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ABSTRACT

Engineering materials often feature lower dimensional and directed structures such as cracks, fibers, or closed
facets in foams. The characterization of such structures in 3D is of particular interest in various applications in
materials science. In image processing, knowledge of the local structure orientation can be used for structure
enhancement, directional filtering, segmentation, or separation of interacting structures. The idea of using
banks of directed structuring elements or filters parameterized by a discrete subset of the orientation space is
proven to be effective for these tasks in 2D. However, this class of methods is prohibitive in 3D due to the high
computational burden of filtering on a sufficiently fine discretization of the unit sphere.
This paper introduces a method for 3D pixel-wise orientation estimation and directional filtering inspired
by the idea of adaptive refinement in discretized settings. Furthermore, an operator for distinction between
isotropic and anisotropic structures is defined based on our method. This operator utilizes orientation
information to successfully preserve structures with one or two dominant dimensions. Finally, feasibility
and effectiveness of the method are demonstrated on 3D micro-computed tomography images in three use
cases: detection of a misaligned region in a fiber-reinforced polymer, segmentation of cracks in concrete, and
separation of facets and strut system in partially closed foams.

Keywords: adaptive directional filtering, computed tomography, crack detection, filter banks, local fiber
orientation, local surface normal orientation, orientation estimation.

INTRODUCTION

In the past few decades, micro-computed
tomography (µCT) has gained momentum in materials
science and engineering for the purpose of detailed and
fully 3D investigation of materials’ micro-structures.
Materials of interest include concrete, fiber-reinforced
materials, foams, woven, and non-woven materials.
Characterization of the geometric micro-structure
enables understanding and modelling of the material
structure and gives a unique insight into the connection
of parameters of the production process and the
resulting material’s properties.

Many materials have a highly anisotropic structure
and contain lower dimensional or directed features. In
these cases, classical image processing methods such
as noise reduction filters should be used carefully to
preserve directional information as well as thin lower
dimensional features. Moreover, nowadays image
sizes well above 20003 pixels have become common.
Therefore, efficient image processing techniques that
can handle this massive amount of data are needed.

In 2D, robust smoothing, segmentation, and

analysis of fibrous structures is achieved by
rotated anisotropic Gaussian filters whose main axis
orientation is evenly sampled on the unit semi-
circle (Wirjadi, 2009; Schladitz et al., 2017). The
optimal orientation is then chosen pixelwise. However,
Wirjadi et al. (2016) show that in 3D, this approach
becomes computationally too intensive as the number
of orientations to be checked to sample as densely
as in 2D increases enormously. The idea of filtering
using a fine sampling of the orientation space can
nevertheless be utilized in 3D. To this end, we reduce
the computational burden by checking only a subset
of all orientations (Fig. 1). This subset is adapted
to the current pixel based on orientation information
derived from its local neighbourhood. More precisely,
we introduce an adaptive framework for directional
filtering and orientation analysis. Our method requires
an initial orientation estimation in each pixel to start
with. Filtering is then restricted to orientations close
to the given initial orientation. This drastically reduces
the run-time compared to classical directional filter
banks which search the full evenly sampled orientation
space.
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In 3D, lower dimensional structures may be either
linear (1D) or planar (2D). To be able to treat both
cases, we use two classes of structuring elements
(SEs): line segments and squares.

Fig. 1: Example of a search cone (red) around (θ ,ϕ) =
(2,2) (green, in spherical coordinates, units: radians)
on the unit half-sphere (blue). The parameters are
δmax = 0.5 and n = 24 (see Section Discretization of
the half-sphere).

We estimate the initial orientation by the
established method based on the eigenvectors of the
Hessian matrix or more roughly by probing the main
directions (main axes, plane, and space diagonals)
induced by the pixel grid and choosing one of
them. Furthermore, following an idea of Sazak et al.
(2019), we derive a local structure shape operator
by comparing filter responses with varying SE in
orthogonal spaces. Finally, we apply our method to
three tasks in the analysis of materials structures
based on computed tomography (CT): segmenting
misaligned regions in a polymer reinforced with long
glass fibers, segmentation of cracks in concrete, and
facet identification in ceramic foams.

To summarize, we devise a method for fast and yet
effective directional filtering in 3D, and an operator
for characterizing local structure shape. Both prove
to be useful for analyzing materials structures highly
relevant in practice.

RELATED WORK

Our approach combines ideas from two fields of
classical image processing: filter steerability or filter
banks, and adaptive mathematical morphology. So far,
these methods were mostly developed for and applied
to 2D images. In 2D, directional filter banks are based
on the principle of filtering in a set of orientations
evenly-sampled on the unit semi-circle and selecting
an orientation based on the maximal/minimal filter
response (Freeman and Adelson, 1991; Soille and
Talbot, 2001; Michelet et al., 2006; Sandau and Ohser,
2007; Sandberg and Brega, 2007; Schladitz et al.,
2017). This class of methods has been applied to

the tasks of filtering, segmentation, and orientation
analysis.

In 2D, an even sampling of the unit semi-circle
is easily obtained by choosing equidistant points on
the interval [0,π). In 3D, sampling of the unit semi-
circle is replaced by sampling on the unit half-sphere
(Robb et al., 2007; Sazak et al., 2019; Semeraro et
al., 2020). Achieving an even sampling is not a trivial
task (Robb et al., 2007; Wirjadi, 2009). Sets of exactly
equidistant points on the unit sphere exist only for
certain numbers of points (Saff and Kuijlaars, 1997),
with the simplest examples being N = 2 and N = 6.
For other numbers of points, sets of approximately
equidistant points can be computed using optimization
methods. Wirjadi (2009) and Altendorf (2011) provide
overviews. Wirjadi (2009) adapted the optimization
of Fliege and Maier (1999) to the upper half-sphere,
Wirjadi et al. (2016) used the same sampling.

Classical mathematical morphology uses fixed SEs
for filtering (e.g. dilation, erosion, opening, or closure).
Adaptive morphology expands these concepts by
varying shape and/or size of the SE in each pixel
location depending on local image information. Most
common features used for selecting adaptive SEs
are local gray value differences (Lerallut et al.,
2007; Debayle and Pinoli, 2011), local orientation
(Tankyevych et al., 2008; Tankyevych et al., 2009),
local structure tensor (Landström and Thurley, 2013),
salience (Curic et al., 2012), or local path alignment
with the image structure (Heijmans et al., 2005;
Luengo Hendriks, 2010; Morard et al., 2014).

Our approach is closely related to the one of
Landström and Thurley (2013) who construct elliptical
SEs whose axis orientations and sizes are derived
from the eigenvectors and eigenvalues of the local
structure tensor. Alternatively, directional information
can be determined by the analysis of the Hessian
matrix in each pixel. The extracted directions have
been used for directional line filtering (Tankyevych
et al., 2008; Tankyevych et al., 2009), adaptive
morphological filtering (erosion or dilation with linear
SE) or anisotropic Gaussian filtering for enhancement
of linear structures (Su et al., 2014).

Many approaches in adaptive mathematical
morphology rely on constructing complex SEs which
in 3D result in enormous run-times and require
significant computational resources (Dokládal and
Dokládalova, 2008). Hence, 3D applications of
adaptive morphology are still rare, with a few
exceptions (Lerallut et al., 2007; Tankyevych et al.,
2009; Luengo Hendriks, 2010).
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MATERIAL AND METHODS

PRELIMINARIES

Let D ⊂ Z3 be a discrete grid. Then, L = {I|I :
D→R+, x 7→ I(x)∈R+} is the family of all mappings
from the grid D to the real non-negative numbers. An
element I ∈ L is called an image.

Most morphological operations and image filters
require the choice of a SE (or filter mask). A SE B
is defined as a subset of Z3. Here, we only consider
reflection invariant SEs (x ∈ B ⇐⇒ −x ∈ B) with
0∈ B, namely line segments and squares. For any pixel
(lattice point) p∈D, B(p) = {m∈D|m− p∈B} refers
to a copy of B translated to the pixel p. Then, some
filter γB : L → L is defined as

γB(I)(p) =
⊗

{I (m) |m ∈ B(p)},

where
⊗

represents the filtering operation. For
instance, computing the mean or median of the gray
values yields a mean or median filter while computing
the minimum or maximum yields an erosion or
dilation, respectively.

Line SEs of a given length can uniquely be
parametrized by their orientation. Square SEs will be
parametrized by their normal orientation. However,
squares are not invariant with respect to rotations
around the normal orientation. To obtain a unique
parametrization, we choose one of the square’s edges
to be contained in the intersection of the xy plane
and the plane with the desired normal orientation. The
center of the square is then shifted to the origin to
ensure reflection invariance. In the special case that the
normal orientation is the z axis, the square is aligned to
the x and y axes with center in the origin. Line SEs are
discretized using the Bresenham (1965) line algorithm.
Starting from the center pixel, the line is discretized
only in one direction and reflected to ensure symmetry
of the SE. Square SEs are constructed by discretizing
one of their edges and shifting it along the orthogonal
edge.

The unit sphere in R3 will be denoted by S2.
Due to the symmetry of the SEs, orientations on
the unit half-sphere S2

+ := {u = (u1,u2,u3) ∈ R3 :
||u||= 1, u3 ≥ 0} are sufficient for the parametrization.
In practice, only finitely many orientations can be
considered which requires an even sampling of the
orientations on S2

+ to avoid introducing systematic
errors. We follow the approach of Altendorf (2011)
which exploits analogies from the 2D case to compute
fast and easily an approximately even sampling on
S2
+ without complicated optimization. The idea is to

evenly discretize the unit circle with n points which

are then projected onto the unit square. Applying this
procedure in the three coordinate planes (xy, yz, and
xz) yields a sampling on the unit cube. The sampling
points are then projected on the unit sphere, see Fig. 2,
and finally restricted to S2

+.

Fig. 2: Discretization of S2
+ (right) by extrapolation

from the unit circle in 2D (left) for n = 24. Blue
dots represent the uniform discretizations of the circle
(left) or the sphere (right), while red dots (left) are
projections of points from the unit circle to the unit
square.

The parameter n should be a multiple of 8 to ensure
that the coordinate axes and diagonals are contained in
the sampling. The total number of sampled points on
S2
+ is N = n2/8+(n/4+1)2.

ESTIMATING INPUT ORIENTATIONS
Our method requires roughly estimated local

orientations as input. We suggest two ways to obtain
this input.

Local orientation from Hessian matrix
An established approach for estimating orientation

in 3D images is by analysis of the eigenvalues and
eigenvectors of the Hessian matrix (Eberly et al., 1994)

Hσ =
(
∇

2)(I ∗gσ ) , (1)

see e.g. Wirjadi et al. (2016). Here, gσ is a Gaussian
kernel with standard deviation parameter σ . The
parameter σ affects the scale of the observation
and should be chosen depending on local structure
thickness.
Throughout the paper, the objects of interest will be
bright structures on dark background. In this case, the
eigenvalues of high absolute value have a negative sign
(Frangi et al., 2000). Thus the largest eigenvalue is
in fact the smallest in absolute value and vice versa.
Hence, the eigenvector of the Hessian matrix Hσ with
the largest eigenvalue represents the direction of the
smallest change of gray values and is used to estimate
the local structure orientation in the image when using
a line segment as SE. When using the square SE,
we use the eigenvector corresponding to the smallest
eigenvalue to estimate the normal direction, as this
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vector represents the orientation yielding the strongest
change of gray values.

Another established approach for this task is to use
the structure tensor (Weickert, 1999; Wirjadi et al.,
2016), which is based on the first order derivatives:

Sσ ,ρ = gρ ∗ ((∇ f ∗gσ )(∇ f ∗gσ )),

where ρ is an additional spatial smoothing parameter
on the tensor space. The orientation is then estimated
from the eigenvectors as done for the Hessian matrix.

Base axis search
In some cases, local orientation cannot be

estimated well via the Hessian matrix, for instance due
to poor contrast, noise, imaging artifacts or interaction
between structures (as for example in fiber-reinforced
materials with high fiber volume fraction). In this case,
we consider a small subset of orientations and use the
orientation of maximal response as input. For example,
the subset consisting of the orientations of the edges,
face and space diagonals of the lattice’s unit cell yields
a test set consisting of 13 orientations (Fig. 3).

Fig. 3: Base axis search. The 13 orientations from pixel
0 on the upper half-sphere: 4 green in the xy plane, 3
red in the first diagonal plane, 3 cyan in the xz plane, 3
blue in the second diagonal plane.

This way of initial orientation estimation may
appear rather rough. However, it will be refined and
adapted to the local image structure by the subsequent
adaptive filtering.

FRAMEWORK
We aim at efficient and robust directional filtering

and orientation estimation in large 3D images. Our
main strategy is fine filtering adapted to a given local
input orientation. This way, computationally expensive
filtering on all sampled orientations can be avoided.

In practice, we assume that each image pixel is
assigned a rough estimate of the local orientation of
the image content obtained by one of the methods
described above. Input images for the adaptive filter
are thus an original image I ∈ L , and an image of the

same size as I containing input orientations v(p) ∈ S2
+

for each pixel p ∈ I.

We then consider filter banks with line segment
or square SEs that are uniquely parametrized by
the line orientation or square normal, respectively.
For selecting a subset of filter orientations from the
sphere discretization, we define a proximity measure
on the parameter space and filter on the much smaller
subset of orientations that are close to the given input
orientation. Due to the restriction to a subset, we can
afford to sample the subspace of the parameter space
very finely. This allows to align the SEs precisely to
the local image content. We measure proximity by the
angular distance between the input orientation in a
pixel and the orientations of the SE. That is, for two
points u,w ∈ S2

+, we set

d (u,w) = arccos(|u ·w|) , (2)

where ”·” denotes standard scalar product.
Let S = {u1, ...,uN} be an even sampling of the unit
half-sphere. Then, for every pixel p ∈ I with input
orientation v(p) ∈ S2

+ we define the search cone as

C (p) = {u ∈ S : d (u,v(p))≤ δmax},

see Fig. 1 for an illustration.

For line or square SEs of half-length L
parametrized by orientation u ∈ S2

+, the filtering
operation is denoted as γu,SE : L → L . Here, SE ∈
{ℓL,sL} represents the type of structuring element (ℓ
line segment or s square) used for filtering. For every
pixel p we then report the maximal filter response on
its search cone C (p) and the corresponding orientation
by setting

Γ
SE
max(I)(p) = max

u∈C(p)
[γu,SE (I)(p)], (3)

and
Γ

SE
arg(I)(p) = argmax

u∈C(p)
[γu,SE (I)(p)]. (4)

Note that the correct full notation would be ΓSE
max(I,v)

for input orientation image v : D → S2
+. We restrict to

ΓSE
max(I) for the sake of easier readability. In summary,

parameters of the method are the sampling size N of
the unit (half-)sphere, the bound δmax on the angular
distance defining the size of the search cone, and the
half-length of the SE L (half edge length in case of a
square) measured in the maximum (ℓ∞) norm.
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OPERATOR FOR LOCAL SHAPE
CHARACTERIZATION

Identification and characterization of lower
dimensional structures is needed in many applications.
For example, fibers are locally one-dimensional
substructures of the image while cracks are often
locally planar. To formalize this, we differentiate
three types of structures in 3D images based on their
dimension following Frangi et al. (2000): blob-like
(3D), plate-like (2D), and tubular (1D).

Information on the local dimension or shape can
be obtained by comparing filter responses with line
and square as SE in orthogonal spaces. To be more
precise, in a pixel p, filter responses of a square filter
with normal u and a line segment filter oriented in u
are compared via

Raniso (p) = |
[
γu,ℓL (I)

]
(p) − [γu,sL (I)] (p) |. (5)

Note that the operator is actually a function of the input
image I and the orientation image, but again we opt
for the more compact notation omitting the orientation
dependency.
If the structure is isotropic, filter responses in
orthogonal directions should be similar and hence
Raniso (p) tends to be low. On the other side, if the
structure is anisotropic, filter responses tend to differ
because line and plate cannot be fitted to the structure
at the same time. Hence, high values of Raniso (p)
indicate local anisotropy.

The orientation u = ΓSE
arg(I)(p) is determined by

Equation (4) with SE chosen depending on the goal
of the analysis: If SE = s, then Raniso distinguishes 2D
from 3D structures. If SE = ℓ, then Raniso differentiates
3D structures on the one hand and 1D/2D structures
jointly on the other hand, see Fig. 4 for a toy example.

Fig. 4: Example: Removing a 3D ball from a 2D plate
and a 1D fiber from a binary image by using the shape
operator Raniso as defined in (5) with SE = ℓ with γu,ℓL
being a median filter.

Junctions, where two or more oriented structures
meet as in Figs. 4 and 8, are hard to classify based
on local orientation or anisotropy as the superposition
may no longer feature a clearly preferred orientation.
Su et al. (2014); Altendorf (2011), and Sazak et al.
(2019) suggest ways to deal with junctions when
segmenting vessels. In 2D, Su et al. (2014) detect
junction points in a post-processing step and handle
them by a tailor-suited filter. That results in increased
computational burden and run-time. Altendorf (2011)
detects junctions, removes them, and finally reconnects
fibers based on local orientation. Sazak et al. (2019)
achieve correct junction handling in 3D, mostly thanks
to covering the full sampling space on several scales.

We adapt the operator Raniso from (5) for improved
junction handling as

R∗
aniso (p) = |ΓsL

max(I)(p)− (ΓℓL
max(I

c))c (p) |, (6)

where Γ
ℓL
max(Ic) represents filtering with SE = ℓ on Ic

i.e. on the inverted or negative image of I with Γ
sL
arg(I)

as an input orientation and δmax = 0.5. This operator
R∗

aniso is well suited for detecting junctions of locally
plate-like structures as in Fig. 8, comes however also
at the cost of increased computational effort.

IMPROVED EFFICIENCY

Here, we argue why our approach is more efficient
than filter banks using all evenly sampled points on
S2
+. For sampling N orientations, the filter bank would

run N filters per pixel. For our adaptive filtering,
the number of orientations considered per pixel can
be approximated by Acone

Asphere
N, where Acone = 2π(1 −

cos(δmax)) is the surface area of the spherical cap
representing the search cone (red region in Fig. 1) and
Asphere = 2π is the surface area of S2

+. This yields
(1−cos(δmax))N orientations to be considered in each
pixel.

For δmax = 0.5, that we use throughout the paper,
this equals 0.1224N. For the adaptive filtering with
base axis search input, 13 additional scans are required
for the computation of the initial orientation estimate.
Hence, the total number of filtered orientations per
pixel equals 13 + (1 − cos(δmax))N. This is smaller
than N for all N ≥ 16. Note that according to
Wirjadi et al. (2016) a sampling with N = 98 is not
sufficiently fine for local fiber orientation estimation.
Thus, efficiency is significantly improved.

For the case of adaptive filtering with input
orientations derived from the Hessian, an explicit

1For an image of size mW ·mH ·mD voxels. The Gaussian kernel is separable and there are O(1) per pixel recursive implementations of
a 1D Gaussian filter.
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Fig. 5: Run-time analysis for varying parameter configurations on the image from Table 1. Left: varying
discretization parameter n for δmax = 0.5 and L = 5, right: varying half-length parameter L for δmax = 0.5 and
n = 16. Here, the parameter n refers to the number of sampled points on the intersection of unit sphere and xy
plane in contrast to the total number of sampled points on the sphere N, as described in Preliminaries.

formula is harder to find as the complexity of the
input orientation estimation is the sum of complexities
of Gaussian filtering (O(mW mH + mW mD + mHmD)
complexity1), finite difference filters (O(mW ·mH ·mD)
complexity), and the eigenvalue analysis. In practice, it
turned out to be even faster than the base axis search.

Method Time (s)
Our 45.3
Base 166.7

Base (efficient) 75.5

Table 1: Run-time comparison of our method with
brute-force approach and efficient algorithm of Soille
and Talbot (2001) for parameters L= 5, n= 16, δmax =
0.5, and SE = ℓ applied to simulated crack image of
size 2563.

Our method is compared with methods for
directional line filtering (SE = ℓ) in all sampled
orientations and run-times are given in Table 1 and Fig.
5. Our method could be extended brute force to line
filtering in every orientation by setting δmax =

π

2 , i.e. by
selecting the largest possible search cone. We denote
this approach by ”Base” in Table 1. However, more
efficient implementations of directional filters have
been suggested (Soille and Talbot, 2001; Dokladal and
Dokladalova, 2008; 2011; Perreault and Hebert, 2007).
These implementations exploit periodicity in the SE
discretization to achieve linear complexity in image
size and constant complexity in the length of the SE.
We compare our method to the one of Soille and Talbot
(2001), denoted by ”Base (efficient)” in Table 1. As
expected, our method is more than three times faster
than ”Base”. Furthermore, our method also proves to
be faster than ”Base (efficient)” for L = 5. However,
for increasing half-length L, ”Base (efficient)” will

eventually become faster than our method due to
constant complexity in the half-length L (Fig. 5 right).
Unfortunately, our method cannot be implemented in
this way, since each pixel has its own search cone i.e.
its own subset of orientations for filtering.

RESULTS

We now apply the proposed methodology to three
types of structures: fibers, cracks, and partially closed
foams. Fibers are long, locally cylindrical objects that
can be detected using 1D line SEs. Cracks can be
seen as 2D surfaces which can locally be captured
by a 2D square SEs. Since plate-like cracks have
to be distinguished from blob-like pores, our local
shape operator is needed. Finally, in ceramic foams,
essentially one-dimensional struts and essentially two-
dimensional closed walls are intertwined, but shall be
analyzed separately.

All run times reported in the following are
observed using a machine equipped with an Intel i7-
8665U processor running at 1.90 MHz and 16 GB of
RAM, running on Linux OS.

USE CASE 1: MISALIGNED REGION
SEGMENTATION IN A GFRP
Glass fiber reinforced polymers (GFRP) are

widely used in light-weight construction. Mechanical
properties of the material like strength and stiffness are
strongly anisotropic depending on the local orientation
of the fibers in the material. Therefore, fiber orientation
analysis plays an important role in developing fiber
reinforced composites and dimensioning parts made
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(a) Original reconstructed CT image (b) Image (a) masked with segmented fiber component

(c) Fibers aligned with injection direction (d) Mean filter in 20×20×20 pixel cube applied to (c)

(e) Aligned region by thresholding (d) overlaid on (a) (f) Misoriented region (complement of (e)) overlaid on (a)

(g) Comparison 1: aligned region overlaid on (a) using
orientation from Hessian matrix (σ = 1)

(h) Comparison 1: misoriented region overlaid on (a) using
orientation from Hessian matrix (σ = 1)

(i) Comparison 2: aligned region overlaid on (a) using
orientation from structure tensor (σ = 1, ρ = 3)

(j) Comparison 2: misoriented region overlaid on (a) using
orientation from structure tensor (σ = 1, ρ = 3)

Fig. 6: Use case 1. Misaligned region detection in a long-glass-fiber-reinforced polymer: from left to right, from
top to bottom - 2D slice views of the input image, fiber component, fibers following the injection direction,
smoothed system of those fibers, region where fibers are aligned, and misaligned region. Slices consist of
1100×500 pixels cropped from 1100×500×200 pixels with spacing 4 µm.
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of them. A common way to produce this type of
materials is injection molding. During this process,
fibers essentially follow the flow. However, it is well
known that fiber orientations deviate in a central layer
whose exact characteristics depend on the production
parameters. Local fiber orientations can be predicted
by numerical simulations, but prediction gets harder
with increasing fiber length and fiber volume fraction.
Quantifying the misalignment helps to understand how
production parameters influence it and to check the
quality of flow simulations (Wirjadi et al., 2014).

Procedures for detecting anomaly regions are
based either on orientation analysis using the Hessian
matrix, see (Dresvyanskiy et al., 2020), or on fiber
separation and subsequent analysis of the orientations
of these individual fibers. In many cases, single fiber
separation is not possible due to sample properties
or insufficient resolution. This is a particular problem
in materials with high fiber volume fraction, where
fibers frequently touch even if the fiber cross-section
is sufficiently well resolved. In these cases, Hessian
based orientation analysis may be locally unstable.
We thus use the base axis search for estimating input
orientations.

We reconsider one of the 3D images of GFRP
discussed by Wirjadi et al. (2014). Samples and
CT images are provided by the Leibniz Institute
for Composite Materials (IVW) in Kaiserslautern,
Germany. We crop a sub-volume of 1100×500×200
pixels, see Fig. 6a).

Due to the high fiber volume fraction, fibers
cannot be separated completely. Hence, we aim
at segmenting the misaligned region based on the
estimated orientation Γ

ℓL
arg(I). This is achieved through

a four step procedure which includes:

1. orientation estimation,

2. separation of the fiber system based on orientation,

3. region detection using the dominant orientation,

4. post-processing.

It demonstrates the abilities of our improved adaptive
orientation estimation. Step by step results of the
procedure are shown in Fig. 6. Next we describe each
step in detail.

In the first step, we apply our method using
Γ
ℓL
arg(I) from (4) with a line SE with parameters

n = 40, L = 20, δmax = 0.5 using the median filter.
This takes 98 minutes. In the second step, the fiber
component is segmented. Fiber bundles should provide
more stable orientation information than single fibers
which may also be outliers. To extract the bundles,

we apply the approach of Sliseris et al. (2015) to the
image Γ

ℓL
arg(I). The method is based on the 2nd order

orientation tensor, roughly the 2nd moment of the
local orientation, averaged over a small neighborhood,
see Wirjadi et al. (2016) for details. In fiber pixels,
the orientation tensor has one dominant eigenvalue.
Hence, the ratio of the largest and the second
eigenvalue can be used to select fiber bundles. The
result is shown in Fig. 6b.

In the third step, the orientation image Γ
ℓL
arg(I) is

masked with the detected fiber bundles. A dominant
orientation and its range are clearly visible from a 2D
histogram of the remaining parts of Γ

ℓL
arg(I) in spherical

coordinates which enables separation of the aligned
region. That is, pixels whose orientation in spherical
coordinates is in the range [1.3,1.7]× [1.1,1.9] are
considered aligned with the dominant orientation (y,
thus vertical in the xy slices shown in Fig. 6c). In a
final fourth step, a mean filter with a 30×30×30 filter
mask (Fig. 6d) and final thresholding yield the aligned
and misaligned regions (Figs. 6e and 6f, respectively).

Note that the refined orientation estimation is
crucial in this process. To show effectiveness of our
method, we use the same four-step procedure with one
change: in the first step we plug in the orientation
estimation from the established methods. Applying
the same framework to the orientation data obtained
from the Hessian matrix did not yield convincing
results (Figs. 6g and 6h). Using the structure tensor
(Weickert, 1999; Wirjadi et al., 2016) instead yields
slightly better results (Figs. 6i and 6j). However, single
misaligned fibers in the aligned region still cause
artifacts, and boundary and shape of the misaligned
region remain less smooth and compact compared to
the one derived by our approach.

USE CASE 2: CRACK SEGMENTATION
Concrete is the most used construction material.

3D imaging by µCT enables non-destructive
investigation of its internal structure in high resolution.
In particular, damage processes and crack formation
can be analyzed which is vital for better understanding
of the properties of various concrete types and
mixtures.

Crack segmentation in 3D images of concrete is
challenging due to: (i) cracks being thin structures
of varying shape and thickness, and (ii) concrete
being a highly heterogeneous material with a variety
of sub-types and components (e.g. pores, cement
matrix, larger gravel, reinforcement structures). In
CT images, cracks can be distinguished from most
other structure components by means of their low
gray value. However, cracks and pores, both being
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Fig. 7: Use case 2. 2D slice views of crack detection by adaptive square filtering: input image I (inverted version
of the original image), standard median filter with 7×7×7 mask (for comparison), Γ

sL
max(I), and Raniso (from left

to right). The image consists of 256×256×256 pixels with spacing 37.83µm.

filled with air, appear typically similarly dark. Hence,
distinguishing both components requires additional
local shape characterization. We perceive cracks to be
2D structures being thin compared to other concrete
components. For their segmentation, we apply our
operator Raniso from (5) with input orientation v =

Γ
sL
arg(I) computed on the inverted image. Crack

structures will have high values of Raniso such that they
can successfully be distinguished from ball-shaped
pores by simple thresholding.

We test our method on a 256 × 256 × 256 pixel
simulated crack image. The concrete background is
derived from a sample provided by the Department
of Civil Engineering, University of Kaiserslautern, and
scanned at Fraunhofer ITWM with a pixel edge length
of 37.83 µm. For details on the crack simulation and
image synthesis, we refer to Barisin et al. (2021).

Results are shown in Fig. 7 for the parameters
n = 16, L = 3, and δmax = 0.5 using the median filter
on a square. The initial orientations are estimated from
the Hessian matrix. The adaptive filtering using the
input orientation from the Hessian matrix takes 57
seconds. For comparison, we also show the original
image filtered by a 7 × 7 × 7 median filter, i. e. the
edge length of the filter mask is equal to the SE edge
length. Both filters reduce noise. The 7×7×7 median
filter blurs the crack and reduces the contrast. Our
filter Γ

sL
max(I) is able to enhance the crack structure

while reducing background noise at the same time.
Additionally, R∗

aniso allows for a better handling of
crack junctions than Raniso, see Fig. 8.

Fig. 8: Use case 2. Junction analysis on 3D crack
image: Raniso (left) and R∗

aniso(right).

For the final segmentation, we threshold the output
of R∗

aniso with lower and higher thresholds and use the
results as mask and marker image, respectively, in a
morphological reconstruction by dilation according to
Soille (1999). The higher threshold extracts just the
crack centerline, while the lower threshold extracts the
full crack structure. The morphological reconstruction
reduces noise and ensures extraction of the crack as a
connected component.

Single crack Junctions
P R F1 P R F1

Raniso 0.78 0.83 0.79 0.84 0.80 0.82
R∗

aniso 0.73 0.84 0.77 0.83 0.84 0.83
FF 0.80 0.79 0.76 0.78 0.87 0.82
TM 0.78 0.76 0.76 0.80 0.74 0.77

Table 2: Quantitative comparison of operators Raniso
and R∗

aniso with Frangi filter (FF) and template
matching (TM).

Since the crack was simulated, there exists an
unambiguous ground truth to compare our thresholded
and post-processed result with (Fig. 9). Overall, the
crack structure is well captured in the segmentation,
albeit being slightly smoothed. The boundary regions
of pores being erroneously segmented as crack
can be removed by post-processing. Note that
the morphological reconstruction improves crack
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coverage compared to the simple thresholding applied
earlier (Barisin et al. (2021)).

Table 2 provides further quantitative analysis and
comparison with related methods. The methods are
tested on two sets of simulated cracks: a single
crack and cracks with junctions. Each set has five
samples. Average values of Precision (P), Recall (R,
true positive rate), and F1 score are reported for
a fixed parameter configuration. Precision denotes
fraction of predicted crack pixels that are correctly
detected, while Recall describes coverage fraction of
the ground truth. F1 is the harmonic mean of precision
and recall. More details on these metrics and a more
extensive quantitative study are provided by Barisin et
al. (2021). For all methods, the final segmentation is
derived by morphological reconstruction as described
earlier. The Frangi filter (Frangi et al., 2000) and
template matching as devised by Ehrig et al. (2011)
are compared with Raniso and R∗

aniso. Our methods give
slightly higher average F1 scores for both the single
crack and the crack junctions samples. Our operator
R∗

aniso, designed to improve junction handling, gives
higher recall values than Raniso on the crack junctions
samples (Fig. 8).

USE CASE 3: PARTIALLY CLOSED
FOAMS

Ceramic foams are routinely used to filter metal
melts. They are produced by covering an open cell
polymer foam template by a ceramic slurry. The
resulting structure can be decomposed into struts and
two-dimensional walls. The latter are formed when
facets of the open cells of the polymer foam are closed
by the slurry. Closed windows in foams affect the
permeability. The walls are preferably parallel to the
direction in which the polymer foam is squeezed when
wetting it with the slurry. Detection and orientation
analysis of closed facets enables realistic modelling of
foam structures (Redenbach et al., 2008; 2011; Kampf
et al., 2015) and the impact of closed windows on
permeability (Föhst et al., 2021).

Our operator Raniso from (5) with input orientation
v = Γ

sL
arg(I) is applied to simulated 3D ceramic foams

with partially closed facets generated by Redenbach
et al. (2011) (referred to as Example 1). The foam is
simulated by the strut system of a Laguerre tessellation
and some closed facets of the tessellation to create
the walls. This results in a foam system whose struts
and closed facets have thickness 1. Locally adaptable
dilation then yields a realistic foam structure with
variable thickness of struts and facets (Fig. 11). This
simulated data provides a precise ground truth for
validation of our approach. Both, the varying structure

thickness and the smooth transition between struts and
walls make the separation challenging, see Fig. 10.
We expect our framework to be most effective in the
central part of the facet since this is where the planar
structure is most pronounced.

Fig. 10: Use case 3, Example 1. Zoomed in 2D slice
view of the simulated ceramic foam structure: no
clearly perceivable boundary between facets and struts.

Our framework is applied with square SE and
parameters n = 24, L = 10, and δmax = 0.5 using
the mean filter on the SE. The run time is ∼ 30
minutes on an image of size 670× 670× 270 pixels.
Furthermore, the operator Raniso is used to distinguish
between closed facets and struts. Afterwards, the
segmented facet system is post-processed by applying
Γ

sL
max using the median filter to refine detection and

remove artifacts.

The segmentation results together with the ground
truth are shown in Fig. 12. 3D renderings of
the results can be found in Fig. 13. Visually, no
obviously misclassified facets can be observed. The
segmented strut system covers 75% of the pixels
in the strut ground truth. If we introduce an error
tolerance by dilating the segmented strut system
by 1 pixel, coverage further improves to 93.9%.
Since each facet’s medial surface is known, we can
calculate the percentage of the facets that was at
least partially detected. Approximately 89% of the
facets are recognized by our framework. Small and
thick facets are the hardest to detect and are often
confused with struts even in the eye of the observer.
Additionally, the location of the precise boundary
between the facets and the struts is highly subjective.
Nevertheless, both the coverage percentages and the
visual evaluation prove that our framework gives
reliable and satisfactory results.

Finally, our framework is applied to a CT image
of a real silicon carbide foam. The sample was
scanned at Fraunhofer ITWM with pixel edge length
33.91 µm (referred to as Example 2). Further details
are described by Kampf et al. (2015). On the sub-
volume of 500×500×100 pixels, our algorithm takes
9.5 minutes. Results are shown in Fig. 14. In this case,
no ground truth is available. Hence, the results can only
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Fig. 9: Use case 2. 3D renderings of the crack segmentation: ground truth and crack obtained by thresholding the
post-processed local Raniso. The image consists of 256×256×256 pixels with spacing 37.83 µm.

Fig. 11: Use case 3, Example 1. 2D slice views of the ground truth from left to right: simulated foam, strut system,
facet system.

Fig. 12: Use case 3, Example 1. 2D slice views of results. From left to right: separated facets and struts (white
- struts, gray - facets), struts overlap with ground truth, and facets overlap with ground truth (for the last two
images: white - overlap, gray - difference).

51



BARISIN T et al.: 3D Adaptive Framework for Directional Filtering

Fig. 13: Use case 3, Example 1. Rendered results for the simulated foam: original image (white - struts, gray -
facets), strut system, and facet system.

Fig. 14: Use case 3, Example 2. Rendered results for the real ceramic foam: original image (white - struts, gray
- facets), strut system, and facet system. The rendered sub-image consists of 400×400×50 pixels with spacing
33.91 µm.

be evaluated visually. The segmented wall systems
contains some strut pixels. The majority of the walls
is however segmented correctly.

DISCUSSION

We have presented a framework for adaptive
directional filtering of 3D image data. The restriction
of filter orientations to a cone centered in an initial
input orientation avoids checking the full sampled
orientation space. That results in significant run-time
savings compared to previously suggested methods.

Our algorithm has three main parameters: the
half-length L of the SE, the opening angle of the
cone δmax, and the sphere discretization parameter n.
The half-length parameter L depends strongly on the
application. It has to approximate the size of the object
of interest to be effective. The parameters δmax and n
balance run-time and accuracy. The SE size L limits the
discretization density n since the number of discrete
SEs of half-length L is restricted. For example, there
are only 13 discretized lines with half-length 1 in the
ℓ∞ norm (base axis, plane diagonals, space diagonals).

Our method requires a map of input orientations
at which the cone is centered. These have to be close
to the correct orientation, but do not have to fit it very
well. The adaptive filter on the search cone is in fact
able to fix imprecision in input orientations or scale
and finds the most appropriate orientation. This makes
the method more robust and less dependent on the
scale parameter σ than classical Hessian directional
filtering (Tankyevych et al., 2009).

Our framework is very flexible, can be adapted to
specific tasks, and used as building block for various
image processing pipelines. This is in particular
demonstrated by the adaption of Raniso to R∗

aniso for
handling of crossing cracks.

We have validated our framework in use cases from
materials science, it is however not restricted to that
area. In biomedical applications, Sandberg and Brega
(2007); Tankyevych et al. (2008); Tankyevych et al.
(2009) have used approaches similar to ours but with
line SE exclusively. Our algorithm can enhance and
extract vessels straightforwardly, too.
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CONCLUSION

We introduced a robust, flexible, and multi-
functional method for filtering, enhancement, and
separation of oriented structures in 3D. The two
outputs – orientation information and filtered image
– can be used to solve multiple tasks. We have
validated our approach in three use cases for three
types of material confirming the wide applicability of
the framework. The main benefit of the method is the
efficient use of computational resources and decreased
run-time compared to directional filters in 3D sampling
the complete upper unit half-sphere.

Future work will explore more complex SEs while
preserving computational efficiency. Another topic of
further research is a thresholding method for precise
and reliable unsupervised segmentation of cracks
based on ΓSE

max(I) from (3) and R∗
aniso from (6).
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Schladitz K, Büter A, Godehardt M, Wirjadi O,
Fleckenstein J, Gerster T, Hassler U, Jaschek
K, Maisl M, Maisl U, Mohr S, Netzelmann U,
Potyra T, Steinhauser MO (2017). Non-destructive
characterization of fiber orientation in reinforced
smc as input for simulation based design. Compos
Struct 160:195–203. https://doi.org/10.
1016/j.compstruct.2016.10.019.

Semeraro F, Ferguson JC, Panerai F, King RJ,
Mansour NN (2020). Anisotropic analysis
of fibrous and woven materials part 1:
Estimation of local orientation. Comp Mater
Sci 178:109631. https://doi.org/10.
1016/j.commatsci.2020.109631.
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