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ABSTRACT

Quantitative analysis of mast cell (MC) morphology and degranulation states is crucial for assessing
inflammatory responses and therapeutic efficacy in biomedical research. This study presents a novel two-
stage deep learning framework for the automated quantitative morphological analysis of MC degranulation
states in toluidine blue-stained histological sections. We constructed a specialized dataset of 1,054 rat
tissue images. In the detection stage, YOLOv11m achieved superior performance with a mean average
precision (mAP@0.5) of 84% for locating MCs amidst complex tissue backgrounds. In the classification
stage, using the model we previously acquired to extract pure mast cell images, EfficientNetV2-S attained
an accuracy of 89.6% ± 2.1% in discriminating degranulation states through fine-grained morphological
analysis. Critically, Class Activation Mapping (CAM) visualization demonstrated that the model’s decision
logic aligns precisely with pathological features of degranulation—such as membrane rupture and granule
dispersal—thereby providing interpretable morphological evidence for automated classification. The proposed
framework effectively decouples the tasks of cell localization and state classification, offering a robust,
efficient, and morphologically interpretable solution for quantitative image analysis in histopathology. This
approach has significant applications in acupuncture mechanism research and can be extended to other fields
requiring granular structure analysis.
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INTRODUCTION

Quantitative analysis of cell morphology in
histopathological images is crucial for research in
immunology and inflammation. Mast cells (MCs)
are of particular interest due to their complex
functional states (Austen and Boyce 2001), which are
reflected in their morphological dynamics, especially
degranulation (Krystel-Whittemore et al. 2016). Their
granules—intact or released—directly indicate cellular
activation and function (Ito et al. 2008). In tumors,
mast cell density and location affect cancer progres-
sion; activated MCs also interact with immune or
stromal cells to either modulate immunity or promote
tumor growth (Guo et al. 2023). In inflammation, MCs
serve as key effector cells through degranulation (Yang
et al. 2023). Their roles in both contexts are closely
tied to their activation state and spatial distribution
(Vazquez et al. 2024; Wang et al. 2024; Johnson et al.
2017; Gaudenzio et al. 2016).

The quantification of MC counts and degranulation
rates is a cornerstone of immunology and inflammation
research, typically accomplished through microscopic
analysis using staining techniques such as toluidine
blue, followed by manual cell counting. In virology,
influenza triggers mast cell (MC) recruitment to
bronchial inflammation sites (Zarnegar et al. 2017);
their degranulation is a key driver of excessive
inflammation and tissue damage in SARS-CoV-2
infection (Cao et al. 2024). At injury sites, substance
P release recruits MCs via Mrgprb2 (Albert-Bayo
et al. 2019). While MCs can suppress inflammation
in contact hypersensitivity (Reber et al. 2017), their
degranulation is also targeted to alleviate inflammatory
pain (Srebro et al. 2023). Pharmacologically, paeoni-
florin alleviates urticaria by inhibiting MC degranu-
lation (Wang et al. 2025). Notably, acupoints harbor
denser MC populations; acupuncture prompts their
accumulation and degranulation, releasing mediators
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that modulate local inflammation and function (Weber
et al. 2001). Thus, MC recruitment, accumulation, and
degranulation are central processes across these fields.

However, current manual counting methods
present several notable drawbacks. First, they require
substantial time and effort, often leading to issues
such as repeated counting, omissions, or errors
due to visual fatigue. Second, the identification of
MC degranulation heavily relies on the individual
experience of technicians, introducing significant
subjectivity into the assessment. To manage the high
resource demands of whole-slide analysis, researchers
often adopt a field-of-view sampling strategy.
Yet, since MCs frequently exhibit heterogeneous
distribution within tissues (e.g., forming perivascular
clusters), such sampling methods fail to adequately
represent the entire tissue, inevitably introducing
errors and compromising both data representativeness
and statistical power.

Deep learning reliably supports interpretable
decision-making in complex biomedical scenarios.
Existing research demonstrates its strong capabilities
in analyzing pathological images: for instance, a CNN
model based on Inception v3 and PCA identifies fecal
cellular images with 90.7% accuracy (Du et al. 2019).
Notably, the YOLO series has advanced considerably
in detecting diverse types of cells. One study integrated
a FACE algorithm into YOLOv5 to improve yeast cell
detection under difficult imaging conditions (Huang
et al. 2023); another combined YOLO with deep active
learning to enhance performance in detecting mitotic
cells (Anaam et al. 2023). These findings confirm
that improved YOLO architectures effectively handle
complex biomedical image tasks.

Although deep learning has revolutionized cellular
image analysis, current methods primarily detect and
count common cell types like blood cells (Sun et al.
2025; Shi et al. 2024), tumor cells (Zhong et al.
2024; Haq et al. 2024), and germ cells (Kahveci
et al. 2023; Wu et al. 2024), while automated
approaches specifically designed to recognize mast
cells and their degranulation states remain notably
absent. Furthermore, stereological and morphometric
methods (Gual-Vaya 2024), though computationally
efficient and highly interpretable, adapt poorly to new
devices or scenarios, generalize weakly, and struggle
within complex cellular environments. Crucially, both
paradigms largely overlook the challenge of automat-
ing fine-grained morphological classification to de-
termine functional states—such as degranulation—in
specialized cells like mast cells. Consequently, a
significant gap exists in the development of automated
frameworks dedicated to the morphometry of mast
cell degranulation. This highly specialized cell type

and its critical functional states remain excluded from
mainstream computational pathology analysis.

We propose a novel two-stage deep learning
framework for the quantitative analysis of mast cell
degranulation states, integrating high-precision local-
ization with fine-grained morphological classification.
The first stage employs YOLO series models to rapidly
locate cell regions and perform initial classification,
while the second stage constructs dedicated CNN
models to achieve detailed morphological classifica-
tion of degranulation states. Most importantly, we
incorporate Class Activation Mapping (CAM) to
provide interpretable morphological insights, ensuring
that model decisions align with pathological features.

MATERIALS AND METHODS

OVERALL RESEARCH FRAMEWORK

This study proposes a two-stage deep learning
framework, as illustrated in Fig.1, which achieves
precise identification of MCs and their degranulation
states through the synergistic integration of object
detection and fine-grained classification. In the first
stage, YOLO series models are employed to localize
and preliminarily classify MCs within the tissue
images. The second stage involves constructing clas-
sification models based on transfer learning, utilizing
deep neural networks such as ResNet101, ResNet152,
ResNeXt-50, and EfficientNetV2-S to discriminate
the degranulation states. The framework integrates
strategies for data augmentation, class balancing, and
model optimization, significantly enhancing detection
efficiency and classification robustness.

MAST CELL DATASET DESCRIPTION

MC Detection Dataset

Due to the absence of public standard datasets
for mast cell pathology slides, this study lever-
aged samples from acupuncture interventions at
rat Zusanli (ST36) points accumulated by our
laboratory and collaborators between 2023-2025.
All animal procedures were performed in strict
compliance with internationally recognized ethical
standards for laboratory animal care and use, and
were formally approved by the Institutional Animal
Care and Use Committee (IACUC) of Shanghai
University of Traditional Chinese Medicine (Approval
No. PZSHUTCM2308010011). Rat tissue sections
stained with toluidine blue exhibit purple coloration
through specific heparin granule-dye binding, enabling
direct observation of MC granule morphology and
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Fig. 1. Framework for mast cell identification and fine-grained classification. Mast cell regions are localized and
cropped via You Only Look Once detection, followed by fine-grained classification of degranulated versus non-
degranulated states using a convolutional neural network-based model.

degranulation states (Reber et al. 2017; Klatt et al.
1983). The staining process yielded 1,054 rat mast
cell slide images captured at 400× magnification using
an optical microscope (NTB900-FL, Ningbo Yongxin
Optical, China) and an inverted research microscope
(Eclipse Ti-S; Nikon, Japan), with digital images
acquired through an MShot MSX2 camera controlled
by MShot Image Analysis System V1.1.6 software.

This dataset was rigorously annotated through
a manual process: Researcher A initially labeled
all mast cell bounding boxes (for localization only)
using LabelImg. Subsequently, Researchers B and
C independently and blindly assessed each cell,
assigning binary classification labels (0 = non-
degranulated, 1 = degranulated). Finally, samples with
inconsistent classifications were subjected to a joint
review by B and C to determine the final judgment.

The morphological identification criteria for MCs
degranulation are primarily based on the following
three characteristic changes; the presence of any
one indicator qualifies the cell as degranulated:
First, cytoplasmic granules penetrate the plasma
membrane and distribute in the peripheral region
of the cell; Second, the cell margin exhibits an
irregular morphology, with a significantly increased
perimeter and blurred boundary; Third, toluidine blue
staining reveals abnormal vacuolar structures within
the cytoplasm exceeding twice the diameter of normal
granules. Non-degranulated MCs exhibit a typical
morphology with a complete shape and smooth,
clearly defined boundaries. Representative figures are
shown in Supplementary Material, Fig.S1(left vs.
right, ND vs. D).

MC Classification Dataset
Based on the optimal YOLO MC detection

model identified during initial training (with an input
resolution of 640×640 and a confidence threshold of
0.5), cells were located within the whole-slide images
and subsequently cropped to obtain pure-region image
samples. The degranulation labels for these cropped
images originate directly from the final gold standard
dataset described in the “MC Detection Dataset”
section—labels that researcher B and C agreed upon
after joint review. Their task involved verifying and
confirming that each cropped cell image correctly
corresponded to its label in the gold standard set,
ensuring no image–label mismatch occurred during
dataset construction. This quality control process
guarantees the reliability of the dataset used to evaluate
subsequent classification models.

MAST CELL DETECTION BASED ON
YOLO MODELS
This study employs YOLOv5 and YOLOv11

as the foundational detection frameworks. The
YOLO series algorithms are renowned for their
efficient real-time detection capabilities and
balanced accuracy-speed performance, making
them suitable for the rapid localization of dense,
small targets like mast cells. For YOLOv5, we
adopted the officially implemented Ultralytics
models YOLOv5n, YOLOv5s, and YOLOv5m; For
YOLOv11, we used the models provided in Ultralytics
YOLO: YOLOv11n, YOLOv11m, YOLOv11l, and
YOLOv11x (code repository: https://github.
com/ultralytics). Mast cell slice images were
divided into training and validation sets in a 7:3 ratio.
Input images were uniformly resized to 640×640
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pixels, and the training batch size was set to 16.
Extended methodological specifications appear in
Supplementary Sections S1.1.

CNN-BASED MAST CELL CLASSIFICA-
TION

To balance model depth and computational
efficiency, this study selected ResNet-101, ResNet-
152, ResNeXt-50, and EfficientNetV2-S as multi-
scale feature extractors. All models were trained and
evaluated using a rigorous 10-fold cross-validation
strategy. During transfer learning, we adopted a layer-
wise unfreezing strategy, progressively unlocking
convolutional layers combined with adaptive learning
rate scheduling. For the binary classification task
distinguishing degranulated versus non-degranulated
mast cells, a newly constructed classification head
with a single output neuron (Sigmoid activation) was
fine-tuned. This transfer learning strategy effectively
mitigated medical image data scarcity. Extended
methodological specifications appear in Supplemen-
tary Sections S1.2.

PERFORMANCE EVALUATION STRAT-
EGY

This study employed the confusion matrix, Area
Under the Curve (AUC), and mean Average Precision
(mAP) as core evaluation metrics. Classification re-
sults were visualized via heatmaps generated with the
Seaborn library, using color gradients and numerical
annotations to illustrate outcome distributions. The
confusion matrix summarized model performance by
tabulating True Positives (TP), True Negatives (TN),
False Positives (FP), and False Negatives (FN). Based
on these values, Precision, Recall, Accuracy, and the
F1 score were computed to further assess classification
efficacy.

Detailed calculation formulas for each metric are
provided in the following section:

Precision =
T P

(T P+FP)
, (1)

Accuracy =
(T P+T N)

(T P+T N +FP+FN)
, (2)

Recall =
T P

(T P+FN)
, (3)

F1 = 2 · Precision ·Recall
Precision+Recall

, (4)

Precision (Eq.1) measures the proportion of true
degranulated samples among those predicted as

degranulated. Accuracy (Eq.2) evaluates the overall
predictive performance by calculating the ratio of
correctly predicted samples to the total. Recall
(Eq.3) reflects the model’s ability to identify actual
degranulated samples. The F1-score (Eq.4), as the
harmonic mean of Precision and Recall, balances
both metrics and is particularly informative in class-
imbalanced scenarios. AUC defined in Eq.(5):

AUC =
1

M ·N

M

∑
i=1

N

∑
j=1

[
I
(

f (x+i )> f (x−j )
)

+0.5 · I
(

f (x+i ) = f (x−j )
)]

,

(5)

measures the model’s ability to discriminate be-
tween positive (degranulated) and negative (non-
degranulated) mast cells. It represents the probability
that a randomly chosen positive instance receives a
higher prediction score than a negative one across
all thresholds. As a threshold-independent metric,
AUC robustly evaluates global ranking performance
and remains unaffected by class imbalance, which
is common in histopathological image analysis. To
address the requirements for mast cell localization and
confidence estimation, the mean Average Precision
(the mAP) metric is introduced as defined in Eq.(6):

mAP =
∑

N
i=1 A ·Pi

N
=

∑
N
i=1

∫ 1
0 Pi(Ri)dRi

N
, (6)

where N denotes the number of classes (binary classi-
fication in this study) and APi represents the Average
Precision for class i. This metric comprehensively
quantifies the model’s robust recognition capability
for degranulation events in mast cell histology images
by integrating the precision-recall trade-off across
multiple confidence thresholds.

RESULTS

DEFINITIVE GROUND TRUTH ESTAB-
LISHMENT FOR MC DETECTION AND
DEGRANULATION ASSESSMENT

Researcher A annotated 1,054 rat mast cell histol-
ogy images and identified 2,325 mast cells. This study
employed a blinded design where two independent
researchers (B and C) classified degranulation states
across all 2,325 purified mast cell samples. Their
consensus outcomes appear in Table 1. The calculated
Kappa coefficient (κ = 0.78, p < 0.001) demonstrates
statistically significant high inter-observer agreement.
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Table 1. Manual Verification Results of Mast Cell Degranulation State Based on MC Detection Dataset
Manual Verification Degranulated

(Positive)
Non-Degranulated

(Negative)
Total-B

Degranulated (Positive) 1648 13 1661
Non-Degranulated (Negative) 176 488 664

Total-C 1824 501 2325

(A) (B1)

(C)
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Fig. 2. Performance evaluation of mast cell recognition models. (A) Multidimensional performance analysis of
mast cell recognition models. All denotes overall performance, N Deg indicates non-degranulated mast cells,
and Deg represents degranulated mast cells. (B) Detection results of mast cells and their degranulation states
by the YOLOv11m model; Subfigure (B1) visualizes ground truth bounding boxes, while (B2) displays predicted
bounding boxes with confidence scores. (C) Confusion matrix for classification of mast cells and degranulation
states using the YOLOv11m model.
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Both researchers then jointly re-examined dis-
cordantly classified mast cells and established the
definitive ground truth dataset. Technicians B and C
achieved 95.27% and 95.18% classification accuracy
respectively (Table S2). Their assessments closely
aligned with the ground truth, both exceeding 95%
accuracy.

OVERALL ASSESSMENT OF THE MAST
CELL DETECTION MODEL

This study used seven model types: YOLOv5n,
YOLOv5s, YOLOv5m, YOLOv11n, YOLOv11m,
YOLOv11l, and YOLOv11x for mast cell detection
training. Fig.2A shows the training results, and Table
S1 in the Supplementary Sections provides specific
numerical values.

As shown in Fig.2A and Table S1, the YOLOv11m
model achieves an mAP50-all score of 0.84, signif-
icantly outperforming all YOLOv5 series models. It
also attains a Recall-all score of 0.783, demonstrating
comprehensive superiority over the YOLOv5 baselines
(YOLOv5m: 0.745; YOLOv5s: 0.725; YOLOv5n:
0.753). These results indicate that its architectural
optimizations simultaneously enhance both detection
accuracy and target sensitivity.

The models show notable differences in rec-
ognizing degranulated versus non-degranulated mast
cells, with generally better detection of degranulated
cells. YOLOv11n achieves the highest recall for
degranulated cells (0.865), but has significantly lower
recall for non-degranulated cells (0.680), which may
limit its generalization in mixed samples. For balanced
performance, YOLOv11m is optimal, leading in
mAP50 for degranulated cells (0.850) and showing
competitive recall for non-degranulated cells (0.785),
making it the most robust choice for comprehensive
mast cell analysis.

YOLOv11m Model Results

Fig.2B compares the detection results of the
YOLOv11m model against ground truth labels,
showing accurate localization and classification of
mast cell degranulation states based on morphological
features. However, the model struggles to distinguish
degranulation in dense cell regions with stromal
interference, indicating limited robustness under
complex histological noise. As shown in the confusion
matrix in Figure 2C, the model achieves recall
rates of 0.85 and 0.71 for degranulated and non-
degranulated mast cells, respectively. Error analysis
reveals that 296 and 110 background regions were
misclassified as degranulated and non-degranulated
cells, far exceeding the number of missed true cells

(64 degranulated and 12 non-degranulated). This
indicates two main issues: first, overdiagnosis risk
is higher than missed detection due to difficulty in
distinguishing degranulated cells from complex stro-
mal structures; second, the recognition capability for
non-degranulated cells remains insufficient, limiting
practical application. Further analyses are provided in
Supplementary Material Fig.S2.

DEGRANULATION STATE CLASSIFICA-
TION MODEL PERFORMANCE
Analysis of the previously trained YOLO model

reveals that the optimal YOLOv11m model demon-
strates certain errors in detecting degranulation states
of mast cells and exhibits noticeable background
misidentification. Therefore, we implement a CNN
model to specifically identify mast cell degranulation,
thus enhancing the overall accuracy of the model.

Fine-Grained Mast Cell Classification
Results
To eliminate interference from the tissue microen-

vironment, this study employed a purified mast cell
dataset (containing degranulated and non-degranulated
samples), which was extracted using YOLOv11m
and rigorously validated through manual verification.
Using a transfer learning approach, ImageNet-
pretrained ResNet101, ResNet152, ResNeXt-50, and
EfficientNetV2-S were selected as backbone models.
Feature transfer was facilitated through layer-wise
unfreezing and adaptive learning rate scheduling.
Evaluation based on key classification metrics revealed
significant differences in model performance regarding
degranulation state recognition within the transfer
learning framework (Zhu et al. 2024). The dynamic
changes in training loss and validation accuracy
throughout the 10-fold cross-validation are provided in
Supplementary Material Fig. S3.

Experimental results (Fig.3A) show that the
EfficientNetV2-S model achieved the best overall
performance in cross-validation. It attained a mean
classification accuracy of 89.6% ± 2.1%, signifi-
cantly outperforming ResNeXt-50 (85.0% ± 2.0%),
ResNet101 (86.0% ± 3.0%), and ResNet152 (86.0%
± 2.0%). EfficientNetV2-S consistently outperformed
other models in fine-grained classification, achieving
a precision of 86.7% (±2.9%), a recall of 85.4%
(±3.2%), and an F1-score of 85.9% (±2.9%). It
surpassed the second-best model (ResNet152) by
margins of 3.1% in precision, 6.2% in recall,
and 5.8% in F1-score. These results demonstrate
EfficientNetV2-S effectively captures fine-grained
features across mast cell subclasses, providing a robust
solution for degranulation classification.

214



Image Anal Stereol 2025;44:209-219
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Fig. 3. Comprehensive Evaluation of Fine-Grained Mast Cell Degranulation Classifiers. (A) Overall performance
metrics for mast cell degranulation state classification models; (B) Confusion matrix: Optimal ResNet101
classifier; (C) Confusion matrix: Optimal ResNet152 classifier; (D) Confusion matrix: Optimal ResNeXt-50
classifier; (E) Confusion matrix: Optimal EfficientNetV2-S classifier.
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The current top-performing model, EfficientNetV2-
S, achieves an average accuracy of 89.6% and a
best accuracy of 92.7%, approaching the human
classification benchmark of 95.27%. This finding
demonstrates that lightweight models optimized
via compound scaling may outperform complex
architectures for fine-grained classification tasks.
Its built-in SE (Squeeze-and-Excitation) attention
mechanism (Hu et al. 2018) enhances the model’s
focus on degranulation-related features, such as
membrane rupture and granule dispersion, by
dynamically recalibrating channel-wise feature
responses, while effectively suppressing interference
from interstitial backgrounds.

Confusion Matrix Analysis
As shown in Fig.3(panels B-E) all four models

identify degranulated mast cells more accurately
than non-degranulated types due to class imbal-
ance (degranulated samples triple non-degranulated).
ResNeXt-50 achieved high sensitivity to degranulated
cells but produced a false positive rate of 39.68%
- 2.16 times that of EfficientNetV2-S (18.37%) -
while both models maintained similar false negative
rates (approximately 4.1%). EfficientNetV2-S limited
false positives to only 9 cases and demonstrated
high classification stability. These results identify
EfficientNetV2-S as the optimal model, combining
efficiency and balanced performance in complex, noisy
medical imaging scenarios with pronounced class
imbalance.

Feature Visualization
Employing CAM, we visualize model decision

logic by reconstructing feature activation maps into
50×50 resolution space via bilinear interpolation and
quantifying activation intensity with Jet colormap.
Analysis reveals divergent attention mechanisms
across models for mast cell degranulation assessment
(Fig.S4).

As shown in Fig.S4, distinct activation patterns
were observed across models for non-degranulated
samples. ResNet101 exhibited radially expanding
activation from the nuclear region, ResNet152 showed
synchronized activation at dual cross-membrane
interfaces, and ResNeXt-50 displayed pronounced
extracellular matrix-oriented activation. In contrast,
EfficientNetV2-S consistently localized activations to
perinuclear dense areas and membrane edges, effec-
tively minimizing interference from transmembrane
noise.

For degranulated samples, all four models con-
centrate attention on granule dispersal areas, aligning
with clinical ”granule exocytosis” patterns, yet diverge

in granularity: ResNeXt-50/ResNet models overem-
phasize discrete granule boundaries and overweight
stromal context, while EfficientNetV2-S activates
regionally diffuse areas covering both the cell
body and dispersed granules—demonstrating strong
consistency with manual classification standards. The
corresponding CAM visualizations are presented in
Fig.4.

DISCUSSION

DETECTION MODEL PERFORMANCE
ANALYSIS

The YOLOv11 architecture, enhanced with spatial
attention and dynamic label assignment (Khanam
and Hussain 2024), is well-suited for mast cell
detection in histopathological images. In dense tissue
regions, YOLOv11m achieved a higher mAP@50
than YOLOv5m (0.84 vs. 0.76) with a comparable
parameter count, demonstrating superior architectural
efficiency. Its effectiveness has also been supported in
complex cellular environments such as dense blood
cells (Sazak and Kotan 2025) and overlapping cervical
cells (Wu et al. 2023). Nevertheless, YOLOv11m still
exhibits clear limitations in distinguishing mast cell
degranulation states.

These limitations underscore the necessity of our
two-stage framework. Specifically, YOLOv11m shows
a notable disparity in recall between degranulated
and non-degranulated mast cells (0.823 vs. 0.743),
reflecting the fundamental challenge detection models
face in discriminating subtle inter-class morphological
variations. While highly capable in localization, such
models struggle with fine-grained classification that
requires distinguishing degranulation patterns from
complex background noise. To address this, we
introduced a dedicated CNN classifier for detailed
image analysis. This two-stage approach leverages
YOLO’s high-sensitivity candidate detection, followed
by CNN-based re-evaluation of each cell’s state. As a
result, the false positive rate for degranulation recog-
nition decreased from 25.74% to 18.37%, confirming
the critical role of the dedicated classification stage in
improving the accuracy of mast cell state analysis in
histopathological images.

PERFORMANCE DISPARITY ANALYSIS
OF CLASSIFICATION MODELS

Performance disparities among the four fine-
grained mast cell classifiers arise from inherent
architectural differences. ResNet architectures exhibit
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(A) Not Degranulation (B) Degranulation

Fig. 4. Visualization of CAM using the optimal EfficientNetV2-S framework. (A) Not Degranulation category
displays original images, CAM heatmaps, and activation maps for three representative cases. (B) Degranulation
category presents corresponding image sets for three samples.

oversensitivity to local textures due to gradient
propagation constraints. Studies show that when
physical depth (d) far exceeds effective gradient
depth (l), residual units degrade into static processors
(Wu et al. 2019), and uniform scaling amplifies
redundancy, emphasizing local noise over semantic
context (Lin et al. 2023). This leads to: (1) inadequate
low-level feature extraction with noise sensitivity,
and (2) overreliance on high-level static features,
exaggerating local patterns like granule boundaries.
While ResNeXt-50 improves local feature reuse
via group convolutions, it fails to address core
deep network issues. In contrast, EfficientNetV2-
S employs compound scaling and dynamic training
for efficient feature extraction and noise suppression
(Tan and Le 2021), reducing false positives to
only 9 cases (Fig.3E)—consistent with Abd El-Aziz
et al. (2025)’s leukemia classification results. The
integrated SE attention mechanism, combined with
CAM visualization, further validates the model’s
biologically relevant decision-making (Fig. 4), helping
to bridge the gap between deep learning’s ’black box’
nature and interpretable morphological analysis.

PRACTICAL APPLICATIONS

This study presents a two-stage deep learning
framework with broad pathological applicability. By
automating the recognition of mast cell degranulation,
the system reduces manual analysis time from hours

to minutes per batch, greatly accelerating quantitative
assessment in areas such as infectious disease, tissue
damage, inflammation, drug studies, and acupuncture
research. Its in situ detection capability without
requiring segmentation offers a new paradigm for
examining mast cell dynamics within tissue microen-
vironments and bridges a critical gap in functional
cell state identification. The framework supports an
AI-assisted workflow that integrates fully automated
screening with human-AI collaboration: the YOLO-
EfficientNet model conducts panoramic scanning and
initial detection of tissue sections, automatically
accepts high-confidence degranulation predictions
(≥ 0.7), and produces digital pathology reports
including spatial coordinates, classification states, and
confidence scores. Detections below the confidence
threshold trigger expert review, with priority given to
verifying ”non-degranulated” classifications.

LIMITATIONS AND FUTURE WORK

This study has three primary limitations: First,
dataset constraints pose challenges to model gener-
alization, though our pipeline demonstrated robust
feasibility for the target task. Second, distinct model
architectures exhibit significant performance diver-
gence in specific detection scenarios—YOLOv11m
excels at detecting degranulated mast cells while
YOLOv11l shows superior performance for non-
degranulated cells—highlighting the framework’s
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need for improved adaptability to cellular phenotypic
diversity. Furthermore, addressing false positives in
complex tissue backgrounds requires refining feature
learning mechanisms.

Future work will address these challenges through
two key initiatives: First, expanding mast cell data
diversity in subsequent experiments while leveraging
generative AI (e.g., GANs and DDIM) to synthesize
non-degranulated cell samples—creating balanced
training sets. Second, deploying the algorithm onto
digital pathology scanners to develop clinical modules
supporting real-time microscopic imaging analysis,
enabling dynamic monitoring of mast cell responses
during acupuncture interventions.

CONCLUSIONS

This study presents an interpretable deep learning
framework for high-throughput analysis of mast
cell degranulation. Using a dedicated dataset of
1,054 annotated images, our two-stage system com-
bines YOLOv11m for efficient cell detection (0.84
mAP@50) and EfficientNetV2-S for fine-grained
morphological classification (89.6% mean accuracy
and 92.7% peak accuracy). CAM ensures pathological
interpretability by highlighting discriminative features.
This approach enables robust analysis of cellular dy-
namics in tissue microenvironments, with applications
in acupuncture mechanism research and inflammatory
diseases.
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