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ABSTRACT 

Since, for reasons to be examined in a later instalment of this work, the postulates of Euclid do not seem 
suited for the purpose, an attempt is made to classify regularities in the observed diffraction of X-rays by 
matter in the crystalline state on a ‘Pythagorean’, or purely numerical basis 

Keywords: crystal structure, Yarmolyuk and Kripyakevich’s rule. 

“I am quite satisfied if we have the machinery for making predictions, 
even if we are unable to understand it clearly” (Einstein, 1953). 

INTRODUCTION 

It has been shown that in some cases the number 
of polyhedra that go to make up the postulated unit 
cell of a crystal, and the number of the cell’s vertices, 
are proportional to the solutions of a simple 
Diophantine equation (Aboav, 1997; 1998a). These 
solutions do not describe the partition of the cell into 
its differently shaped polyhedra (Aboav, 1998b), though 
as we shall see in a moment a further numerical 
assumption makes such a description possible. 

Relations depending on arithmetical operations, 
like the adding or multiplying of integers, will here 
be considered separately from those that depend on 
geometrical ones, such as the measurement of length 
and angle. 

NUMERICAL 

Pythagoras’s discovery that the interval of 7 
octaves is roughly equal to that of 12 major ¿IWKV� L�H�
that 27~(3/2)12, or  

 2a~3b (1) 

where a = 19, b = 12, may be regarded as a borderline 
case (x = y = 1) of a more general approximation 

 2ax~3by (2) 

where x and y in this instance are integers, one of 
which is prime, and the other is either prime, or the 
product of 5 (or 7) and a prime number. 

A pair of composite numbers, m and n, are now 

defined thus: 

 m = 2ax/27 (3) 
and 
 n = 3by/36 (4) 

Since these numbers are co-prime, m is not a 
multiple of n. Their ratio m/n, here denoted by A, is 
equal to (2ax/3by)(36/27). Hence, since 2ax~3by, A is 
approximately equal to 36/27, that is, 

 A~5· 7 (5) 

The fraction 1–36m/27n, or 1–3by/2ax, which is a 
measure of how closely 2ax approximates 3by, is here 
GHQRWHG E\ WKH *UHHN OHWWHU � DQG FDOOHG WKH comma:  

 � = 1–36n/27m (6) 

[Note: In the above-quoted, celebrated instance of 
antiquity, where m and n are effectively put equal to 
212 and 36 UHVSHFWLYHO\� _�_ = 1–312/219, or roughly 
1/73. Known to musicians as the comma of 
Pythagoras� WKLV YDOXH RI � UHSUHVHQWV WKH VPDOO EXW
perceptible interval between such notes as Dþ and C# 
played on a violin.] 

50 solutions to the approximate relation (2), here 
denoted by [a b]{x y}, are listed in col. 2 of Table 1, 
which shows the relevant values of the co-primes m 
and n (col. 3) and of the comma (col. 4). Solution No. 
39, [6 6]{5.5.5 11}, in which x is neither prime, nor 
the product of 5 (or 7) and a prime as required, is 
exceptionally listed in the table to allow every value 
of [f 1 0] from f = 1 through f = 10 (see Eq. 10 
below) to appear in it. 
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Table 1. Partition of numbers m n proportional to solutions of ‘Pythagorean’ approximation 2ax ~ 3by. 

Partition coefficients :  (6|51/2) (6|5) (6|51/2|5) (61/2|6|5)      (7|61/2|6|5) 
No. [a b]{x y] m n � n1 n2 n1 n2 n1 n2 n3 n1 n2 n3 d e f g h n1 n2 n3 n4 

;                        
01 [5 5]{23 3} 23 4 1/104 2 2 3 1 * * * * * * 1 0 0 0 1 0 0 3 1 
02 [7 5]{67 5.7} 201 35 1/121 17 18 26 9 25 2 8 2 23 10 8 1 0 1 7 0 2 23 10 
03 [8 6]{89 31} 178 31 1/123 15 16 23 8 22 2 7 2 20 9 7 1 0 1 6 0 2 20 9 
04 [7 8]{5.31 3} 155 27 1/126 13 14 20 7 19 2 6 2 17 8 6 1 0 1 5 0 2 17 8 
05 [9 5]{11 23} 132 23 1/131 11 12 17 6 16 2 5 2 14 7 5 1 0 1 4 0 2 14 7 
06 [7 6]{109 19} 109 19 1/138 9 10 14 5 13 2 4 2 11 6 4 1 0 1 3 0 2 11 6 
07 [8 7]{43 5} 86 15 1/151 7 8 11 4 10 2 3 2 8 5 3 1 0 1 2 0 2 8 5 
08 [7 6]{5.47 41} 235 41 1/157 19 22 30 11 29 2 10 2 27 12 8 3 0 3 5 0 6 21 14 
09 [6 6]{149 13} 149 26 1/162 12 14 19 7 18 2 6 2 16 8 5 2 0 2 3 0 4 13 9 
10 [7 4]{7 11} 63 11 1/179 5 6 8 3 7 2 2 2 5 4 2 1 0 1 1 0 2 5 4 
11 [9 5]{31 5.13} 372 65 1/206 29 36 47 18 46 2 17 2 44 19 11 7 0 7 4 0 14 26 25 
12 [6 7]{103 3} 103 18 1/213 8 10 13 5 12 2 4 2 10 6 3 2 0 2 1 0 4 7 7 
13 [8 5]{41 43} 246 43 1/232 19 24 31 12 30 2 11 2 28 13 7 5 0 5 2 0 10 16 17 
14 [9 7]{7.19 31} 532 93 1/228 41 52 67 26 66 2 25 2 64 27 15 11 0 11 4 0 22 34 37 
15 [7 5]{101 53} 303 53 1/264 23 30 38 15 37 2 14 2 35 16 8 7 0 7 1 0 14 17 22 
16 [10 6]{5 7} 40 7 1/301 3 4 5 2 4 2 1 2 2 3 1 1 0 1 0 0 2 2 3 
17 [6 6]{7.31 19} 217 38 1/375 16 22 27 11 26 2 10 2 24 12 5 6 1 5 0 1 10 10 17 
18 [7 5]{59 31} 177 31 1/397 13 18 22 9 21 2 8 2 19 10 4 5 1 4 0 1 8 8 14 
19 [8 6]{157 5.11} 314 55 1/414 23 32 39 16 38 2 15 2 36 17 7 9 2 7 0 2 14 14 25 
20 [4 6]{137 3} 137 24 1/438 10 14 17 7 16 2 6 2 14 8 3 4 1 3 0 1 6 6 11 
21 [8 4]{13 41} 234 41 1/476 17 24 29 12 28 2 11 2 26 13 5 7 2 5 0 2 10 10 19 
22 [9 7]{107 5.5} 428 75 1/503 31 44 53 22 52 2 21 2 50 23 9 13 4 9 0 4 18 18 35 
23 [7 6]{97 17} 97 17 1/540 7 10 12 5 11 2 4 2 9 6 2 3 1 2 0 1 4 4 8 
24 [8 8]{7.11 3} 154 27 1/680 11 16 19 8 18 2 7 2 16 9 3 5 2 3 0 2 6 6 13 
25 [9 6]{67 47} 268 47 1/837 19 28 33 14 32 2 13 2 30 15 5 9 4 5 0 4 10 10 23 
26 [6 5]{19 5} 57 10 1/1216 4 6 7 3 6 2 2 2 4 4 1 2 1 1 0 1 2 2 5 
27 [8 6]{151 53} 302 53 1/2035 21 32 37 16 36 2 15 2 34 17 5 11 6 5 0 6 10 10 27 
28 [9 7]{47 11} 188 33 1/3468 13 20 23 10 22 2 9 2 20 11 3 7 4 3 0 4 6 6 17 
29 [7 6]{131 23} 131 23 1/16768 9 14 16 7 15 2 6 2 13 8 2 5 3 2 0 3 4 4 12 
30 [5 7]{5.41 3} 205 36 -1/6562 14 22 25 11 24 2 10 2 22 12 3 8 5 3 0 5 6 6 19 
31 [7 4]{31 7.7} 279 49 -1/3968 19 30 34 15 33 2 14 2 31 16 4 11 7 4 0 7 8 8 26 
32 [8 6]{37 13} 74 13 -1/1894 5 8 9 4 8 2 3 2 6 5 1 3 2 1 0 2 2 2 7 
33 [5 4]{43 17}  387 68 -1/1376 26 42 47 21 46 2 20 2 44 22 5 16 11 5 0 11 10 10 37 
34 [7 5]{5.11 29} 165 29 -1/1006 11 18 20 9 19 2 8 2 17 10 2 7 5 2 0 5 4 4 16 
35 [8 5]{73 7.11} 438 77 -1/813 29 48 53 24 52 2 23 2 50 25 5 19 14 5 0 14 10 10 43 
36 [3 5]{7.13 3} 91 16 -1/728 6 10 11 5 10 2 4 2 8 6 1 4 3 1 0 3 2 2 9 
37 [8 7]{5.29 17} 290 51 -1/629 19 32 35 16 34 2 15 2 32 17 3 13 10 3 0 10 6 6 29 
38 [9 4]{3 19} 108 19 -1/512 7 12 13 6 12 2 5 2 10 7 1 5 4 1 0 4 2 2 11 
39 [6 6]{5.5.5 11} 125 22 -1/421 8 14 15 7 14 2 6 2 12 8 1 6 5 1 0 5 2 2 13 
40 [10 7]{7.7 23} 392 69 -1/401 25 44 47 22 46 2 21 2 44 23 3 19 16 3 0 16 6 6 41 
41 [7 5]{89 47} 267 47 -1/393 17 30 32 15 31 2 14 2 29 16 2 13 11 2 0 11 4 4 28 
42 [8 6]{71 5.5} 142 25 -1/371 9 16 17 8 16 2 7 2 14 9 1 7 6 1 0 6 2 2 15 
43 [9 9]{5.23 3} 460 81 -1/348 29 52 55 26 54 2 25 2 52 27 3 23 20 3 0 20 6 6 49 
44 [5 5]{53 7} 159 28 -1/339 10 18 19 9 18 2 8 2 16 10 1 8 7 1 0 7 2 2 17 
45 [11 6]{11 31} 176 31 -1/317 11 20 21 10 20 2 9 2 18 11 1 9 8 1 0 8 2 2 19 
46 [6 6]{193 17} 193 34 -1/301 12 22 23 11 22 2 10 2 20 12 1 10 9 1 0 9 2 2 21 
47 [8 5]{5.7 37} 210 37 -1/289 13 24 25 12 24 2 11 2 22 13 1 11 10 1 0 10 2 2 23 
48 [6 4]{29 23} 261 46 -1/265 16 30 31 15 30 2 14 2 28 16 1 14 13 1 0 13 2 2 29 
49 [10 5]{13 5.11} 312 55 -1/251 19 36 37 18 36 2 17 2 34 19 1 17 16 1 0 16 2 2 35 
50 [7 6]{17 3} 17 3 -1/198 1 2 2 1 * * * * * * 0 1 1 0 0 1 0 0 2 

 

Since by definition the comma cannot equal zero, 
relation (2) is necessarily approximate only. Exact 

numerical relations can, however, be found to depend 
on it by partitioning m and n into a finite number, s, 
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of positive integers ms and ns 

 m = �sms (7) 

and 

 n = �sns (8) 

such that 2ms is a multiple of ns for any value of s, 
that is, 

 ms = Asns (9) 

where As = p or (p+1/2), p being a positive integer. 
The partitions depend on the chosen values of s and 
As; but the corresponding values of ns are in general 
indeterminate. 

Our attention is here confined to partitions for 
which s = 4, with the aim of determining whether, 
from among the solutions of Table 1, there exist 
partitions of that kind for which no value of ns is 
greater than 3; and, if so, to express the partition of 
the remaining solutions in the table in terms of them, 
the underlying object being to base the sought-after 
partitions on the simplest possible assumptions. To 
that end the requisite partition coefficients are 
determined as follows. 

n is first expressed as the sum of a pair of 
integers, n1 and n2 (col. 5), the chosen values of As 
needed to express ms being those nearest to A (Eq. 5), 
namely A1 = 6, and A2 = 51/2: [(6|51/2 )]; while in col. 
6 the next nearest pair of values, A1 = 6, and A2 = 5: 
[(6|5)] is used for the same purpose. The immediate 
aim is to identify solutions of relation (2) for which 
no value of ns exceeds 3. As the data show, there are 
in this case only two such solutions, namely [5 5]{23 
3} and [7 6]{17 3}, listed in the table at Nos. 01 and 
50, respectively, with their values of ns shown in italics. 

Again with the aim of identifying solutions for 
which no value of ns exceeds 3, n is next expressed as 
the sum of three integers n1, n2, n3 (cols. 7 and 8), the 
values of As for col. 7 being the closest to those 
already chosen, namely A1 = 6, A2 = 51/2, and A3 = 5: 
[(6|51/2|5)]; while for col.8 the values A1 = 61/2, 
A2 = 6, and A3 = 5: [(61/2|6|5)] are chosen. With the 
partition of n into three numbers in this way the 
values of ns are in general indeterminate. In the table 
therefore, where lack of space does not allow more 
than one of the possible partitions to be shown, n2 in 
col. 7, and n1 in col. 8, are given the same, arbitrarily 
chosen value 2. It will be seen that for the partition 
(6|51/2|5) (col. 7) there are no solutions, and that for 
the partition (61/2|6|5) (col. 8) there is only one 
solution --- [10 6]{5 7}, listed at No.16 --- for which 
no value of ns is greater than 3. 

Finally, by introducing the further, proximate 
coefficient, A1 = 7, into the partition (61/2|6|5) of 
col. 8, which as we have seen already possesses one 
of the required solutions, we obtain the partition 
(7|61/2|6|5), in which n is expressed as the sum of four 
numbers n1, n2, n3, and n4. This partition has two 
further solutions for which no value of ns is greater 
than 3. The components (n1, n2, n3, n4) of the three 
solutions, namely (0 0 3 1), (0 2 2 3) and (1 0 0 2), 
are listed in italics (Nos. 1, 16, 50) in the last column 
of Table 1. 

These solutions enable the components of n for 
the remainder of the column to be expressed as sums 
of their products with positive integers f,g,h, which 
are functions of m and n only, thus: 

(n1+n2+n3+n4) A f(1 0 0 2)+g(0 2 2 3)+h(0 0 3 1)  (10) 

so that the components of n on the left-hand side of 
this identity may be equated to the sum of the 
corresponding products on the right-hand side as 
follows: 

 n1 = f 
 n2 = 2g 
  (11) 
 n3 = 2g+3h 
 n4 = 2f+3g+h. 

Hence 
 m1 = 7f 
 m2 = 13g 
 m3 = 12g+18h 
 m4 = 10f+15g+5h; 
so that 
 n = 3f+7g+4h 
 = 3u+4v, (12) 
and 
 m = 17f+40g+23h 
 = 17u+23v, (13) 

where u = (f+g) and v = (g+h). Hence g � u and 
g � v. Moreover 

 m/n = (17u+23v)/(3u+4v) 
i.e. 
 u(3m-17n) = v(23n-4m) 
or 
 ud = ve (14) 
where 
 d = (3m-17n), 
and 
 e = (23n-4m); 

so that 
 d+2e = 29n-5m 
 = 29(3f+7g+4h)-5(17f+4g+23h) 
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 = 2f+3g+h, 

from which it follows that 

 n4 = 29n-5m. (15) 

The choice of coefficients (7|61/2|6|5) thus makes 
one of the four numbers ns, namely n4, independent of 
the partition, the other three numbers, n1, n2, n3, being 
in general indeterminate; though, as Eqs. (11) show, 
they are subject to the restrictions n1 < n4, and n2 � n3. 

The following illustration, with Nos. 14, 19, and 
27 taken as examples (Table 2), shows how the 
numbers d, e of Eq. (14), which are listed for each of 
the solutions of Table 1 (col. 9) facilitate the 
evaluation of f, g, h (col. 10). 

Table 2. Some solutions for nos. 14, 19, 27 of Table 1. 

 no. 14 no. 19 no. 27 

d 15 7 5 
e 11 9 11 
Eq(14) 15u = 11v 7u = 9v 5u = 11v 
Soln u = 11, v=15 u = 9,v = 7 u = 11, v = 5 
f g h 0 11 4 2  7  0 6  5  0 

Table 3. Complete solutions for nos. 14, 19, 27 of 
Table 1. 

no. 14 no. 19 no. 27 
f g h f g h f g h 

0 11 4 2 7 0 6 5 0 
1 10 5 3 6 1 7 4 1 
2 9 6 4 5 2 8 3 2 
3 8 7 5 4 3 9 2 3 
4 7 8 6 3 4 10 1 4 
5 6 9 7 2 5 11 0 5 
6 5 10 8 1 6    
7 4 11 9 0 7    
8 3 12       
9 2 13       

10 1 14       
11 0 15       

 
Whereas a single trio of numbers f, g, h as shown 

in the bottom line of Table 2 represents for these three 
examples a possible solution of the indeterminate 
equation (14), to obtain the complete solutions the 
trios with all possible values of g, in this case those 
for which 0 � g � 1; 0 � g � 7; and 0 � g � 5, 
respectively (Table 3), have to be taken into account. 
These solutions are set out in full in Table 3, beginning 
in each case with the trio for which g has its largest 
value, i.e. for which g = 11, 7, or 5, respectively, and 
f or h = 0. Since for lack of space not all values of f, 

g, h like those shown in Table 3 can be included in 
Table 1, only those for which f and/or h = 0 are listed. 
From these numbers and Eq. (10) a required partition 
of n (col. 11) can be obtained for each entry in the 
table, thus realizing the first aim of this investigation. 

There remains to be seen, however, whether such 
a purely numerical system can contribute to the 
setting up of an axiomatic framework on which to 
base an adequate description of Nature. 

PHYSICAL 

The aspect of Nature to be considered here is the 
behaviour of light (or, more generally, of radiation) in 
the presence of matter in the crystalline state, the 
example chosen being the scattering of X-rays by 
some tetrahedrally close-packed alloys of the 
transition metals. Shoemaker and Shoemaker (1986) 
listed experimental data for 20 such alloys, some 
metrical properties of whose crystal structure have 
already been considered (Aboav, 1998b). Our attention 
is now briefly directed to the topology of the structure. 

In Table 4, cols 2 and 3 are the same as cols 10 
and 11 of Table 1. In col. 4 are listed the alloys 
investigated by Shoemaker and Shoemaker, while p, 
q, r, x, the numbers of 16-, 15-, 14-, and 12-hedra 
(called P, Q, R, X, respectively) per unit cell of the 
alloys are given in col. 6. 

For each of these unit cells Yarmolyuk and 
Kripyakevich (1974) found an empirical formula for 
PpQq RrXx expressible as 

 Pp Qq RrXx : (PX2)i(Q2R2X3)j(R3X)k (16) 

where i, j, k, whose values for the alloys of 
Shoemaker and Shoemaker are listed in col. 5 of 
Table 4, are integers. This apparent restriction on the 
relative values of p q r x is here referred to as the rule 
of Yarmolyuk and Kripyakevich. As the following 
fact suggests, the rule being a numerical one may not 
require a geometrical explanation. 

From the above table it will be seen that to each 
value of [i j k] there corresponds an identical value of 
[f g h], and to each value of [p q r x] an identical 
value of [n1 n2 n3 n4]. When these identical numbers 
are placed in alignment, there appear gaps in the 
entries of cols. 4-6, which once again suggest that the 
experimental data may be incomplete (Aboav, 
1998b). (Not all the values of [i j k] are equal to those 
of [f g h] shown in Table 1, those of Nos. 14, 19, and 
27 equalling instead the values shown in italics in 
Table 3, which for lack of space could not, as we 
have already seen, be included in Table 1.). 
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Table 4. Relation of  numerical solutions of Table 1 to the crystal structure of some tetrahedrally close-packed 
alloys (Shoemaker and Shoemaker, 1986). 

No. f g h n1 n2 n3 n4 Alloy i j k p q r x 
01 0 0 1 0 0 3 1 CrAl 0 0 1 0 0 3 1 
02 0 1 7 0 2 23 10         
03 0 1 6 0 2 20 9         
04 0 1 5 0 2 17 8         
05 0 1 4 0 2 14 7         
06 0 1 3 0 2 11 6         
07 0 1 2 0 2 8 5 CrFe 0 1 2 0 2 8 5 
08 0 3 5 0 6 21 14         
09 0 2 3 0 4 13 9         
10 0 1 1 0 2 5 4         
11 0 7 4 0 14 26 25         
12 0 2 1 0 4 7 7         
13 0 5 2 0 10 16 17         
14 0 11 4 0 22 34 37 MnSi 6 5 10 6 10 40 37 
15 0 7 1 0 14 17 22         
16 0 1 0 0 2 2 3 ZrAl 0 1 0 0 2 2 3 
17 1 5 0 1 10 10 17         
18 1 4 0 1 8 8 14         
19 2 7 0 2 14 14 25 MnFeSi 7 2 5 7 4 19 25 
20 1 3 0 1 6 6 11         
21 2 5 0 2 10 10 19         
22 4 9 0 4 18 18 35         
23 1 2 0 1 4 4 8         
24 2 3 0 2 6 6 13         
25 4 5 0 4 10 10 23         
26 1 1 0 1 2 2 5         
27 6 5 0 6 10 10 27 MrCrCo 8 3 2 8 6 12 27 
28 4 3 0 4 6 6 17         
29 3 2 0 3 4 4 12         
30 5 3 0 5 6 6 19         
31 7 4 0 7 8 8 26         
32 2 1 0 2 2 2 7 MoCo 2 1 0 2 2 2 7 
33 11 5 0 11 10 10 37         
34 5 2 0 5 4 4 16         
35 14 5 0 14 10 10 43         
36 3 1 0 3 2 2 9         
37 10 3 0 10 6 6 29         
38 4 1 0 4 2 2 11 VNiSi 4 1 0 4 2 2 11 
39 5 1 0 5 2 2 13         
40 16 3 0 16 6 6 41         
41 11 2 0 11 4 4 28         
42 6 1 0 6 2 2 15 VCoSi 6 1 0 6 2 2 15 
43 20 3 0 20 6 6 49 MgZnAl 20 3 0 20 6 6 49 
44 7 1 0 7 2 2 17         
45 8 1 0 8 2 2 19         
46 9 1 0 9 2 2 21         
47 10 1 0 10 2 2 23 MnCoSi 10 1 0 10 2 2 23 
48 13 1 0 13 2 2 29         
49 16 1 0 16 2 2 35 MgZn 16 1 0 16 2 2 35 
50 1 0 0 1 0 0 2 MgZn 1 0 0 1 0 0 2 

 

It is remarkable that, despite their different origin, 
relations (2) and (16) should furnish identical groups 
of numbers, either of which can be used to describe 

the same topological property of a crystal’s structure. 
This identity is not to be expected, since relation (2) 
has nothing to do with the notions of geometry that 
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play a seemingly essential part in our customary 
interpretation of the X-ray photograph of a crystal. A 
doubt therefore arises as to whether this phenomenon 
requires such notions for its description. 

Such doubts are not new: indeed, a century-and-a-
half has elapsed since Riemann (1854), recognizing 
that the rules of everyday geometry do not necessarily 
apply in cases where, as for example in Haüy’s 
(1784) ‘molecular’ picture of a crystal, the scale is so 
reduced that the notions of the solid body and the ray 
of light are no longer valid, expressed the opinion: 

“...es ist also sehr wohl denkbar, dass die 
Massverhältnisse des Raumes im Unendlichkleinen 
den Voraussetzungen der Geometrie nicht gemäss sind, 
und dies würde man in der That annehmen müssen, 
sobald sich dadurch die Erscheinungen auf einfacherer 
Weise erklären liessen.” (Riemann, 1854). 

(“….it is thus quite conceivable that relations of 
size on an infinitesimally small scale are not in 
accord with the postulates of geometry, and this one 
would indeed have to assume, as soon as it allowed 
the phenomena to be more simply accounted for.”) 

This doubt, which haunts us still, is not easy to 
allay; for, in seeking to be rid of it, not only are we 
faced with the task of finding suitable assumptions to 
take the place of those laid down in the Elements, but 
history has left little or no trace of the discoveries and 
decisions known to have been made by Pythagoras 
and his successors in the 2 centuries before the  
 

publication of that great work, discoveries and 
decisions which must have played no small part in 
determining the path Euclid was eventually to follow 
and which would help us immeasurably in our 
present task, could we but know what they were. All 
we can do, alas, is to guess what they may have been 
and try to reconstruct the route by which Euclid 
arrived at his assumptions, an undertaking we venture 
to hazard in the next instalment of this work. 

(to be continued) 
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