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ABSTRACT

This paper investigates histological tissues by means of image analysis and spatial statistics. For the
quantification of cell frequencies and accumulations two statistical characteristics, intensity function and
cluster density, are suggested. The samples are histological sections of human articular cartilage and human
retina considered in view of changes during the ageing process. The articular cartilage is characterized by
continuous changes of both functions, the cell intensity as well as the clusterization. In contrast, the retina is
a trilaminar structure formed in the early embryonic stage without changes by ageing.
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INTRODUCTION

Measurements at histological preparations lead to
the phenomenon of inhomogeneity. The variation of
interesting parameters shows both random
fluctuations and systematic changes. The latter are
well pronounced in cartilaginous tissue, exceptionally
in cases, where it is covering as hyaline cartilage the
articular surface without perichondrium. The systematic
inhomogeneity of the articular cartilage has been
evaluated quantitatively in detail. The extension of
chondrocytes and their volume density has been studied
in Löffler et al. (1993), as well as the orientation of
the cells in Löffler et al. (1995). Additionally, the
numerical intensity and the level of clustering of cells
in an articular cartilage is characterized by a
systematic change. In the direction from the articular
surface to the bone the intensity is decreasing,
whereas the clusterization is increasing (Schreitter,
1993). Based on samples of facies articularis
navicularis of human caput tali, a systematic change
of intensity and clusterization has been shown
depending on the ageing process (Friesenegger, 1996).

Furthermore, a conspicuous feature of
differentiation, described only qualitatively until now,
is the phenomenon of layer formation, observable in
cortex cerebri or in the human retina. Initially, there
is one cell layer in the wall of ocular vesicle. Through
the time a migration of a part of these cells causes to
generate a second layer and again, a group of cells
generates a third inner neuroblast layer. A quantitative

evaluation of those layer formations with the aim of a
better understanding of the prenatal and postnatal
stage of development is desirable.

The questions are investigated by use of histological
sections that means in planar, approximately two-
dimensional samples. Stereological corrections are not
made. Earlier investigations have shown that, in this
case, statements on ageing processes derived from
histological sections in principle do not change during
the addition of stereological corrections (Ranke and
Ranke, 1989). An important fact of our consideration
is a shrinkage of the tissue during the fixation around
a half of its original thickness. But the connected
decreasing of the cells is not relevant for our
conclusions and is taken into account by the choice of
the radius of neighbourhood for the estimation of the
cluster density, respectively.

This paper presents a mathematical and
computational approach for a numerical evaluation of
those structures. The cells in a tissue are idealized by
a point sample. The next two sections discuss the
intensity function and the cluster density as tools to
describe point samples and describe procedure to
estimate these functions.

PROCEDURE AND
MATHEMATICAL BACKGROUND

For the investigation the following haematoxylin-
eosin-stained histological samples have been available:
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- 48 sections of articular cartilage (femoral head,
talus head)

- 65 sections of human eyeballs of all age groups

- 10 sections of embryonic eyes of the first third of
pregnancy.

The thickness of all sections is 10 µm, their
orientation is perpendicular to the tissue surface. The
(x,y)-coordinates are recorded of the centre of the cut
parts of the nuclei. In the retina they are extracted
with the image analysis system SIS automatically. In
the articular cartilage sections this process was
realized manually in first time, later also by help of
image analysis using a measurement function,
because an automatical detection of the coordinate of
these nuclei is not possible. All coordinates are given
in µm; they describe the true locations of the cell
nuclei in the histological samples.

This chapter gives a brief description of the
procedure used to estimate intensity functions and
cluster densities. The sample is given in form of a
random point set in a bounded planar rectangle
window W = [0,a] x [0,b]. Each point represents a
cell. Its locations are given in Cartesian coordinates
(xi,yi), i = 1, 2, . . ., n and 0 ≤ xi ≤ a and 0 ≤ yi ≤ a. The
coordinate system is chosen so that the x-axis
represents the surface of a tissue, whereas the y-axis
leads into the depth of this structure.

The mean number of points per unit area is called
the intensity λ of the sample. λ is inversely
proportional to the mean size of cells. (Clearly, the
number of cells and therefore the intensity increases
with the sectional thickness. But the preparations
investigated here all have the same thickness of 10
µm. Therefore the dependence on sectional thickness
is not considered during this paper.) For a stationary
(homogeneous) sample, λ would be constant in each
region of W. Additionally, for a stationary point pattern
λ is constant in each window, independently of its
choice. For general definition and further properties
see Stoyan et al. (1995), for example. Characterizing
the non-stationarity of the sample, the intensity is
assumed to be variable in the y-coordinate, since the
structure is a gradient structure in the sense of Hahn
et al. (1999). That means, the intensity function λ(y)
is defined to be the expected number of points in a
differential small stripe [0,a] x [y, y + dy], divided by
the area of the stripe a . dy.

The intensity function is estimated by use of a
kernel function h(δ), given by
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the so-called Epanečnikov- kernel, cf. Hahn et al.
(1999). Here eλ is the band width. The estimator

( )λ̂ y  of the intensity function is
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That means, those points being close to y contribute
to λ(y), independently of its x-coordinate. Points
outside of this neighbourhood are without influence.

For y-coordinates near to the boundary of W in y-
direction, b – y < eλ the considered neighbourhood is
reached outside of W, where information about
further points is not available. This lack is compensed
by an edge correction as follows. For any y of
distance ε = min (║y║, ║b-y║) < eλ the value λ(y) is
increased by a factor q which is the ratio between the
measure of the complete kernel and that part of kernel
being inside of the window W
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A cluster is an accumulation of points in a bounded
region characterized by a higher point density than
the environment. Shape and expansion of the clusters
can be very different. Some characteristic to compare
and classify clusters can be their circumscribing radius
or their number of members. But the affiliation of a
point to a cluster is not defined uniquely, in general.
Overlappings of neighbouring clusters are possible.
The function introduced in the following is a measure
characterizing location and richness of clusters. The
cluster density vr(y) is defined to be the mean number
of points (xi,yi) in a circle of radius r around an
arbitrary point (x,y) without counting (x,y) itself. This
parameter r is called radius of neighbourhood. The
cluster density gives information about expansion and
location of regions of higher density. In general, there
will not be a point having exactly the coordinate
yi = y. Therefore the estimation of the cluster density
is based on a weighted mean value on those points,
being in a stripe [0,a] x [y – ev, y + ev].
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The weight wi of a point (xi,yi) is determined by a
kernel function k(δ), analogously to h(δ), where eλ is
just replaced by ev. As above, only the distance in y-
direction is relevant; the weight is

wi = k(║y – yi║). (4)

Let ni be the number of neighbouring points
located in a circle of radius r centering in (xi,yi)
without counting (xi,yi) itself. Then the estimator for
the cluster density is given by
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The cluster density represents the mean number
of neighbours being closer than r to a given point of
reference without consideration of their distances and
locations in particular.

SAMPLES AND RESULTS

In the following, the three samples shown in Figs.
1, 2 and 4, are considered and some estimates are
shown in Figs. 3, 5 and 6.

The computational procedure investigates a given
point sample and provides estimates of the intensity
function λ(y) and the cluster density vr(y) having the
following properties:

- λ(y) and vr(y) are meaningful functions to show
tendencies and quantify changes in the cell
configurations. They indicate layer formations or
cluster locations in tissues.

- λ(y) and vr(y) do not give information about the
distribution of the point samples along the x-axis.
Under the assumption that the sample is
homogeneous in x, λ(y) and vr(y) are independent
of the choice of the breadth a of the observation
window W.

- The estimations ( )λ̂ y and ( )ˆrv y  are influenced
by the choice of the half band widths eλ and ev,
respectively.

The choice of the half band widths eλ is very
important for the quality of the estimated function. If
the half band width is too small, the estimated curve
will be rough and oscillating. On the other hand, if

the half band width is too large, the estimated
functions will be too much smooth, without great
fluctuations. Both cases preclude the interpretation of
the results. Between these extremum cases there is an
optimum value for eλ and ev, where the estimation is
most meaningful. The problem of choice of this
optimum value is studied in the literature intensively,
(Silverman, 1986). An empirical starting value is
eλ = 0.05√5/λ = 0.05√5ab/n). Also the radius of
neighbourhood r is of importance. In some cases it
can be useful to adapt r inversely proportional to the
value of λ(y),
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This choice is based on the assumption that the
cluster extension is positively and the cell size is
negatively correlated with the intensity function.
With increasing point density the extensions of the
clusters decrease as well as the cells within.

CONCLUSIONS

The introduced intensity function gives the
possibility to determine the cell-intensity layer
specifically and continuously from the tissue surface
into the depth. This enables a better analysis of the
changes of cell numbers during the ageing process,
including a quantification of the depth of these
changes or of the layers.

Our evaluations explain interesting correspond-
ences and differences of the layer-specifical changes
of the numerical cell density of articular cartilage in
the ageing process. The intensity function shows that
systematic changes during ageing of the layer
structure in the human retina in the postnatal period
do not exist. Consequently, the histology of the retina
turns out to be ageing stable, like many other
microscopical structures of the central nervous
system. In contrast to that, the intensity of a
trilaminar image of the cells follows uni- or bilaminar
preliminary stages in the early embryonic period. The
precise recording of the depth depending changes of
the clusterization is meaningful for the normal and
pathological histology. This fact is shown clearly by
the curves in Figs. 3, 5, 6.

The investigations were aimed at quantification and
graphic demonstration of systematic inhomogeneities.
Nevertheless, in each sample there exist a statistical
inhomogeneity. Therefore the choice of the half band
width must be effected so that the systematical trend is
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good visible, whereas small random inhomogeneities
in the curves do not completely disappear, see Figs.
6a, b, c. The phenomenon of clusterization starts in a
certain depth for a sufficient high intensity. Therefore
the estimated cluster density based on the adapted
radius of neighbourhood seems to be more meaningful
than the cluster density for a constant radius, cf. Figs.
6b and 6c.

Fig. 1. Sample of human retina of a 64 years old
patient, size 196.9 µm x 297.9 µm, 105 points.
Different layer formations are visible.

Fig. 3. Sample of articular cartilaginous tissue of a
newborn child, size 153.0 µm x 363.0 µm, 303 points.
The frequency of the points decreases continuously
with increasing depth.

The procedure introduced here is recommendable for
further fields of relevant functional and clinical
histology. Systematic inhomogeneities are observed
in the normal and by rheumatic diseases changed
articular capsule. Number and distinction of
ganglionic layers in the grey substance of the central
nervous system are important functional parameters.

Fig. 2. The estimated intensity function for the sample
given in Fig. 1. for a half band width of eλ = 29.0 µm.
The curve shows a clear subdivision into different
layers.

Fig. 4. The estimated intensity function for the sample
given in Fig. 3. for a half band width eλ = 41 µm.
There is no clusterization at all.
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Fig. 5. Sample of articular cartilaginous tissue of a
57 years old patient, size 314.0 µm x 437.0 µm, 226
points. Additionally to the variable point frequency
there are centres of clusterization.

Fig. 6b. The cluster density for the sample given in
Fig. 2 for a half band width ev = 60 µm for constant
cluster radii of 7, 11 and 15 µm.
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