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ABSTRACT

Accurate diagnosis of vocal fold disorders is difficult because of subtle variations between pathological
conditions. Phonovibrography (PVG), generated from high-speed videoendoscopy (HSV), documents glot-
tal vibration patterns as static images, allowing systemic analysis. In our study, we propose PVGNet, a
hybrid deep learning model combining multiscale feature extraction and channel attention, designed spe-
cifically for PVG-based classification. We benchmark PVGNet against InceptionResNetV2, VGG19,
DenseNet169, and X-ViT across binary, tertiary, and multi-class tasks. PVGNet continuously outperforms
baselines in accuracy, F1-score, and AUC, by minimizing false negatives, which is important for reliable
diagnosis. These results show PVG’s potential as a diagnostic imaging modality and PVGNet’s effective-

ness in automated voice disorder classification.

Keywords: Classification; Deep Learning Models; Functional Voice Disorders; High-speed video endos-

copy; Phonovibrogram; Voice Disorder.

INTRODUCTION

Voice production is the most important tool of hu-
man communication (Kamiloglu and Sauter, 2021), and
any abnormalities in the process can lead to voice disor-
ders (Spina et al., 2009).

Within the larynx, the vocal folds are located which
are the central organs of voice production. They are re-
sponsible for necessary voice functions such as phona-
tion, voice quality, pitch control, volume, loudness, and
verbal expression (Jiang et al., 2000).

Disruptions in the normal movement of the vocal
folds can cause many voice disorders. These are grouped
into organic, functional, structural, neurological and ac-
quired types (Stemple et al., 2020). Accurately identify-
ing these disorders with traditional clinical methods can
be difficult and mistakes in interpretation often delay di-
agnosis.

To make assessment more reliable several imaging
techniques such as laryngoscopy, stroboscopy and high-
speed videoendoscopy (HSV) have been introduced to
let clinicians directly observe how the vocal folds move
(Deliyski and Hillman, 2010). HSV provides very high
temporal resolution and gives a detailed view of vocal-
fold vibrations (Deliyski et al., 2008;

Malinowski et al., 2024). Many image-processing
methods have tried to analyze HSV recordings and
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describe how the vocal folds vibrate. Still, because HSV
produces a huge number of frames each second, review-
ing and diagnosing from these sequences can be de-
manding.

This challenge led to the creation of visualization
methods that summarize vocal-fold vibration into single
images for easier interpretation. These visualization
tools have improved the accuracy of clinical evaluation.
Broadly, they fall into two categories: local and global.

Local approaches such as digital kymography
(DKG), vocal-fold trajectories (VFT), mucosal-wave
kymography (MKG), and optical-flow kymography
(OFKG), track motion along a line that cuts across the
glottis. Global approaches such as the glottal optical-
flow waveform (GOFW), glottal area waveform
(GAW), glottovibrogram (GVG), and phonovibrogram
(PVG), show how the entire glottis behaves through the
vibration cycle (Andrade-Miranda et al., 2020).

PVG provides a 3-D view of vocal-fold motion and
converts dynamic vibrations into static maps that can be
studied both visually and quantitatively.

This method was Introduced by Lohscheller et al.,
in which we can extract and visualize the vocal fold vi-
brations along the entire edge of the glottis. Their work
shows both visual and quantitative analysis in various
conditions like normal phonation, laryngeal nerve paral-
ysis, and functional voice disorders such as vocal



nodules (Bohr ef al., 2013, Doellinger et al., 2007, Kun-
duk et al., 2012, Lohscheller and Eysholdt, 2008, Patidar
etal, 2016).

Recent advances in machine learning have im-
proved more in the clinical of PVG by automated feature
extraction and classification of vocal fold pathologies
(Déllinger et al., 2011, Lohscheller, 2009, Schlegel et
al., 2020, Voigt et al., 2010a, Voigt et al., 2010b). These
computational methods improve diagnostic objectivity,
minimize inter-rater variability, and support early inter-
vention, which are the important factors in improving
clinical outcomes for individuals with voice disorders.
Although many studies have investigated the visual and
quantitative features of PVG, the application of PVG
images for classifying pathologic conditions is still un-
explored.

A machine learning-based study that involved trans-
forming PVG contour lines into numerical feature vec-
tors, which were then analyzed using a Support Vector
Machine (SVM) classifier.

They tested their SVM method on both functional
voice disorders and vocal fold paralysis. They achieved

78.5% accuracy for functional disorders and 93% for pa-
ralysis (Lohscheller, 2009).

Another study used a similar method focusing spe-
cially on vocal fold paralysis. They have shown 93% ac-
curacy for classifying healthy vs. paralysis and 73% for
a 3-class task (healthy, left paresis, right paresis) (Voigt
et al., 2010b).

In another study, they found that features extracted
from PVGs performed better than traditional glottal pa-
rameters, producing an overall classification accuracy of
81% for predicting functional dysphonia (Voigt et al.,
2010a).

These studies shows the potential of PVG-based
features to support the automated diagnosis of voice pa-
thologies, including non-organic disorders such as pare-
sis and muscle tension dysphonia (MTD).

In addition to that, in a study, authors found that
SVM based machine learning classification of PVG-de-
rived vibratory features outperforms acoustic feature
analysis, particularly in identifying subtle phonation-de-
pendent variations (Doéllinger et al., 2011). Based on
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current literature, only one study has utilized deep learn-
ing for the vocal fold disorder classification using PVG.
In that study, authors showed classification accuracies
of 82% using CNN-based LeNet architecture for a bi-
nary classification (physiologic vs. pathologic) and 85%
for a multi-class classification (Healthy, MTD, Paresis,
and Polyp) (Fehling et al., 2020).

In our study we explore novel applications of vari-
ous deep learning architectures to analyze PVG images,
focusing on both binary classification (Healthy and un-
healthy), tertiary classification (Healthy, functional, and
organic), and multi-class classification (Healthy, MTD,
atrophy, nodule, and edema) tasks. An overview of the
proposed workflow is presented in Fig. 1.

MATERIALS AND METHODS

Dataset

This study utilizes the BAGLS (Benchmark for Au-
tomatic Glottis Segmentation) dataset which consists of
640 HSV recordings collected in seven different hospi-
tals. It is a multi-centered dataset, which has a demo-
graphically diversified patient population. Also, with
variations in age, gender, and vocal fold pathology. All
recordings collected by clinical experts, using high-
quality data acquisition and professional validation
(Gomez et al., 2020). The dataset contains both healthy
subjects and patients with various vocal fold disorders
makes it useful for developing and testing classification
models.

PVG Generation

A detailed procedure for the PVG computation is
found in (Doellinger et al., 2007). In this current study,
we used the Glottal analysis tool (GAT) to generate
PVGs.

The glottis was fixed as the region of interest within
the vocal fold (Kist et al.,, 2021). First the glottal con-
tours were extracted from each HSV frame using an
edge segmentation algorithm.

The centerline of the glottis, referred to as the glottal
axis, was then identified.
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Fig. 1: Workflow for phonovibrogram-based vocal fold disorders classification using the BAGLS dataset. The pipeline
includes data preprocessing, PVG generation, classification (binary, tertiary, multiclass), model training, validation
and testing, and evaluation using five different deep learning models and standard performance metrics.

For each frame, the distances from points along the
glottal axis to the corresponding points on the left and
right fold contours were calculated and stored in a col-
umn vector.

The glottal axis was bisected, and the left contour
was rotated 180 degrees around the posterior commis-
sure to align it with the right contour.

Their respective distance vectors were then color-
coded based on their magnitude: red indicates greater
distances, black represents zero distance, and intermedi-
ate values were shown in gradations between red and
black.

If a vocal fold contour crosses the glottal midline, it
is marked in blue. This process was repeated across all
frames, and the resulting vectors were concatenated into
a 2-D matrix and visualized as the PVG, as illustrated in
Fig. 2(a).

Data Preprocessing

Generated PVGs consist of multiple vibratory cy-
cles, with each image having dimensions of 3000x720
pixels (length x width), corresponding to the HSV se-
quence.

Next, it was divided into a number of images with
dimensions of 210x720 pixels, each capturing 3-4 cy-
cles. This approach expanded the training dataset size
while maintaining detailed analysis of temporal patterns.
Fig. 2(b) shows the representative HSV frames for dif-
ferent vocal fold conditions and their corresponding
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kymograms. Table 1 presents the count of PVG images
for each vocal fold condition.

Table 1. Count of PVG images

Conditions PVG image counts
Healthy 5095
Functional/MTD 1626

Unhealthy 3016

Organic 954

Nodules 169

Edema 139

Atrophy 243

Resizing and Normalization

PVGs were resized to 128x128 for all models. After
resizing the pixel values were converted to the range [0,
1] by normalization. Ensuring consistency across all im-
ages. To achieve a more balanced sample distribution,
oversampling methods were applied, augmenting the
underrepresented classes to achieve a more balanced
distribution of samples. Only Deep Learning (DL)-
based vibration features were used, and no manual de-
scriptors were included.
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Fig. 2: (a) Generation of PVGs from HSV recordings: (i) Glottal area segmentation in HSV frames, (ii) Contour
extraction and splitting of the left and right vocal fold edges; (iii) Color coding of vibratory motion over time; (iv)
Construction of the PVG 2(b) Representative samples of HSV endoscopic frames (left in each pair) and their corre-
sponding PVGs (right in each pair) for different vocal fold conditions: Healthy, MTD, Edema, Nodules, Atrophy,
Laryngitis, Leukoplakia, and Papilloma. These examples show the distinct morphological and vibratory patterns
associated with each condition.
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Deep learning models

Our study focused on evaluating five different deep
learning models for the classification of PVG images de-
rived from HSV data.

The models include VGG19 (Simonyan and Zisser-
man, 2014), DenseNet169 (Huang et al., 2017), Incep-
tionResNetV2 (Szegedy et al., 2017), a custom trans-
former ensemble model (Xception (Chollet, 2017) + Vi-
sion Transformer (Dosovitskiy et al., 2020)) named X-
ViT, and a custom Hybrid CNN with an attention mech-
anism specifically designed for PVG, named PVGNet.

These models were chosen to investigate their ef-
fectiveness in analyzing vocal fold vibrations and clas-
sifying vocal fold pathologies based on PVG represen-
tations. Each model brings distinct advantages to the
PVG classification task. VGG19 is a deep convolutional
architecture with its simple yet improved hierarchical
feature extraction capabilities. DenseNet169 uses
dense connectivity between layers, helping efficient fea-
ture reuse and gradient flow. InceptionResNetV2 merge
both the advantage of Inception modules and residual
connections, improving both model performance and
classification accuracy. Also the X-ViT model merges
convolutional and transformer-based model using both
local and global features for thorough PVG analysis
(Ganaie et al., 2022).

Finally, PVGNet is a fully custom-built architecture
developed specially for PVG classification. It combines
the attention mechanisms to focus on important vibra-
tory regions of interest (Wang et al., 2018). Unlike the
other models, PVGNet does not rely on pretrained
weights, allowing it to learn from scratch and making it
highly specialized for this task.

Hybrid CNN-Attention Network (PVGNet)

The diagnostic accuracy of PVG depends on ac-
tively detecting subtle, multi-scale pathological patterns
even in background noise (Doellinger and Berry, 2006).

Therefore, we developed PVGNet as a hybrid Con-
volutional Neural Network (CNN) improved with adap-
tive attention mechanisms, noise resilience, and multi-
scale feature representation as shown in Fig. 3 (Hu et al.,
2020). PVGNet merges hierarchical feature extraction
with attention modules to show diagnostically meaning-
ful regions while repressing irrelevant information. The
model processes input PVG images of size 128 x 128 x
3 via three convolutional blocks with increasing filter
sizes of 64, 128, and 256.
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Each block applies ReLU activation, then max pool-
ing and batch normalization to stabilize convergence
and improve training performance (Ioffe and Szegedy,
2015). This continuous convolutional block actively
spots the layered complexity of PVG irregularities.
Early layers documents intricate textures such as edema
and vocal nodules using smaller receptive fields, deeper
layers extract broader structural abnormalities like vocal
fold atrophy and MTD via large filters (Chen et al.,
2018).

The attention mechanism is applied after the convo-
lutional stages, warranting the model to selectively boost
the most informative spatial regions pertinent to pathol-

ogy.

Each block has max pooling and batch normaliza-
tion to stabilize convergence, which is very important
for handling PVG images. The convolutional operation
at each layer is defined as:

Ft=s(W's F=1 4+ pl)

Where F! is the feature maps at layer 1, W' and
blare the learnable weights and biases, * means the con-
volution operation, and d-delta is the ReLU activation
function. Increasing filter sizes continuously learns
multi-scale features. The expanding filter hierarchy
make sure that thorough pattern extraction across spatial
scales innate. After the convolutional layers, PVGNet
uses a squeeze-and-excitation (SE) attention block that
dynamically improves diagnostically useful channels
when repressing noise (Hu et al., 2020).

This attention mechanism starts with compressing
spatial information into compact channel descriptors via
global average pooling

1 H W
e = T 2 2 e

i=1j=1

Z. is the c-th element of the channel descriptor. H,
W are the feature map’s height and width which com-
presses unwanted spatial noise, maintaining channel-
wise discriminative information.

The excitation operation then models channel-wise

dependencies:
s = a(W,6(Wy2))
C C

Where W, € R(?)>< Cand W, € RCX(?) form a
bottleneck with a reduction ratio r = 8. § delta refers to
ReLU, o sigma is the sigmoid activation function, the
recalibration stage weights each channel by multiplying
the feature maps elementwise:

F.=s.- F.
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Fig. 3: Proposed Hybrid CNN-Attention Network for PVG Classification (PVGNet), where F - Filters, N - Neurons,
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The network applies global average pooling before
sending features via two fully connected layers (256 and
128 neurons) with ReLU activation after the attention
block. L2 regularization (A=0.001) is applied to prevent
overfitting (Krogh and Hertz, 1991):

A
2(w) =§|IWII%

Dropout (rate = 0.4) is set to improve generalization
and prevent overfitting, helping the model become more
robust to variations and noise in the PVG images (Sri-
vastava et al., 2014). The output layer uses a single neu-
ron with sigmoid activation for binary classification of
healthy vs. unhealthy PVG conditions (Bishop, 1995):

1

D=1

The corresponding binary cross-entropy loss func-
tion(Murphy, 2012) is:
N

L —
N 4
=1

[yilog(¥;) + (1 —y;) log(1 —§,)]

For tertiary and multi-class tasks, categorical cross-
entropy loss (Heaton, 2017) is utilized:

1 N K
L = N Z)’ij log(¥:;)

i=1j=1

PVG images show different types of vibratory pat-
terns, ranging from intricate vocal fold textures (e.g.,
edema, nodules) to broader structural alterations (e.g.,
atrophy, MTD) on their intensity variations.

We designed PVGNet specially to address this var-
iability via a combination of multiscale feature extrac-
tion, an attention mechanism, and a noise-resilient de-
sign. Its hybrid architecture is intended to predict differ-
ent vibratory features.

Experimental setup

Experiments were performed on an HP workstation,
configured with an NVIDIA GeForce RTX 2080 Ti and
42.9 GB of GPU memory. Python was used with the
TensorFlow 2.10 framework for executing the classifi-
cation tasks.

The dataset consisted of HSV recordings of vocal
fold vibrations with 376 recordings of Healthy and 163
Unhealthy.

A total of 101 recordings were excluded from our
analysis: 50 due to missing health status information,
and 51 due to the presence of multiple co-occurring dis-
orders. 102 recordings were categorised as functional
voice disorders, primarily MTD, and 56 were catego-
rized as organic disorders.
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The organic category included cases of scar tissue,
papilloma, nodules, edema, carcinoma, laryngitis,
polyps, cysts, and atrophy.

Data stratification for Binary Classification
(Healthy vs Unhealthy)

For the binary classification task we worked with
8111 PVG images in total. To begin with, 15% of the
data (1218 images) was set aside as the test set, contain-
ing 765 Healthy and 453 Unhealthy samples. This por-
tion was never touched again and was used only for the
final evaluation.

The remaining 6893 images were then divided into
training (70%) and validation (30%) subsets. Before do-
ing any balancing we separated a validation set of 1034
images (around 15% of the total) to keep its class distri-
bution natural. The training set (5859 images) showed a
clear class imbalance which could easily bias the model
toward the majority category.

To fix this we used random oversampling but only
on the training data. This increased the underrepresented
class until both were evenly matched resulting in a bal-
anced training set of 7360 images. The validation and
test sets were left untouched so they will reflect the true
distribution allow a fair and real world evaluation of per-
formance.

Data stratification for Tertiary Classifica-
tion (Healthy vs. Functional vs. Organic)

For the tertiary class setup we used 6522 images.
From this, about 15% (1153 images) was kept aside as
the test set. The remaining data was then split into a
training set (5543 images) and a validation set (979 im-
ages). As before the validation set was separated before
handling any imbalance to maintain its natural mix of
classes.

The training data had uneven representation across
the three classes so we again applied random over-
sampling. This brought all classes to roughly equal lev-
els, a balanced training of 11040 samples. The validation
and test sets were kept in their original form to provide
a realistic check on how well the model would general-
ize.

Data stratification for Multi-class Classifi-
cation (Healthy vs. MTD vs Atrophy vs
Nodule vs Edema)

In the five-class we analyzed 7272 images in total,
distributed as Healthy (5095), MTD (1626), Atrophy
(232), Nodule (180), and Edema (139). This imbalance
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was quite pronounced, so special care was needed dur-
ing training.

We first allocated 15% from each class to the test
set to make sure every category was represented in eval-
uation. The rest formed the training and validation sets.
As with the earlier tasks we used random oversampling
to balance the training data. The smaller classes were in-
creased till they matched the size of the Healthy group
giving us a balanced training set of 18400 images with
equal class.

The validation and test sets were not modified so
that performance results would reflect how the model
behaves on naturally imbalanced and real world data.

Training and Validation Phase

Random seed value of 42 was used for all classifi-
cation tasks to maintain reproducibility and consistency.
This warranted proper data partitioning into training and
validation sets. The same applied in the random over-
sample to maintain consistency in class balancing
through oversampling. The model trained using adam
optimizer for 100 epochs using binary cross-entropy for
binary class and categorical cross-entropy for tertiary
and multi class tasks.

Hyperparameter tuning strategies such as learning
rate scheduling and early stopping, reduce overfitting
and improve performance. During training, model
checkpoints were saved at the epochs producing the best
validation performance. The final testing was conducted
on a separate, previously unseen test set using the best-
performing saved model.

Testing Phase

We used both qualitative and quantitative metrics to
thoroughly evaluate PVG models. Quantitative
measures such as accuracy, F1-score, sensitivity, speci-
ficity, and precision were used to objectively compare
performance. Qualitative inspection with learning
curves, confusion matrices, and ROC curves.

RESULTS

Evaluation of Binary Classification Perfor-
mance

As shown in Fig. 4(a), PVGNet exhibits strong gen-
eralization capabilities, with a small aperture between
training and validation accuracy shows a low risk of
overfitting and reliable performance for real-world ap-
plications.
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In contrast, we observed in some models showing
noticeably larger gaps, suggesting a tendency to overfit
and reduced ability to generalize to unseen data. Others
remain relatively stable, but display early performance
plateaus, which can limit further learning and improve-

ment.
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Table 2. Binary classification performance of five models (IRV2 — InceptionResNetV2, DN169 — DenseNet169, X-ViT
— Xception + Vision Transformer)

Metrics Condition IRV2 VGG19 DN169 PVGNet X-ViT
AUC
(%) 97.87 99.32 99.56 99.48 98.95
F1 score Healthy 94.69 96.37 96.01 97.01 95.82
(%) Unhealthy 91.11 94.02 93.29 95.16 92.92
Precision Healthy 95.00 97.21 96.19 98.52 95.70
(%) Unhealthy 90.61 92.70 92.98 92.86 93.13
Sensitivity Healthy 94.69 95.56 95.82 95.56 96.96
(%) Unhealthy 91.11 95.36 93.60 97.57 95.02
Specificity 91.61 95.36 93.60 95.59 92.71
(%)
Accuracy 93.35 95.48 94.99 96.31 94.75
(%)
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Table 3. Tertiary classification performance of five models (IRV2 — InceptionResNetV2, DN169 —DenseNet169, X-
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Metrics Condition IRv2 VGG19 DN169 PVGNet X-ViT
AUC Healthy 98.71 99.44 99.49 99.61 99.21
(%) Functional 98.43 99.37 99.40 99.74 99.25

Organic 99.77 99.88 99.75 99.71 99.77

F1 score Healthy 97.03 96.73 97.12 97.82 96.85

(%) Functional 91.24 93.44 91.84 94.47 92.09
Organic 94.85 92.81 95.17 94.81 94.12

Precision Healthy 98.13 98.91 97.37 99.06 97.23

(%) Functional 88.76 90.73 91.46 91.22 91.16
Organic 93.88 87.65 94.52 94.48 93.79

Sensitivity Healthy 95.95 94.64 96.86 96.60 96.47
(%) Functional 93.85 96.31 92.21 97.95 93.03
Organic 95.83 98.61 95.83 95.14 94.44

Specificity Healthy 98.05 97.94 94.85 98.19 94.59
(%) Functional 96.91 97.36 97.69 97.47 97.58
Organic 99.20 98.02 99.21 99.21 99.11

Accuracy 95.49 95.49 95.75 96.70 95.49

(%)

Table 4. Multi-class classification performance of five models (IRV2 — InceptionResNetV2, DN169 — DenseNet169,

X-ViT — Xception + Vision Transformer)

Metrics Conditions IRv2 VGG19 DN169 PVGNet X-ViT
AUC Healthy 98.95 99.57 98.64 99.79 98.33
(%) MTD 99.42 99.58 98.89 99.83 97.75

Atrophy 97.80 99.95 98.01 99.96 99.91
Nodules 100.0 100.0 100.0 100.0 100.0
Edema 97.36 99.66 99.79 99.79 99.27
F1 score Healthy 96.52 97.63 97.13 98.22 97.30
(%) MTD 91.20 93.93 90.69 95.83 93.39
Atrophy 91.67 94.74 84.51 92.11 89.47
Nodules 100.0 100.0 100.0 100.0 95.83
Edema 91.89 94.74 97.14 94.74 88.89

Precision Healthy 97.09 98.15 98.12 99.33 97.88

(%) MTD 89.06 92.80 89.62 93.05 91.37
Atrophy 91.67 90.00 75.00 87.50 85.00

Nodules 100.0 100.0 100.0 100.0 100.0

Edema 100.0 100.0 100.0 100.0 100.0

Sensitivity Healthy 95.95 97.12 96.15 97.12 96.73
(%) MTD 93.44 95.08 91.79 98.77 95.49
Atrophy 91.67 100.0 96.77 97.22 94.44

Nodules 100.0 100.0 100.0 100.0 92.00

Edema 85.00 90.00 94.44 90.00 80.00

Specificity Healthy 93.23 95.69 94.46 98.46 95.08
(%) MTD 96.69 97.87 97.99 97.87 97.40
Atrophy 99.72 99.62 99.72 99.53 99.43

Nodules 100.0 100.0 100.0 100.0 100.0

Edema 100.0 100.0 100.0 100.0 100.0

Accuracy 95.14 96.70 96.51 97.43 95.96

(%)
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Table 2 shows that PVGNet performs best with an
accuracy of 96.31%. VGG19 follows at 95.48%, and
DenseNet169 comes close at 94.99%.

Although DenseNet169 gives the highest AUC of
99.56%, meaning it separates the two classes very well,
PVGNet’s AUC of 99.48% is almost the same. What
makes PVGNet stand out is how well it balances accu-
racy, sensitivity, and specificity instead of being strong
in just one area.PVGNet also gives the highest F1-scores
for both classes 97.01% for Healthy and 95.16% for Un-
healthy showing that it can handle both categories relia-
bly without bias.The confusion matrices in Fig. 6(a)
make this clearer.

IRV2 shown first from the left struggles to detect
Unhealthy cases misclassifying 38 of them as Healthy
which means a high false-negative rate. VGG19 shown
next performs better with 432 correct Unhealthy detec-
tions and only 21 missed. DenseNet169 is close but
misses slightly more (29). PVGNet shown fourth clearly
performs the best. It misses only 11 Unhealthy cases and
correctly finds 442 which shows improved learning.

Though DenseNet169 has a slightly higher AUC,
PVGNet stays nearly close while keeping false nega-
tives much lower. This balance detecting more Un-
healthy cases without losing precision is what matters
most in voice disorder detection. Overall, these results
show that PVGNet’s hybrid CNN-attention setup can
capture fine visual details in PVG images more effec-
tively than the other models. It doesn’t just classify it
learns the subtle cues that distinguish healthy from dis-
ordered patterns

Evaluation of Tertiary Classification
Performance

In Fig. 4(b) PVGNet generalizes well since the
training and validation accuracy curves almost overlap,
which points to a low risk of overfitting. Some baselines
do reasonably well but don’t generalize as strongly, a
few clearly overfit with wide gaps between training and
validation. Others stay stable yet plateau early by limit-
ing further gains. Table 3 shows the same. PVGNet
shows the highest test accuracy at 96.70%, ahead of
DenseNet169 (95.75%), VGG19 (95.49%), and X-ViT
(95.49%). Also gives the high Fl-scores for Healthy
(97.82%) and Functional (94.47%). DenseNet169 leads
on Organic with an F1 of 95.17%, and PVGNet is close
at 94.81%. Among the baselines IRV2 and VGG19
show clear overfitting with large train—val gaps but
DenseNet169 is steadier but levels off early. PVGNet
shows slight signs of overfitting in place but keeps
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validation accuracy high, unlike models that struggle
more generalization.

The confusion matrices in Fig. 6(b) shows Dense-
Netl69 is marginally best (741 correct) for healthy
cases. Then PVGNet and X-ViT (739 and 738) but IRV2
and VGG19 misclassify 24 and 22 Healthy. For Func-
tional cases, PVGNet performs well with only 5 errors
(4 Healthy, 1 Organic). X-ViT makes more mispredic-
tions (15 Healthy, 2 Organic), DenseNet169 misclassi-
fies 18, and IRV2 (13 Healthy, 5 Organic). For Organic
cases, DenseNet169 again leads (2 Healthy, 4 Func-
tional). PVGNet stays close (3 Healthy, 4 Functional).X-
ViT shows slightly higher errors (6 as Healthy, 2 as
Functional), and IRV?2 trails (5 Functional, 1 Healthy).

Fig. 5(b) provides the ROC view. PVGNet’s micro-
average AUC is 99.80%. It also has the highest class
AUC:s for Healthy of 99.61% and Functional of 99.74%.
Tertiary performance mirrors the binary case: high ac-
curacy, balanced errors, and good generalization.

This behavior reflects the attention blocks focusing
on the most informative PVG informations. That focus
helps PVGNet keep false decisions low without giving
up separability, which explains its strong accuracy and
reliable class wise detection.

Evaluation of Multi-class Classification
Performance

PVGNet shows smooth convergence for both train-
ing and validation with minimal fluctuation indicating
stable learning and strong generalization in Fig. 4(c).
Several baselines require more epochs to stabilize and
improve more gradually others show marked variation
in validation accuracy suggesting data sensitivity and
potential instability.

PVGNet shows mild overfitting in places yet vali-
dation accuracy remains high unlike models with
weaker generalization. Table 4 is consistent with these
patterns. PVGNet reports the highest test accuracy
(97.43%) and strong overall classification performance,
and it attains the top AUC for most conditions. Class-
wise results favor PVGNet: F1, precision, specificity,
and sensitivity remain high, with F1 of 98.22%
(Healthy), 95.83% (MTD), and 92.11% (Atrophy).

VGG19 is close overall but its sensitivity and F1
lags in some settings. DenseNet169 is competitive yet
drops on MTD (90.69% F1) and Atrophy (84.51% F1),
lowering its overall score. IRV2 is weaker for MTD
(91.20% F1). X-ViT generalizes least well, particularly
for Atrophy (89.47% F1) and Edema (88.89% F1).



The confusion matrices in Fig. 6(c) clarify these
outcomes. PVGNet (fourth matrix) gives few errors,
with correct counts of 763 Healthy, 241 MTD, 34 Atro-
phy, 25 Nodules, and 18 Edema. IRV2 (first) and Dense-
Netl69 (third) misclassify a noticeable number of
Healthy and MTD samples.

VGG19 (second) performs well but produces more
false positives than PVGNet. X-ViT (fifth) shows sev-
eral errors in MTD, Atrophy, and Edema. Considering
the learning curves (Fig. 4(c)), test metrics (Table 4),
and confusion matrices (Fig. 6(c)) together, PVGNet
provides the most favorable balance of accuracy, gener-
alization, and class-wise reliability for this multi-class
task.

VGG19 is a strong comparator, but PVGNet’s
higher sensitivity, stronger F1 scores, and lower mis-
classification rates make it the more suitable choice for
vocal-fold multi-class classification. Finally, Fig. 5(c)
presents the ROC analysis. PVGNet’s micro-average
AUC is 99.95%, and it records the highest per-class
AUCs 99.79% (Healthy), 99.83% (MTD), 99.96% (At-
rophy), 100% (Nodules), and 99.79% (Edema) indicat-
ing excellent separability across all categories and a
clear margin over IRV2, VGG19, DenseNet169, and X-
ViT.

DISCUSSION

Binary classification result is an evident that PVG-
Net’s hybrid CNN-attention mechanism extracts intri-
cate and informative PVG patterns and improves feature
recognition, performing better than other models.

This balance between precision and sensitivity is
specially important in clinical voice diagnostics where
false negatives may delay correct treatment. PVGNet
also shows consistent reliability across tertiary and mul-
ticlass tasks.

PVGNet shows potential for real-world clinical ap-
plication by maintaining solid performance across di-
verse voice disorder categories,

Though DenseNet169 produces high AUCs in some
cases PVGNet maintains better balance in sensitivity
and F1-scores across conditions mainly where misclas-
sification can have major diagnostic consequences.

This further supports its suitability for use in auto-
mated screening or adjunct diagnostic tools for otolar-
yngologists.
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CONCLUSION

This study presents PVGNet, a custom DL frame-
work that produces high accuracy, good generalisation,
and balanced performance across binary, tertiary, and
multi-class classification tasks. Its hybrid architecture
that combines multiscale feature extraction with atten-
tion mechanisms learns diagnostically relevant vibration
features and reduces overfitting. These outcomes show
the potential of attention-enhanced models like PVGNet
in advancing automated voice-disorder assessment and
their integration into clinical decision-support systems.

In future studies, visualization maps such as Grad-
CAM will be explored to understand vibration regions,
improving interpretability and clinician trust. Although
this work is limited to a single HSV dataset, model be-
havior may vary under real-world clinical conditions
with greater variability and noise. Future research will
include domain-adaptation techniques, and multi-fold
cross-validation to further strengthen generalizability.
The model will eventually be expanded and refined into
clinically deployable software tool.
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