
approach, making it particularly suitable for real-time
applications and deployment in resource-constrained
environments. In contrast, the baseline models,
Pix2Pix and CycleGAN, exhibited lower performance
across all image quality metrics and required more



WU et al.: Generative Model for Virtual IHC in Breast Cancer

Table 1. Quantitative comparison of virtual IHC staining models on BCI dataset.

Model PSNR (dB) SSIM MAE RMSE FID Inference Time (s/image)
Pix2Pix (Baseline) (Henry et al., 2021) 28.50 0.82 0.08 0.12 452 0.25
CycleGAN (Vasiljevié et al., 2022) 27.80 0.80 0.09 0.13 52.1 0.30

U-Net (with Std. Conv.) (Ronneberger et al., 2015) 30.20 0.87 0.06 0.09 38.5 0.20

Pyramid Pix2Pix (Liu et al., 2022b) 30.65 0.86 0.05 0.09 40.11 0.22

Proposed (with Depthwise Sep.) 32.27+£1.05 | 0.90£1.94 | 0.04£0.03 | 0.08£0.06 | 31.8£3.80 0.15+0.08

computational resources, as evidenced by their higher
inference times. The standard convolution-based
U-Net, while performing better than the baseline
models, was still outperformed by its depthwise
separable counterpart in all aspects, highlighting
the effectiveness of this specific architectural
modification. We also evaluated the Pyramid Pix2Pix
model, which showed lower performance 2% less in
PSNR and 4% less in SSIM compared to the proposed
model.

The observed improvements with depthwise
separable convolutions can be attributed to their
efficient feature extraction capabilities. By decoupling
spatial filtering and channel mixing, these convolutions
effectively capture fine-grained textural details
and complex morphological relationships within
the histopathological images while significantly
reducing computational complexity. This efficient
feature extraction facilitates the accurate prediction
of IHC stains from H&E images, leading to
improved performance in terms of image quality and
computational efficiency.

The results demonstrate that the proposed model
offers a compelling approach for virtual IHC staining,
achieving state-of-the-art performance in terms of
both image quality and computational efficiency. This
method has the potential to significantly improve the
accessibility and efficiency of IHC analysis in clinical
settings.

Table 2. Impact of input image size on virtual IHC
staining performance using proposed model on BCI
dataset.

Input Size | PSNR (dB) | SSIM | MAE | RMSE | FID
64 x 64 29.5 0.85 | 0.07 0.10 | 38.2
128 x 128 30.8 0.88 | 0.06 | 0.09 | 345
512 x 512 32.27 090 | 0.04 | 0.08 |31.8
256 x 256 30.9 0.89 | 0.05 0.08 | 33.1

Table 2 presents the impact of input image size
on the performance of our proposed model. We
evaluated the model using input patch sizes of 64 x
64, 128 x 128, 256 x 256, and 512 x 512 pixels. As
observed, increasing the input size generally led to
improvements in image quality metrics. The input
size 512 x 512 achieved the highest PSNR (32.27
dB), SSIM (0.90) and the lowest MAE (0.04), RMSE
(0.08) and FID (31.8). This suggests that using larger
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input patches allows the model to capture more
contextual information, leading to more accurate and
visually appealing IHC stain predictions. However,
this improvement in quality comes at the cost of
increased computational resources. For example, the
256 x 256 input size, while achieving comparable
performance to the 512 x 512 size in terms of image
quality. Therefore, a trade-off between image quality
and computational resources must be considered
when choosing the appropriate input size. In our
experiments, we found that the input size 512 X
512 offers a good balance between performance and
efficiency.

Prediction

ray
TIN £

- . o
o 8

HER2

Fig. 3. lllustration of three high-quality virtually IHC-

stained images generated by the proposed model on
MIST dataset.

Table 3 evaluates the impact of different loss
function combinations on the performance of our
proposed model. We compared models trained with
L1 loss alone, L1 combined with adversarial loss, L1
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Table 3. Impact of different loss functions on virtual IHC staining performance with proposed model using

512 x 512 input on BCI dataset.

Loss Function PSNR (dB) | SSIM | MAE | RMSE | FID | Inference Time (s/image)
L1 Only 29.8 0.86 | 0.065 | 0.095 | 40.1 0.15
L1 + Adversarial 30.5 0.875 | 0.055 | 0.085 | 35.8 0.15
L1+ SSIM 30.2 0.88 | 0.052 | 0.082 | 34.2 0.15
L1 + Adversarial + SSIM (Proposed) 32.27 0.90 | 0.04 0.08 | 31.8 0.15

combined with SSIM loss, and the full combination
of L1, adversarial, and SSIM losses (our proposed
approach). The combination of all three losses yielded
the best results across all metrics. Using only LI
loss resulted in reasonable performance but exhibited
slightly lower PSNR (29.8 dB), SSIM (0.86), and
higher MAE (0.065), RMSE (0.095), and FID (40.1).
Adding the adversarial loss improved the sharpness
and realism of the generated images, leading to better
scores (PSNR: 30.5 dB, SSIM: 0.875, FID: 35.8).
Incorporating the SSIM loss further enhanced the
structural consistency and reduced artifacts, resulting
in further improvements (PSNR: 30.2 dB, SSIM: 0.88,
FID: 34.2). The best performance was achieved when
all three losses were combined (PSNR: 32.27 dB,
SSIM: 0.90, MAE: 0.04, RMSE: 0.08, FID: 31.8),
demonstrating the complementary effects of these
loss terms in guiding the training process towards
generating high-quality and structurally accurate IHC
stains. The inference time remained consistent as the
architecture did not change, only the loss function.

Table 4 presents the performance evaluation of the
proposed model using the MIST dataset, comparing
its results with the method by (Li et al., 2023).
The evaluation is conducted for four biomarkers:
ER, PR, Ki67, and HER2. For each biomarker, three
performance metrics are shown: PSNR , SSIM, and
FID. Our proposed model achieved higher PSNR and
SSIM values are better, as they indicate higher image
quality and structural similarity, respectively. Lower
FID values are desirable, as they suggest that the
generated images are closer to real images. The results
show that the proposed model performs well, with
the highest PSNR and SSIM values observed for the
Ki67 biomarker (PSNR: 25.21 dB, SSIM: 0.259) and
the lowest FID value for HER2 (42.75). Compared
to the method by (Li et al., 2023), the proposed
model achieves similar or better results in terms of
PSNR and SSIM, with a lower FID in most cases.
However, the HER2 biomarker in the proposed model
shows slightly lower PSNR and SSIM values, which
are highlighted in red. Overall, the proposed model
demonstrates competitive performance in generating
IHC images for various biomarkers.

Fig. 4 shows the visual comparison of real
and proposed model generated IHC Staining. This
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provides a qualitative assessment of our proposed
model performance in generating virtual IHC images
from H&E stained tissue. We also compared the
proposed model with state-of-the-art methods,
including Pix2Pix and Pyramid Pix2Pix. Fig. 4
presents a comparison between real IHC-stained
samples (Ground Truth, GT) and the corresponding
virtual IHC images generated by the proposed model
(Prediction). Each row corresponds to a specific IHC
marker—ER, PR, HER?2, and Ki67 that highlighting
the model’s ability to reproduce distinct staining
patterns. Visual inspection reveals strong alignment
between the GT and generated images in terms
of cellular morphology and staining distribution,
indicating the model’s potential to synthesize high-
fidelity virtual IHC directly from H&E-stained images.
This capability could significantly reduce the reliance
on costly and time-intensive IHC procedures.

Fig. also showcases three representative regions
of interest (labeled A through C) from the BCI
dataset, each including the input H&E image, the
corresponding real IHC image, and the predicted IHC
image generated by the model. In examples (B) and
(C), the spatial arrangement and staining intensity of
nuclear features in the predicted images closely match
those in the GT, suggesting that the model effectively
learns the relationship between H&E morphology and
IHC marker expression. However, subtle discrepancies
remain—for instance, example (A) shows reduced
staining intensity in the predicted image compared
to the GT, indicating limitations in capturing the full
range of expression levels.

These findings underscore the proposed model’s
promise in generating realistic virtual IHC images,
while also pointing to areas where further refinement is
needed to enhance predictive accuracy and robustness
across diverse tissue samples. This digital staining
approach holds considerable potential for applications
where traditional IHC is impractical or unavailable.
For comparison, the Pix2Pix model produced IHC
images with evident blurriness and poorly defined
boundaries, diminishing structural clarity. Although
Pyramid Pix2Pix yielded somewhat better results,
it still failed to preserve certain cellular structures
relative to the proposed model. These comparisons
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Table 4. Performance evaluation of the proposed model using the MIST dataset.

) Proposed (Lietal., 2023)
Biomarker
PSNR (dB) 1 | SSIM1 | FID | | PSNR (dB) 1 | SSIM 1 | FID |
ER 22.45 0.243 37.34 | - 0.221 43.7
PR 22.97 0.254 41.25 | - 0.240 44.8
Ki67 25.21 0.259 46.64 | - 0.241 51.0
HER2 21.89 0.226 4275 | - 0.215 45.2
GT Prediction Pix2Pix

Pyramid-Pix2Pix

Fig. 4. lllustration of virtually IHC-stained images generated by the proposed model using the BCI dataset.
Patches A, B, and C show three examples for qualitative comparison with state-of-the-art methods.

highlight the superior ability of our approach to retain
fine morphological details in synthesized IHC images.

In conclusion, the use of depthwise separable
convolutions is particularly well-suited for virtual
staining tasks, given the inherent complexity of
histopathological These images contain
intricate textures and subtle variations in cellular and
tissue architecture. By performing spatial filtering
within individual channels, depthwise convolutions
effectively capture while
pointwise convolutions

images.

fine-grained features,
integrate these channel-
specific representations to model complex inter-
channel relationships. This two-step approach
enhances the network’s ability to extract relevant
morphological features—such as nuclear details,
cytoplasmic patterns, and stromal structures—critical
for accurate IHC prediction from H&E images.
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CONCLUSIONS

This study highlights the promising potential of
utilizing a cGAN combined with a U-Net architecture
and depthwise separable convolutions for virtual
immunohistochemical (IHC) staining. The proposed
model demonstrates exceptional performance, not
only in producing high-quality images but also in
optimizing computational efficiency. By leveraging
these advanced deep learning techniques, our model
provides a powerful tool that can enhance the
accessibility and speed of IHC analysis, reducing
the time, cost, and complexity associated with
traditional IHC staining methods. The ability to
generate high-fidelity virtual IHC images from H&E
stained tissue samples could be transformative,
particularly in settings with limited access to
specialized equipment or resources. Our model’s
state-of-the-art performance, as demonstrated in
the experimental results, suggests that it holds
substantial promise for advancing the field of
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digital pathology and improving diagnostic workflows.
However, while these results are promising, further
research is necessary to fine-tune the model and
ensure its robustness across a wider variety of tissue
types, staining protocols, and clinical conditions.
Additionally, clinical validation through collaboration
with medical professionals is essential to assess the
model’s reliability and its potential impact in real-
world diagnostic settings. In the future, we anticipate
that with the right clinical integration and validation,
this technology could become a valuable asset in
clinical pathology, aiding pathologists in more efficient
and accurate diagnoses. It also opens the door to
further innovations, such as automating the IHC
staining process, enhancing biomarker discovery, and
potentially providing tools for personalized medicine.
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