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ABSTRACT

In the present paper, the variance of local stereological volume estimators is studied. For isotropic designs, the
variance depends on the shape of the body under study and the choice of reference point. It can be expressed in
terms of an equivalent star body. For a collection of triaxial ellipsoids the variance is determined by simulation.
The problem of estimating particle size distributions from central sections through the particles is also discussed.
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INTRODUCTION

Local stereology is a collection of sampling designs
based on sections through a reference point of the
spatial structure under study. Such sections are usually
called central sections. The local methods are used in
themicroscopical study of biological tissue in cases
where the tissue is transparent and physical sections can
be replaced by optical sections.

An overview of local stereology has recently been
given in Jensen (1998). A comprehensive treatment of
local stereological volume estimators can be found in
Jensen (1998, p. 105-111). In Jensen and Petersen
(1999), it is discussed when the volume of a body in Rn

can be determined without error by a local stereological
estimator and a general variance formula is derived.

In the present paper, we study the variance of local
stereological volume estimators for bodies in R3. In
particular, it is investigated when such estimators can be
used in the stereological inference of particle volume
distributions.

THE LOCAL VOLUME ESTIMATORS
Let us start by a short presentation of the local

stereological volume estimators. For a body X ⊂  Rn,
the local stereological estimator of its volume V(X),
based on information in an isotropic p-subspace Lp,
containing a fixed r-subspace Lr, takes the form 
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where ║·║ is the Euclidean norm, 
rLπ ⊥  is the

orthogonal projection onto rL ⊥  and dxp is the element
of p–dimensional volume measure in Lp. When
convenient we will use the short notation ( ), ,n̂ p rV X  for
this estimator.In this paper we will restrict attention to
R3. In R3, there are three local stereological volume
estimators which will be considered in more detail
below. Without loss of generality, we can assume that
the reference point through which the sections pass is
the origin O.

The first local stereological estimator of V(X) is
based on information in an isotropic line L1 through O
and is given by
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If X ∩ L1 consists of a countable number of line-
segments, then
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where α(x)x!∂X∩L1 is a sequence of 0's and 1's; for details,
see Jensen (1998, p. 107-108). In particular, if X is star-
shaped at O and O ! X, then
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where ω ! S2, the unit sphere in R3, and ρX(ω) is the

distance from O to the boundary of X in the direction ω
! S2.
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The second local stereological estimator of V(X), based
on an isotropic plane L2 through O, is

( ) 2
3,2,0 2 2
ˆ ; 2
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V X L O x dx= ∫ !

! .

This estimator can be obtained as a rotational
average of ( )3,1,0V̂ X

( ) ( )( )3,2,0 2 3,1,0 1 2
ˆ ˆ; ;V X L O E V X L O L=! ! ,

where the line L1 on the right-hand side of (2) is an
isotropic line through O in L2.

The third local volume estimator in R3 is based on
information in an isotropic plane L2, containing a fixed
axis L1 through O. Such a plane is usually called a
vertical plane, cf. Baddeley (1984). The estimator takes
the form
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THE ESTIMATOR VARIANCES
Any of the estimators ( )3,1,0V̂ X , ( )3,2,0V̂ X  and

( )3,2,1V̂ X  are always non-negative and bounded above by
3
max

4
3
π ρ where ρmax is the maximal distance from O to the

boundary of X. Accordingly, all three estimators have
finite variance. (This appears to be a particularly nice
feature of local stereological volume estimators
compared to local estimators of lower-dimensional
properties such as surface area.) Furthermore, the
variance is zero if X is a ball centred at O.

Let us study the kind of shapes and choices of origin
that imply large respectively small variances of

( )3,1,0V̂ X .To any body X ⊂  R3 we can associate a star-
shaped (at O) body star(X) which is symmetric around
O (and therefore contains O) and has the property that
the distribution of its volume estimator

( )( )3,1,0
ˆ starV X is the same as for X. This body star(X)

will be called the equivalent star body. The body star(X)
is defined by
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where ρstar(X)(ω) is the distance from O to the
boundary of star(X) in the direction ω ! S2. If we let Br

be a ball with centre O and radius r, it is easy to see,
using (1) with X replaced by star(X), that
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because of the unbiasedness of volume estimators, (4)
implies that

( )( ) ( )starV X V X= .

If X is already star-shaped at O and O ! X, the

mapping X → star(X) is a particular type of
symmetrization
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If X is both symmetric and star-shaped at O then
star(X) = X. Note that star(X) does not need to be convex.

Pronounced elongation of X along some lines
through O will also be seen in star(X) and implies large
variances. If O is situated asymmetrically in X then
star(X) may show elongation along some lines which
again lead to large variances. If star(X) is a ball then the
variance of ( )3,1,0V̂ X  is zero. In Figure 1, an example
of a planar section of a body X through O is shown
together with the corresponding section of star(X).

Using (4), it is easy to see that the squared
coefficient of error of ( )3,1,0V̂ X  can be expressed in
terms of the equivalent star body as
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Fig. 1. A planar section of a body X through O (black
boundary) together with the corresponding section of
star(X) (red boundary). The lines emanating radially
from O show that X is not star-shaped at O.

Let us now turn to ( )3,2,0V̂ X . Because of (2)
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( ) ( )3,2,0 2 3,1,0 1
ˆ ˆVar ; Var ;V X L O V X L O≤! ! .

Therefore, if ( )3,1,0
ˆVar 0V X =  then ( )3,2,0

ˆVar 0V X = .
It can also be shown that the opposite statement is
correct, cf. Jensen and Petersen (1999, p. 6-8). As for

( )3,1,0V̂ X , it can be shown that the variance of

( )3,2,0V̂ X  depends only on the equivalent star body.
We have, cf. Jensen and Petersen (1999, p. 15),
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In Table 1, we have determined by simulation the
coefficient of error of ( )3,1,0

ˆ 0V X =  and ( )3,2,0V̂ X  for
the case where star(X) is a triaxial ellipsoid centred at O
and with semiaxes of lengths β1 ≥ β2 ≥ β3 and β1/β2, β2/β3

! {1,2,4}. We have also determined the coefficient of

error of an intermediate estimator, usually called the
nucleator, cf. Gundersen (1988),

( ) { }( ) { }( )3,1,0 3,1,0 1 3,1,0 2
1 ˆ ˆspan ; span ;
2
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where ω1 ! S2 ∩ L2 is an isotropic direction in an

isotropic plane L2 and ω2 ! S2 ∩ L2 is orthogonal to ω1.

Note that a prolate ellipsoid (β1 = α, β2 = β3 = β) gives a
larger CE than the corresponding oblate ellipsoid
(β1 = β2 = α, β3 = β).

Table 1. Coefficient of error of local stereological
volume estimators in various triaxial ellipsoids. For
details, see text.

β1/β2 β2/β3 ( )3,1,0
ˆCE V ( )3,1,0CE V" ( )3,2,0

ˆCE V
1 1 0 0 0
1 2 0.59 0.33 0.28
1 4 1.20 0.76 0.52
2 1 0.72 0.41 0.34
2 2 1.27 0.79 0.56
2 4 2.01 1.34 0.77
4 1 1.85 1.21 0.77
4 2 2.74 1.86 1.02
4 4 3.98 2.76 1.25
Similar results can be established for ( )3,2,1V̂ X .

The equivalent star body is here replaced by an

equivalent cylinder with axis parallel to the vertical axis
and a star-shaped, symmetric base.

In practice, the shape of X is unknown, however. If
it is possible, using optical sectioning, for instance, to
suggest an extreme shape such that the real distribution
of ( ) ( )ˆ /V X V X  is more concentrated around 1 than
that obtained under the extreme shape, then
conservative (1 - α) - confidence limits are

( ) ( ) ( )
1

2 2

ˆ ˆV X V X
V X

u uα α−

≤ ≤ (5)

where uα is the 100α-percentile, determined by
simulation, in the distribution of ( ) ( )ˆ /V X V X  under
the extreme shape assumption for X.

PARTICLE SIZE DISTRIBUTIONS
FROM CENTRAL SECTIONS
Let us consider an aggregate of particles {Xi}, the

object being to estimate the particle size distribution
from central sections through the particles. To be more
precise, we suppose that a point xi ! Xi associated to

each Xi. A central section through Xi is then a section
containing xi. As size parameter, we may take the
volume, but other size parameters are possible, see
below. For any of the volume estimators, described in
the previous section, we have

( )
( )

ˆ
1 i

i

V X
V X

ε= + ,

where the associated point xi ! Xi is acting as origin and
εi has mean zero and a distribution depending on the
shape of Xi and the relative position of xi in Xi. In a
vertical design, the distribution of εi also depends on the
choice of vertical axis relative to Xi. If the confidence
limits (5) for each sampled particle are narrow compared
to the variability in the volume distribution then the
observed distribution of volume estimates can be regarded
as a direct observation of the volume distribution. In any
case the average of the volume estimates is an unbiased
estimate of the mean particle volume.

If the particle aggregate consists of spheroids (either
exclusively prolates or oblates) then more information
can be obtained from sections through the centres of the
spheroids. In contrast to Cruz-Orive (1976, 1978) we
sample directly from the particle distribution. This fact
appears to make the inference more simple and sound.

Consider a spheroid centred at O and with semiaxes of
lengths α and β, where α ≥ β. We will parametrize by
(size, shape). For prolates, it is convenient to use
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while for oblates
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A central section through the spheroid is an ellipse,
with semiaxes of lengths μ and ρ, say, where μ ≥ ρ. Again,
we will parametrize by (size, shape), for prolates by

( )
1/ 22

2, , 1 , 0, 0 1u v u vρρ
µ

   = − > ≤ <    
,

for oblates by

( )
1/ 22
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ρ

   = − > ≥    
.

Then, it can be shown, cf. Cruz-Orive (1976,
formulae (2a) and (2b)) that

, sinu y v zθ= = ⋅ , (6)

where 0,
2
πθ  ∈  

 is the angle that the normal of the

section makes with the rotary axis of the spheroid. From
(6), it can be seen that the size of the spheroid is
observed directly in a central section while the shape is
not.

Let us now suppose that the central section is
isotropic with a random angle Θ with density

sin , 0,
2
πθ θ  ∈  

. Using (6), we can express the

conditional density of the observed shape in the section
V given the size Y = y in terms of the conditional density
of the 3D shape Z given the size Y = y

( ) ( )2 2V Y Z Yz v

vv y z y dz
z z v

f f∞

=
=

−∫ . (7)

The integral Eq. 7 is of Abel type and can be
inverted. Apart from observing the size distribution, we
can thus also in principal estimate the conditional
distribution of shape given size.

Note also that (6) implies the following moment
relationship between (size, shape) of a randomly chosen
spheroid, (Y,Z), and that of an isotropic central section
through the spheroid, (U,V),

( ) ( )1 11,
2 2 2

a b a bbE U V B E Y Z = +  
,

where B(·,·) is the Beta function.

A preliminary report of some of the data (Vedel
Jensen, 1999) has been presented at the Xth

International Congress for Stereology, Melbourne,
Australia, 1-4 November 1999.
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