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ABSTRACT

Consider a triaxial ellipsoid K of surface area S. Fix an arbitrary point P in the interior of K, that is
P € K°, and generate a sectioning plane LS[P] through P, whose normal direction u is uniform random on

the unit hemisphere Sﬁ. In the ellipse of section K ﬂLg[P], let M and m denote the lengths of the major

and minor principal semiaxes, respectively, and let r denote the distance of P from the ellipse centre. Then

S=2n (M2 +m?+ r2) is an unbiased estimator of S. The purpose of this paper is to express S in terms of
the eight parameters involved, namely the lengths of the three principal semiaxes of K, the three Cartesian

~

coordinates of P, and the two spherical polar coordinates (¢, 0) of u. Then Var(S) is accessible via a double
definite integral in (¢, 8) which can be evaluated quickly with available software for any K and any choice of
PecK°.

Keywords: Elliptic integrals, ellipsoidal section, flower formula, heat map, integral geometry, invariator,

pivotal plane, pivotal point, stereology, support set .

INTRODUCTION

The main purpose of this paper is to contribute
to the theory of the estimator S, described in the
Abstract, of the surface area S of an ellipsoid. The
estimator S was obtained by Cruz-Orive (2011), and
it is based on the invariator principle of stereology,
(Cruz-Orive, 2005; Gual-Arnau and Cruz-Orive, 2009;
Auneau and Jensen, 2010; Gual-Arnau et al., 2010;
Thoérisdottir and Kiderlen, 2014; Cruz-Orive and Gual-
Arnau, 2015; Jensen and Kiderlen, 2017; Cruz-Orive,
2024, p. 49). The background of the invariator is
summarized in the next section. Note that S depends
solely on three measurements made in a planar
section. A formula is obtained for S in terms of
the eight parameters mentioned in the Abstract - the
corresponding expression of Var(§) depends on a
definite double integral whose numerical value can be
evaluated efficiently with available software knowing
the lengths of the principal semiaxes of the ellipsoid,
and the coordinates of a pivotal point P in the
ellipsoid. To illustrate this, the coefficient of variation

-~ ~

CV(S) =4/ Var(S)/S is computed for an ellipsoid of
semiaxes lengths {1,2,3} as the pivotal point P varies
in a fine point grid within each of the three principal
ellipses of the ellipsoid. The results are represented by
means of heat maps to give a visual impression of the
variation of the accuracy of S as P varies in different
regions of the ellipsoid.
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The question of whether the estimator S can be
generalized to RY for d > 3 is briefly discussed in
the last section. The potential application of § is also
discussed there. The latter is not the main focus of this
paper, however, because in nature no particles exist
which are perfect ellipsoids.

A BRIEF REVIEW OF THE
INVARIATOR ESTIMATION OF
THE SURFACE AREA OF A
CONVEX BODY

Consider a convex body K C R of surface area
S, plus a point P € K°, called a pivotal point, and an
isotropically oriented plane Lg[P] through P, called a
pivotal plane. Isotropically oriented’ means that the

direction u € Si of an axis normal to LS[P] is uniform

random on the unit hemisphere S%r. Any transect
C, = KﬂLg[P] is convex, (hereafter, " A := B " means
"Ais defined by B ", or " Bis denoted by A "). Let H,
denote the support set or *flower’ of C,, namely the
domain enclosed by the graph of the support function
of C, with origin P. The support function is,

h(u,0) =sup(x-ep:x€C,), € [0,27), (1)

where e, is a unit vector of direction @ in the pivotal
plane, and x is the radius vector of a point in C,, with
origin P - Fig. 3 illustrates the case in which C, is an



ellipse. Let A(-) denote the area of a planar set. The
"flower formula’ for § reads,

2
s= n/sgA(HC“)du —4EA(HG), @)

the expectation being with respect to (w.r.t.) the
uniform  probability element P(du)= du/(27).
Therefore, N

S(u) =4A(Hc,) 3)

is an unbiased estimator (UE) of S, (Cruz-Orive, 2005).
The estimator S(u), and its variance, depend on the
position of P € K°, but its expectation does not. (To
simplify the notation, the dependence of S| (u),Cy, etc.,
on P is ignored in the sequel). The flower area is,

A(He,) = 7E (h*(u, ), 4)

the expectation being w.r.t. P(dw) = dw/(2x). Thus,

S(u,0) = 4wh*(u, o) 5)
is another UE of the surface area of the convex body
K. Based on the critical points of dC,, the preceding
estimator was generalized for non convex particles by
Thoérisdéttir and Kiderlen (2014) and Thérisdéttir et al.
(2014) using Morse theory. Gual-Arnau and CruzOrive
(2016) obtained the same estimator by a different
approach, and its simplified version was called the
"peak-and-valley formula’ in Cruz-Orive and Gual-
Arnau (2015), see also Cruz-Orive (2024), p. 50.

If K is an ellipsoid, then the transect C, is an
ellipse of principal semiaxes 0 < m(u) < M(u), say,
and A (Hc,) can be computed in terms of m(u), M (u),
and the distance r(u) of the pivotal point P € C,, from
the ellipse centre, see Fig. 1b,c. The result is,

T

A(He,) = 5 (M?(u) +m* () +* (), (6)
(Appendix A.1), and, by Eq. 3,
S(u) = 2 (M?(u) +m® (u) + r*(u)) (7

is unbiased for S.

For a convex body, E(S(u,®) | u) = S(u), where
S(u) is given by Eq. 3, or by Eq. 7 for an ellipsoid.
Therefore, in either case,

Var(S(u, )

= Var{E(S(u, ) | u)} + E{Var(S(u, ®) | u)}

~

> Var(S(u)).

(®)

Cruz-Orive (2008) studied the variances of various
invariator estimators of surface area and volume,
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and compared them with those of classical local
estimators using a sphere model. The variance of
S(w,u), was considered by Dvofék and Jensen (2013),
who obtained explicit results for spheroids (namely
biaxial ellipsoids). The variance of the aforementioned
generalization of Eq. 5 was studied by Thérisdéttir et

al. (2014).

THE INVARIATOR ESTIMATOR OF
THE SURFACE AREA S OF AN
ELLIPSOID

THE SURFACE AREA OF AN ELLIPSOID

Consider an ellipsoid K C R? of principal semiaxes
0 < a; <ay <asz < . In Cartesian coordinates,

}. )]

3
€R3: inz/aiz <1
i=1

K := {()C],Xz,X3)

The surface area of K is,

S:= S(al,az,ag)

_ 2 ) )
=2mai + Sin(9) (E(,k)sin* (@) (10)
+F(@,k)cos*(9)),
where
2
cos(p) = 4, e = LTt/ gy,
as 1— (al/ag)
(Legendre, 1811, p. 191), and
(12)

¢ dr
Fle = /0 \/ 1 —k2sin® ()
E(@,k) = /O(p 1 — k2sin®(¢) dr

represent the incomplete elliptic integrals of the first
and second kind, respectively.

PARAMETRIZATION OF THE PIVOTAL
POINT AND THE PIVOTAL PLANE

We introduce the following definitions and
notation.
e Principal semiaxes lengths of the ellipsoid K:

a:=(a1,a2,a3),(0<ay <ay < a3 <e0). (13)
of

e Cartesian coordinates

P(xp) € K°:

a pivotal point

3
X0 := (X()l,sz,X(B), (Zx%l-/aiz —1< 0) . (14)
i=1
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Fig. 1: (a) Orthogonal projection of a triaxial ellipsoid K onto a plane normal to a hitting pivotal plane Lg[ P (b)
Perspective view of the elliptical pivotal section C,, := K ﬂLg[P] of centre C, and of its orthogonal projection, of

centre C', onto the equatorial plane Ox:x,. (c) Elliptical pivotal section with the three random variables involved
in the unbiased estimator S of the surface area of the ellipsoid, see Eq. 7 .

e Direction cosines of a unit direction vector u € Si: e The pivotal plane is isotropically oriented,
which means that u(¢,68) ~ UR(S%). The joint
probability element of (¢, 0) is,

P(dg, d) = g.sine de. (20)

3
u:= (uy,up,u3), <Z “1’2 = 1) . (15)
i=1

In spherical polar coordinates,

u(¢,0) := (sinf@cos¢@,sinBsing,cos6), PARAMETRIZATION 9F 5, AND

(¢ €[0,27),0 €[0,7/2]). (16) COMPUTATION OF Var(S)
e Half orthogonal linear projection of K onto an axis Further definitions and notation:
of direction u, see Fig. 1a: e Major and minor principal semiaxes of the section
ellipse C, := KﬂLg[P] :

3 1/2
H(a,u) = (Za?u%) , (17 M :=M (a,xp,u) ,m:=m/(a,xo,u), (21
i=1

respectively, see Fig. 1b,c.
(Appendix A.2). Actually, H(a,u) is the support
function of K, also known as half the caliper length
of K along the direction u.

S[P] through P (xo) with normal My :=M(a,0,u),mo :=m(a,0,u), (22)

e Major and minor principal semiaxes of a central
ellipse K ﬂLg[o] normal to u :

e Pivotal plane L

direction u: :
respectively.

3 . . :
3. 3. o e Distance of the pivotal point P (xo) from the centre
Lojp = {(xl,X2,X3) €R™: ;xlul - p} » (13) C of the section ellipse C,, :

pE (_H(a7”)7H(aﬂu))7 ri= r(a7x07u)7 (23)
where see Fig. 1b, c.

3
pi=p(xo,u) =Y xoiu; (19)  Now Eq. 7 may be rewritten as follows,
i=1

=S =21 (M?
is the signed distance of Lg[P] from the origin O, S := S (a,x0,u) = 27 (M (a,x0, 1)

see Fig. la. +m? (a,x0,u) +r* (a,x0,u)) , (24)
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and the unbiasedness of S means that its expectation
with respect to the uniform probability element given
by Eq. 20 is equal to S, namely,

E{g(a,xo,u)}

1 /2 2w
=— inf® do S

271:/0 sin /0 (a,xo,u(¢
=S

The explicit formula sought for S (a,x,u) is given
by Proposition 1 below, and that of its variance by
Corollary 1.

0))d¢ (25

Lemma 1.
Mg —|—m% = Z a%a? (ul2 —|—u§) /Hz(a,u), (26)
1<i<j<3
(Appendix A.3).
Lemma 2.

2
M+ m? = (M3 +m3) (1 = p(xo’”)> @

H?(a,u)
(Appendix A.4).

Lemma 3. Let ¢ := (c1,c2,¢3) denote the Cartesian
coordinates of the centre C of the pivotal ellipse section

._ 3
C, = KﬂLz[P]' Then,
R Y )
= = X0i —Ci) = = X0i H2 (a,u)
(28)
(Appendix A.5).

Proposition 1. Consider an ellipsoid K C R® of
principal semiaxes a, plus a given pivotal point P of
Cartesian coordinates xy € K°, and a pivotal plane

LS[P] through P with normal direction u, uniformly

distributed in Si. Then,

(29)

2
a; ulZ3 1 X0l
3
Z 1a2 2
is an UE of the surface area S of K

Proof. It suffices to incorporate Eq. 26, Eq. 27 and Eq.
28 into the rhs of Eq. 24, bearing Eq. 17 and Eq. 19 in
mind.
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Corollary 1. The variance of the preceding estimator
is,

Var (§(a,xo,u))

1 [7/2 2
- ﬁ/o sin® d9/0 (S (a,x0,u(0,0)))*d¢ (30)
_527

where the direction cosines involved in Eq. 29 have
been expressed in spherical polar coordinates, (Eq.
16).

Proof. Eq. 30 follows by the definition of the variance
and by Eq. 25.

Corollary 2. The surface area S(ay,az,a3) of an
ellipsoid , see Eq. 10, may be expressed as follows,

S(alaa27a3)

3
/ 22(u +u)/Za,~2ul-2 du
1<l<]<3 i=1
N aa’ (ulz —l—u%)
1 l<1< <3 :
—/ dul/ =
3
V1 —u3 Y7 a;ju
with the substitution ug = 1—wujy —uj in the latter

2_ 2
integrand.

~

duz 31)

Proof. The estimator S (a, xo, u), see Eq. 29, is unbiased
for any choice of the pivotal point P(x9) € K°. For
the particular choice xp = (0,0,0), the expected value

of §(a,0,u) with respect to the uniform probability
element

% B duy duy
2

P(du) = (32)

2.2
277/ 1 —ui —u;

<—1§u1§1,0§u2§\/1—u%>

must therefore be equal to the rhs of Eq. 10.

As an exercise, a direct verification of Eq. 31, using
spherical polar coordinates, is given in Appendix A.6.

Corollary 3. If K is the unit sphere, namely if
ai=ay=az =1, then by symmetry we may take
X01 :X02:0 and up = sin@,u2 == 0,u3 = COS@,
whereby Eq. 29 becomes,

S (x03,0) =27 (2 — 2x35 + 33 5in6) . (33)
Then, the application of Eq. 25 and Eq. 30 yield,
respectively,
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E{§(x03,9)} —4r=S§

o

cV? {§ (03, 0) } (34)

For the unit sphere, and for the estimator of S given by
Eq. 5,

(35)

(Cruz-Orive, 2008, Eq. 6), which is larger than x33 /5
for all xo3 € (0, 1), as expected from Eq. 8.

~

HEAT MAPS OF CV (S) FOR A GIVEN
ELLIPSOID

While the unbiasedness identity E(S) = S does not
depend on the location of the pivotal point xg € K°, the
variance of § does. For any arbitrary pivotal point in the
interior of a given ellipsoid, the numerical value of the
double integral in the rhs of Eq. 30 can be evaluated
quickly with the aid of software packages such as R,
(http://www.r-project.org), or Mathematica, (Wolfram
Research, Inc.).

~

To appreciate the behaviour of CV(S) as the location of
the pivotal point varies, it suffices to adopt an arbitrary
triaxial ellipsoid - here, one of principal semiaxes
a = (1,2,3) was chosen for that purpose, see Fig. 2.
The application of Eq. 10 yields S = 48.8821--- for
this ellipsoid. As expected, numerical integration of
the rhs of Eq. 25 yields the same value for arbitrary
choices of x( satisfying Eq. 14.

~

However, Var(S) depends on the choice of xy.
For instance, for xy = (0.3,0.0,1.7), (0.0,0.4,2.4),
and (0.5,0.7,0.0), say, the corresponding values of

~ -~

CV(S) = /Var(S)/S are 0.44---,0.65---,0.18---.
For numerical computation, the vector u in Eq. 29 was
expressed in spherical polar coordinates.

The results given in the present section were
computed with the aid of the software package R4.4.2
(http://www.r-project.org). The computation of the
elliptic integrals involved in Eq. 10 requires calling
library (Carlson).

The heat maps displayed in Fig. 2 (upper panels)
correspond to the cases in which the pivotal point
belongs to each of the intersections of the ellipsoid
with the planes x;, = 0,x; = 0, and x3 = 0,
respectively, namely the three principal -ellipses.
Within each principal ellipse, pivotal points were
generated constituting a square grid of size 0.01. For
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instance, the principal ellipse in the plane x; = 0
was enclosed in the rectangle [—1,1] x [—3,3], which
contained 201 x 601 grid points. As a check, the
proportion of pivotal points within the ellipse section,
namely satisfying the condition x% —l—x% /9 < 1, was
of 94197/(200 x 600), which is approximately equal
to the expected ratio /4 of the ellipse area to the
rectangle area. Based on the colour intensity of the

~

maps, it appears that the larger values of CV(S)
correspond to pivotal points in peripheral regions of
the ellipsoid. The lower panels in Fig. 2 suggest that

~

the variation of CV(S) as a function of the distance
from the ellipsoid centre of xp along an axis oscillates,
hence it will not be monotonic in general.

The R program used was supplied by Claude.ai.
It required calling library (ggplot2),
library (scales), and library(viridis).
The codes of the programs used in this paper (under
Windows 10) are available from the author on request.

FINAL COMMENTS

APPLICABILITY

While the estimator S, can be computed by Eq. 7
from measurements made in any pivotal ellipse section
of an arbitrary ellipsoid with unknown principal
semiaxes lengths, Var(§) cannot be estimated from
such measurements. The numerical computation of the

~

exact Var(S) via Eq. 30 is not a problem, but it requires
the knowledge of the mentioned lengths, and of the
coordinates of the pivotal point.

In an (uncommon) practical case involving a
population of arbitrary ellipsoidal particles containing
a sole, prominent pivotal point (e.g., a ‘nucleolus’ in
some biological cells), a ratio unbiased estimator of
the ordinary population mean Ey(S) of the individual
ellipsoid surface areas is,

1 <

2 &,
SN= o) Si
Q"5

)}

i=1

0
which is an adaptation to ellipsoids of the first Eq. (4.2)
from Cruz-Orive (2005), or of Eq. (4.24.2) from Cruz-
Orive (2024). Thus, QO is the total number of ellipsoids
sampled with isotropic uniform random (IUR) optical
disectors, say, using the nucleoli as sampling units.
A sweeping optical section meeting the ith nucleolus
for the first time is thereby a pivotal section, and
the corresponding lengths (M;, m;, r;) can be measured
in the corresponding ellipse section by adopting the
sampled nucleolus as the pivotal point. If a particle
contains several nucleoli, then one of them is chosen
uniformly at random.

(M7 +mi+r7),  (36)


http://www.r-project.org
http://www.r-project.org
http://Claude.ai
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Fig. 2: Above: Heat maps of the coefficient of variation CV(§) of the estimator S computed via Eq. 30, for a
triaxial ellipsoid of principal semiaxes (1,2,3). From left to right, intersections of the ellipsoid with the planes

~

xp =0,x1 =0, and x3 = 0, respectively. Below: Corresponding plots of CV (S) as the pivotal point lies along each
) D Y. )4 gp p p 8

of the three principal axes of the ellipsoid.

If the ellipsoidal particles do not contain nucleoli,
then to estimate Ex(S) one can resort to a classical
ratio design, e.g. Cruz-Orive (2024), Section 2.31.
An alternative is to consider instead the volume
weighted mean Ey (S) := Ex(VS)/En(V), which does
not require disectors. Superimpose a test system of
points on a planar IUR section through the population,
andlet p; > 1,(i=1,2,...,n), denote the total number
of test points hitting the ith hit ellipse section (r, which
does not enter in the final estimator, is the number of
hit ellipse sections). Actually, p; is the number of times
the i th ellipsoid volume is sampled, hence the volume
weighting effect. Each hitting point is effectively a
pivotal point, and therefore the invariator estimator of
the surface area of the ith hit ellipsoid, based on the p;
test points hitting it, is,
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27T Di
S = —

2 2 2
] (M,]—l-mU-Frl])
o=

(37
Set P =Y" | pi, the total number of test points hitting

ellipse sections in the IUR section plane. Then, a ratio
unbiased estimator of Ey () is,

27 - 2 2, .2
7ZZMﬁ%wﬂ(m

1 n
Sy = — 2 PiSi =
P = - =
i=1 i=1j=1

Renumber the entire set of P measurement triplets
{(Mij,mij,rij)} as {(M,-,m,-,ri),i:1,2,...,P}.
Then,

\®]

M~

_ T
P

Sv (M? +m?+17). (39)

i=1

The preceding estimator is an adaptation to ellipsoids
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of the first Eq. 5.3 from Cruz-Orive (2005), or of Eq.
4.25.1 from Cruz-Orive (2024).

GENERALIZATION

Computable formulae exist for the surface area S; of
the d-dimensional ellipsoid, see e.g. Rivin (2007), who
generalizes formulae of Moran (1982) for d = 3. For
d > 3, however, no closed expression is known in terms
of elementary, or of classical special functions like
elliptic integrals. The question arises of whether Eq.
31 could be generalized. Eq. 21 from Gual-Arnau et
al. (2010) generalizes Eq. 2 for odd d only, namely for
d=2r+1,r=0,1,---, and the pivotal plane has to
be replaced with a subspace Lf o) In the invariator
context, Gual-Arnau (2023) considers a cylinder probe
of radius R (instead of a weighted test line L%(Z) ) within
a pivotal slab of thickness 2R. The latter author does
not consider the special case of convex bodies. It seems
unlikely that Eq. 31 can be generalized.
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APPENDIX

A.1. DERIVATION OF EQ. 6 FOR THE
FLOWER AREA OF AN ELLIPSE.

For a given pivotal ellipse section C,, Eq. 4, with
hp(®) := h(u, w), is equivalent to

27
A(He,) = ;/0 13(0) do. (40)
The support function ip(®) of C,, with origin P, is just
the radius vector of Hc, with centre P. From Fig. 3 itis
seen that 1p(®) is equal to half the caliper length H (o)
of C,, minus the orthogonal projected length of the
vector CP onto of the support line of H(®). Let (xo, o)



denote the Cartesian coordinates of P with respect to
the ellipse centre C. Then,

hp(®) = H(®) — (x0,y0) - (cos ®,sin @)

. 1/2
= (MzcoszaH—m2 sin? o) /

— (xocos @+ ypsinw).

(41)

Fig. 3: Pivotal ellipse C,, see also Fig. 1, incorporating
the corresponding support set or 'flower’ Hc, with
respect to a pivotal point P.

The expression of H(w) is a particular case of Eq. 52
for d = 2. Now Eq. 40 yields,

1 [2n
Altie,) = [ i(@)do

0

_ 1 M2 22

=5 (M CcOos” @+ m~ sin” @ 42)
0

+xgcos? o+ y§sin? o) do,

because the integrals of the terms involving the first

powers of sin @, or cos @, vanish. Thus,
T

A(Hc,) = )

_T
2

A.2. DERIVATION OF EQ. 17 FOR H(a,u)

To make the exposition self-contained, this, and
Appendix A.4, are adapted from the Appendix in Cruz-
Orive (1985). Here it is convenient to use matrix
calculus. No difficulty is added by working in RY.
Consider a d-ball By(h) of radius A, centred at O.
Referred to an orthogonal frame Oy;y;---y;, the
equation of the ball is,

y'By <0,
y= (ylayZa"' 7yd71),)
B = diag (h‘z,h‘z,--- A2, —1) .

(M2 +m?+x3 +y%)

(M?* +m*+7r7). (43)

(44)

The equation of an hyperplane tangent to the ball is,
t'(h)y =0,
t(h) = (t1,t2,- -~ ,tq,—h)",
4+ +-+17=1).

(45)
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The following unimodular central affinity,

x =Gy,
X = (xlaXZa crtyXd, 1)/
G:diag(al/h,az/h,---,ad/h,l), (46)
h— (Cllaz-~-ad)l/d,

transforms the ball, Eq. 44, into
¥Ax <0,
A=G 'BG™! 47)

= diag (afz,af, ‘e ,a;z, —1) ,
namely a d-ellipsoid K;(a), a := (aj,az,-- ,aq), and

it also transforms the tangent hyperplane given by Eq.
45 into the hyperplane

d
t’(h)Gilx =0, namely Z (t;/ai)xi =1,
i=1

(48)

which is tangent to the ellipsoid. If the coefficients
Ui, uy, -+ ug, say, of xp,xp,---,x4, respectively,
satisfied the identity u% + u% + -+ uﬁ =1, then the
rhs of the resulting equation would be the distance of
the tangent hyperplane from O, namely the support
function H (a,u) of the ellipsoid with respect to O. To
achieve this, set

J “1)2
u; = (t;/a;) (Zﬁtf/a?) )
e

(49)
(ui+ui3++uz=1),
whereby,
d d d
Yau;Y rijai=Y 7 =1, (50)
i=1 i=1 i=1
so that the transformed hyperplane becomes,
d d 1/2
Y x| Y7/ | =1, (51)
i=1 j=1
or,
J J 1/2
Zx,-u,- = Z au? =H(a,u). (52)
i=1 i=1

For d = 3, H(a,u) becomes Eq. 17.
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A.3. PROOF OF LEMMA 1

The equation of the boundary dK of the ellipsoid K
given by Eq. 9 is fj (x1,x2,x3) = 1, where

fii=fi(x,x0,x3) = X1 /ai + 35 /a5 +x3 /a3 . (53)

3

On the other hand, the equation of a plane Lz[o}

through
the origin is f> (x,x2,x3) = 0, where

fa = fa(x1,%2,X3) = x1u1 + XU +X3U3,
(i +uj+u3=1). (54)
The square semiaxes m(z),Mg of the central section
KﬂLg[O], see Eq. 22, are the minimum and the
maximum, respectively, of the square distance of a
point of the boundary dK from O, namely of the
function

R? :=R? (x1,X2,x3) :x%+x%+x§, (53)

with the restrictions given by f; =1 and f, = 0. By the
Lagrange multipliers method, two parameters A, A,
are introduced, and the function to minimize is,

=R +4(fi—1)+24f. (56)

The procedure leads to the following three equations,

£

ox;
Multiplying the i th equation with x;, adding up from
i =1 to i =3, and making use of the definitions of
R?. f1, f>, one obtains A; = —R”. Now, Eq. 57 yields,
lzaizui

{xi_Rz zvi_17273}7

which, substituted into the equation f; (x1,x2,x3) = 0,
yields the following quadratic equation in the unknown
R?,

—O,i—1,2,3}. (57)

(58)

H2R4—qu(a,u)Rz—i—(alazag)z =0 (59)
where H := H(a,u), see Eq. 17, whereas the factor
W (a,u) has in fact the expression in the rhs of Eq. 26.
But 1 (a, u) is precisely the sum of the two roots of R?,
namely Mg + m(z). As a check, the area of the central
ellipse is,

Ttajazas B 3V(K)
H  4H '’

A (Kng[O]) — TMomo — (60)
which is a special case of Eq. 67, see below, for d = 3.
The foregoing proof is adapted from an exercise found
in Rey-Pastor (1967, pp. 316-7), where the purpose
was to find the expressions of mgy and M.
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A.4. PROOF OF LEMMA 2
Consider a d-ellipsoid K;(a), see Eq. 47, transected by
an hyperplane LY | (p,u) of equation
' (p)x=0,
u(p) = (ur,u2,+~ g, —p)
(ui+uz+-+uz=1),|p| <H(a,u).

/
)

(61)

Set,
Vi1(p,u) := Volume (Kd(a) nLd_,(p, u)> . (62)

Under the transform x = Gy, see Eq. 46, the d-
ellipsoid becomes a d-ball B;(h), Eq. 44 , whereas the
hyperplane transecting the ball becomes

d
u'(p)Gy =0, namely Y a;yu; = ph.  (63)
i—=1

1

Analogously as in Appendix A.2, set

J ~1/2
t, = a;u; (Z a?u?) = Cliui/H7 (64)
i=1
where H := H(a,u), for short. Then, Eq. 63 becomes

d
Y yiti=ph/H, (G+6+--+13=1), (65
i=1

18
1/2

and therefore  By(h) N L% |(ph/H,t) a

(d—1)—ball of radius (h*>—p?h*/H?)
volume c¢(d — 1)h¢! (l—pz/Hz)(dfl)/z, where
c(d) = n%?/T(d/2 4 1) is the volume of the unit
d-ball. Because G is unimodular and it transforms a
vector of length H into one of length £, it follows that

the ratio of the ellipsoid transect volume to the ball
transect volume must be equal to #/H, whereby,

and

d—1))2

H ' e(d— )it (1 - p*/H?)'
y-072

VdA(P:“)

=Vy-1(0,u) (1-p*/H? (66)

)

(Cruz-Orive, 1985, Jensen & Mgller, 1986), where

Vy_1(0,u) = c(d—1)h?/H
=c(d—1)ajay---aq/H

(67)

is the volume of the central transect of the ellipsoid.
For d = 3, Eq. 66 yields,
TMm = tMomy (1 — p*/H?) . (68)

Parallel ellipsoid sections are similar ellipses. In fact,
under the transform G, which is linear, parallel ball



sections, namely disks, will become similar ellipses.
Thus,

M /My = m/my, (69)
whereby Eq. 68 yields,
M> =M; (1-p*/H?),
m* =mj (1 — p*/H?), (70)
and therefore,
M +m? = (M§ +mj) (1 - p*/H?), (71

which is Eq. 27.

Results equivalent to Eq. 70 are well known for
spheroids, e.g. Cruz-Orive (1976), but not readily
available for triaxial ellipsoids in that simple form.
Recall that MS, m(z) are the roots of Eq. 59.

A.5. PROOF OF LEMMA 3

The problem is to parametrize the centre C(cy,c2,c¢3)
of the pivotal ellipse section C, := K ﬂLg[P]. The

orthogonal projection of C, onto the plane x3 = 0 is
an ellipse C},, say, of centre C'(cy,cz), see Fig. 1b,
whereas

c3 = (p(u,x0) —urcr —uzca) Ju3, (72)

because C(cy,c2,c3) € Lg Thus, the problem is

[P
reduced to finding C’'(cy,cz). The equation of the
ellipse C), is obtained by eliminating x3 from Eq. 9 and

Eq. 18. In homogeneous coordinates the result is,

._ 2 2
f(x1,x2,1) := apxy + 2apx1x2 + anx;

+2a3x1t + 2ar3xot +a33t2 =0, (73)
where,
2 22,2
ai = uj +uzaz/ay,
ajp = az; = ujuy,
a3z =asp = —puy,
2 22,2
ary) = Mz —+ M3a3 /Cl2, (74)

az3 = azy = —puy,
2 2 2
a3 =p — u3a3.

The equation of the polar line of C], with respect to an
exterior pole (x},x},1’) is

d
g (ot xot) = 5T
(75)
The ellipse centre is the point of intersection (cy,c2)
of the two polar lines corresponding to the ideal poles

(1,0,0) and (0, 1,0). The corresponding equations are,

{

g(C17C271717070) =
8(0176‘271707170) =

0

0 (76)
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namely,
arici+apcy+aiz =0
apci+axncy+a3 =0

Solving for (cy,c2), replacing the {a;;} with their

expressions in Eq. 74, and using Eq. 72, Eq. 28 is

obtained.

A.6. SYMBOLIC COMPUTATION OF THE
DOUBLE INTEGRAL IN EQ. 31

The ensuing verification is strictly not necessary
because, by Corollary 2, Eq. 31 must hold.
Nonetheless, the integral in non trivial, and its direct
computation may suit readers willing to circumvent
the underlying stereological theory of the invariator
design.

To avoid singularities, it is convenient to use spherical
polar coordinates, see Eq. 16, whereby the identity to
be verified is,

/2 27
/O/Sme a0 [ 1(9.0)0 =S(arar,a5) (79)

where,
3
0= L0
fl(¢79): % %Sln 9/H2( )7
£(9,6) =aja3 (1 —sin*Osin*¢) /H*(9,6), (79)
f(9,6) = 203(1—Sln 6cos’9) /H*(9,6),
H%*(¢,6 )—al sin® 6 cos® ¢ + a3 sin® Osin” ¢.

+ajcos’ 0

Mathematica 7, (Wolfram Research, Inc.) was not
effective in checking Eq. 78 directly. However,
integration was possible by treating each of the
preceding three functions separately. Furthermore,
integration was first carried out with respect to ¢, the
corresponding result was simplified, multiplied with
sin@, and finally integrated with respect to 8. For
instance,

21
f1(9,6)d¢

g1(0):=
dma a%sinze
\/Hl | a +a3 (a3—a )cos(29))

(80)



Image Anal Stereol 2025;44:171-181

and then,

/2
Gi(ay,az,a3) ::/0 21(0)sin6dO

_ 2riata; (a3E(iat,q) — a3F (iat,q))

= ; 81
(3—a3) /a3 i
where
o =csch™! <a1/ a3 — a%) , (82)

¢ = (a3/a; 1)/ (a3/ai —1).
In Eq. 81, the two elliptic integrals of imaginary
amplitude are transformed into the ones with real
amplitude with the aid of Eq. 17.4.8 and Eq. 17.4.9
from Abramowitz and Stegun (1965), namely,

E(lavq) = —IE((P,k) +1F((p7k) +i a% _a%/az

F(ia,q) =iF(¢,k) (83)
where
COS 0 = COs (tanfl(sinh(oc))) =aj/a3 (84)
K=1-¢=(1-aj/a)/(1-aj/a3)
in agreement with Eq. 11. Thus, Eq. 81 becomes,
2na’al
G (a1,a2,a3) = 55—
a; —4a3
2ratay (a3E(, k) + (a3 —a3) F(@,k
Mt (a3E(@.k) + (a5 —a3) F (@ )) (85)

2 2 2 2

(a3 —a3)
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Similarly, the double integrals corresponding to f>, f3
become,

2ra’al
Gy (ar,a2,a3) = =5
az —a;
_ 27ajara3 (a3 —ai) E(9,k) — (a3 — a3) F(9,k))
(3 —a7) (63 —d3) /a3 —a
2rara (AAE(@.k) —a*F (@, k
G3(a1,a2,a3): 3(22 (:D ) - 1 2((»0 ))
(@3 —af) /a3 —ai
(86)
respectively. It is readily verified that
/2 2n
/ sin@ do f(¢,0)d¢
0 0
3
= Z Gi(ai,ar,a3) = 2ma’ (87)
i=1
27'5612
+ (a3 —at) E(@,k)+atF(,k))
02 —a2
379

which coincides with the rhs of Eq. 10, as required.



	Introduction
	A BRIEF REVIEW OF THE INVARIATOR ESTIMATION OF THE SURFACE AREA OF A CONVEX BODY
	THE INVARIATOR ESTIMATOR OF THE SURFACE AREA S OF AN ELLIPSOID
	THE SURFACE AREA OF AN ELLIPSOID
	PARAMETRIZATION OF THE PIVOTAL POINT AND THE PIVOTAL PLANE
	PARAMETRIZATION OF S"0362S, AND COMPUTATION OF Var(S"0362S)

	HEAT MAPS OF CV (S"0362S) FOR A GIVEN ELLIPSOID
	FINAL COMMENTS
	APPLICABILITY
	GENERALIZATION

	APPENDIX
	A.1. DERIVATION OF Eq. 6 FOR THE FLOWER AREA OF AN ELLIPSE.
	A.2. DERIVATION OF Eq. 17 FOR H(a, u)
	A.3. PROOF OF LEMMA 1
	A.4. PROOF OF LEMMA 2
	A.5. PROOF OF LEMMA 3
	A.6. SYMBOLIC COMPUTATION OF THE DOUBLE INTEGRAL IN Eq. 31


