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ABSTRACT 

The liberation distribution of ore samples is of considerable interest for process optimisation in the 
minerals industry. A scanning electron microscope-based automatic mineral analyser such as the LEO 
QEMSCAN system developed by CSIRO Minerals is a powerful tool for the estimation of linear or areal 
grade distributions of a population of ore particles based upon polished single particle sections. 
Stereological correction of a single section mineralogical grade distribution is recognised as an ill-posed 
inverse problem. The transformation kernel method with constrained entropy regularisation (King and 
Schneider, 1998) is adopted for the correction of stereological error in binary systems. An enhanced 
transformation kernel correction scheme is developed with an additional equality constraint for average 
grade as determined by section and volumetric sampling, in accordance with Delesse's fundamental 
stereological theorem. The usefulness of both correction methods is limited by the availability of kernels 
that appropriately model the relationship between volumetric and section grade distributions for the 
mineralogical sample of interest. The transformation kernel stereological correction methods are 
implemented in software available for use as part of the LEO QEMSCAN system. Both correction 
procedures are applied to areal section grade distributions of feed and concentrate from a mineral 
processing plant. The corrected grade distributions are in some instances found to be sensitive to the 
application of the average grade constraint. The statistical significance of differences in the corrected 
solutions is discussed. 
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INTRODUCTION 

Optimisation of mineral recovery processes 
requires accurate knowledge of the distribution of 
valuable minerals within comminuted (broken) ore 
particles. Transgranular fracture across mineral grains 
is dominant during comminution of many ores. 
Insufficient ore particle size reduction leads to a 
product with most valuable minerals remaining locked 
together with a significant amount of gangue (waste) 
material in composite particles. This may represent a 
substantial economic or technical problem for further 
beneficiation. Excessive grinding can result in 
liberated (single-phase) mineral particles that are too 
small to be subsequently efficiently separated from the 
gangue material by conventional methods, especially 
flotation. 

Mineralogical analysis of ore and plant stream 
samples performed by scanning electron microscopy, 

uses a sample of order 10-1000 µm particles of 
narrow size range that are mounted in a resin block. 
The LEO QEMSCAN system developed by CSIRO 
Minerals (Miller et al., 1982; Reid et al., 1984) 
identifies minerals by analysis of energy dispersive x-
ray (EDX) spectrum and backscattered electron 
intensity (BEI) from polished single sections of 
particles. Liberation measurements estimate the 
volumetric grade distribution of a mineral as a 
measure of the quality in a processing stream. This is 
the fraction of the total number of particles that 
contain a fraction, by volume, in a prescribed range 
(grade class) of the mineral of interest. 

Stereological bias occurs in the ‘unfolding’ of the 
volumetric mineral liberation distribution of a sample 
of mineral particles from lower-dimensional section 
image analysis. Fig. 1 schematically illustrates the 
stereological bias problem for a two-phase 
mineralogical system. A section through a composite 
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particle of simple texture has a finite probability of 
sampling only one species, leading to a systematic 
over-estimation of the proportion of mineral liberation. 
The extent of stereological bias depends on the texture 
of the ore, with samples containing mineral grains of 
size comparable to the particle exhibiting the most 

bias. Fig. 2 demonstrates the variety of mineralogical 
texture associated with a sample of particle areal 
sections considered in this study. When many of the 
particles are composite and the texture is simple (as 
shown in Fig. 2), stereological bias is an important 
consideration. 

 
Fig. 1. Schematic of stereological error in grade estimation by single sectioning of particles. The magnitude of 
stereological bias is shown as a function of particle texture, with sections (straight lines) through liberated 
and composite particles of similar size. 

Serial sections of particles can, in principle, 
overcome the problems associated with stereological 
error. However, the time, cost and complexity of 
accurate mineralogical volumetric phase estimation by 
multiple sections of each particle would be prohibitive 

in the context of automated image analysis with large 
numbers of particles and samples. Hence correction of 
stereological error related to grade estimation using 
single sections of particles is an important undertaking 
for quantitative analysis of mineralogical samples. 

 
Fig. 2. Areal sections of a mineralogical sample from the final concentrate stream of an Australian lead/zinc 
mineral processing plant. 
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Correction of mineralogical grade distributions for 
stereological bias can be classed as an ill-posed 
problem because very different volumetric grade 
solutions can be associated with quite similar apparent 
grade distributions (Groetsch, 1993; King and 
Schneider, 1998). Regularisation (stabilisation/ 
smoothing) constraints should be embedded in an 
algorithm that seeks to obtain the volumetric grade 
distribution from lower dimensional data in order to 
ensure the selection of the most physically reasonable 
solution (Groetsch, 1993; King and Schneider, 1998). 

There are a number of stereological correction 
methods available for mineralogical samples modelled as 
binary systems. The parametric geometric probability 
method (Barbery, 1991; Leigh et al., 1996) couples 
statistical models for particle shape and mineral 
texture based on the assumption that breakage of 
particles occurs independently of any textural features 
(not generally the case in mineral processing) with 
measurements of sample averages for section grade, 
particle and mineral phase area or linear intercept 
length. The allocation method (Gay, 1995; Gay and 
Lyman, 1995) does not contain textural or breakage 
assumptions but rather attempts to estimate the sample 
volumetric grade distribution via grade class 
allocation of each measured section based on 
minimisation of an error function associated with 
satisfying a series of geometric probability equations 
for various volume weighted moments of particle 
grade. There are several variants of the latter scheme 
based on estimation of a kernel matrix relating 
apparent and volumetric grade distributions from 
stereological moment equations (Keith, 1997; Leigh et 
al., 1999). The main difficulty with these approaches 
is the underlying question of the statistical significance 
of the differences between the various weighted 
estimates of average grade used in the geometric 
probability equations. 

The transformation kernel method (King, 1982; 
Schneider, 1995; King and Schneider, 1998; Fandrich et 
al., 1998) uses a constrained minimisation scheme to 
solve an ill-conditioned matrix inversion problem 
associated with estimating the true from the apparent 
liberation distribution. A texture-related kernel matrix 
which describes the linkage between grade class 
discretised volumetric and apparent grade distributions 
is selected from a library of experimental (Schneider, 
1995; King and Schneider, 1998; Fandrich et al., 
1998) and PARGEN (PARticle GENeration) synthetic 
kernels (Sepulveda et al., 1985) on the basis of 
providing the optimal fit of estimated true to apparent 

grade distribution. The current paucity of experi-
mentally determined kernel matrices for a wide variety 
of mineralogical textures is seen as a limitation on the 
value of the scheme to industry (Fandrich et al., 
1998). 

The inversion technique utilised by the 
transformation kernel method incorporates constraints 
that are physically appropriate for any grade 
distribution. However, a fundamental stereological 
theorem (Delesse, 1847) states that the average grade 
as determined by point, line or area counting should be 
equal to the average volumetric grade in the limit of a 
large number of sections. Some of the metallurgical 
implications of applying the transformation kernel 
method constrained by Delesse's theorem to mineral 
processing plant liberation data have been discussed 
(Spencer and Sutherland, 2000). In this work, the 
effects of incorporating Delesse's theorem as an 
additional constraint specific to the sample into the 
transformation kernel method, including the statistical 
significance of differences in results, are investigated. 

METHOD 

The transformation kernel stereological correction 
equation relating observed particle section apparent to 
unknown volumetric grade distribution is expressed for a 
finite particle size interval as 

1

0

app app app v v vF g D K g g ,D f g D dg ,= ∫  (1) 

where: 

DgF appapp  is the measured cumulative fractional 

linear or areal distribution (weighted respectively 
by length or area according to the image analysis 
technique); 

appg  is the apparent grade; 

vg  is the volumetric grade; 

Dgf v  is the unknown fractional volumetric grade 

distribution (weighted by volume); 

DggK vapp ,  is a kernel function representing the 

texture dependent relationship between apparent 
and volumetric grade (cumulative apparent grade 
distribution weighted by length or area, conditional 
on vg ) for a particle of characteristic size D  over a 

narrow size interval (King, 1982; Schneider, 1995; 
King and Schneider, 1998; Fandrich et al., 1998). 
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Eq. 1 is a Fredholm integral equation of the first 
kind which is well-known to be ill-posed in terms of 
existence, uniqueness and stability of solution of the 
inversion problem (Groetsch, 1993). The transformation 
kernel stereological correction equation is expressed in 
grade class discretised form (with appropriately 
weighted functions) as 

 app vF K f ,=  (2) 

where: 

appF  is a vector of measured cumulative fractional 

distribution of apparent grades; 

vf  is a vector of the unknown volumetric grade 

distribution for each grade class; 
K  is a kernel matrix representing the cumulative 

distribution of linear or areal grades as a function of 
volumetric grade for a particular narrow size range 
(King, 1982; Schneider, 1995; King and Schneider, 
1998; Fandrich et al., 1998). 

The ill-posed nature of the stereological correction 
problem, manifested by an ill-conditioned (high 
condition number) kernel matrix, means that attempts 
to directly invert Eq. 2 usually result in a non-physical 
solution. However, Eq. 2 can be stably inverted by use 
of the maximum entropy method as part of a 
constrained minimisation scheme (Groetsch, 1993; 
King and Schneider, 1998). The transformation kernel 
method with an augmented least-squares minimisation 
objective function based on the maximum entropy 
regularisation method can be written as 

 ( ) 12

1

100 i i
v app v v

i

K f F f ln f ,λ
=

− + ∑  (3) 

where i
vf  are the grade class components of the 

volumetric grade distribution (King and Schneider, 
1998). 

The physicality constraints on the unknown 
volumetric grade fractional distribution (usually in 
twelve classes) are 

 
12

1

1i
v

i

f
=

=∑  (4) 

and 

 0 1i
vf .≤ ≤  (5) 

 

The parameter � in Eq. 3 controls the amount of 
regularisation (smoothing) by maximisation of the 

solution entropy function ( ∑ =
− 12

1
ln

i

i
v

i
v ff ) relative 

to minimisation of the residual error norm 

( ( )100 v appK f F− ). For any given kernel function 

the optimal regularisation parameter maximises the 
entropy (measure of disorder or likelihood) of the 
volumetric grade distribution subject to minimising the 
solution error norm and maintaining other constraints, 
resulting in the most likely solution to the problem 
(Amato and Hughes, 1991; Hansen, 1992; Groetsch, 
1993). L-curve analysis (so-called because of the 
shape of the curves - see Fig. 3) selects the optimal 
regularisation parameter and associated volumetric 
grade solution as the point of unity slope (usually 
� = 1) on the plot of solution entropy against residual 
norm. This solution represents the best balance between 
increasing the solution entropy of the solution and 
decreasing the residual error norm associated with the 
transformation (Hansen, 1992; King and Schneider, 
1998). 

Fig. 3 shows typical L-curves associated with 
stereological correction of single section mineral 
liberation distributions. Each curve in Fig. 3 is for a 
different kernel matrix (eight kernels were tested in 
this case) and data points on each curve represent the 
error norm and entropy associated with volumetric 
grade solutions obtained for different values of the 
entropy regularisation parameter. L-curve analysis is 
also used to select the most appropriate kernel to 
approximate the texture of the sample (see King and 
Schneider, 1998; Spencer and Sutherland, 2000). 
Kernels that are inappropriate to the texture of a 
sample result in a large residual error norm. The 
optimal volumetric grade solution, in terms of both the 
most appropriate kernel matrix and entropy 
regularisation parameter, has the lowest residual norm 
at the unity slope point on the L-curve (see Fig. 3). In 
this case the L-curve analysis shows that the two 
kernel functions associated with the curves on the left 
of the graph (experimentally determined from studies 
of other mineralogical samples) are suitable 
approximations for modelling the texture of this 
particular sample. The L-curves associated with 
PARGEN synthetic kernels (right of the graph) have a 
much larger error norm and are therefore much less 
suited to modelling the texture of the sample. 
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Fig. 3. Typical L-curve results for the constrained transformation kernel method. Optimal volumetric grade 
solution associated with the choice of kernel function and entropy regularisation parameter is as shown. 
Entropy regularisation parameter values are shown on the right for one kernel (same values for corresponding 
points on the other curves). 

Delesse's average grade equality theorem can be 
written as  

 ( ) ( )v appE g E g ,=  (6) 

where: ( )vgE  and ( )appgE  are the expectations of 

respectively the volumetric (volume weighted) and 
apparent (line/area weighted) grade distributions. 

It should be remembered that Delesse's theorem is 
only a stereological estimator for the first moment of 
the liberation distribution. Hence the need for the 
solution of the optimisation problem defined by Eqs. 
3-5 with Eq. 6 taken to be an additional constraint. 
Ideally, it should also be ensured that the average 
apparent grade as determined by image analysis is 
within the experimental error of the (usually more 
accurate) estimate by chemical assay. 

The average grade is estimated from the grade 
distribution both by direct application of Euler 
integration (trapezoidal rule) and by use of Simpson's 
rule on the cumulative grade distribution. This is done 
in order to establish the importance of discretisation 
error in the estimation of the average grade to the 
stereological correction process (King, 1999 - private 
communication). The constrained non-linear optimisa-

tion problem for the optimal volumetric grade 
distribution as defined by Eqs. 3-6 is efficiently solved 
by the sequential quadratic programming method 
(Schittowski, 1985). The ‘minimax’ function of the 
Optimisation Toolbox in MATLAB is used in this 
study. 

RESULTS 

The LEO QEMSCAN system was used for 
liberation analysis of sphalerite (zinc mineral) samples 
from an Australian lead/zinc mineral processing plant. 
Fig. 4 shows typical comparisons of areal and 
stereologically corrected cumulative volumetric grade 
distributions (in mineral processing, the grade 
distribution is traditionally represented in cumulative 
form), derived from statistically valid samples of 
~1000 particle sections (Leigh et al., 1997). The 
corrected results are derived by the transformation 
kernel method (method A) and the same scheme 
coupled with the constraint of Delesse's theorem 
estimated by both Euler integration (method B) and 
Simpson's rule (method C). Fig. 4 shows  
–75+53 µm size class laboratory flotation cell feed 
and concentrate sphalerite grade distributions. There 
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are clear differences between apparent and corrected 
grade distributions for both the feed and the 
concentrate, particularly in the stereologically 
expected tendency of apparent grade distributions to 
overestimate the fraction of fully liberated mineral and 
gangue particles. There is a decline in the estimated 
amount of pure gangue in the feed from an apparent 
value of ~36% to ~0-12%, depending on the 
stereological correction technique. Similarly, the 
estimated amount of pure mineral in the concentrate 
declines from an apparent value of ~18% ~0-9%, 
depending on the stereological correction technique. 
Also, the feed sample apparent grade distribution in 
Fig. 4 indicates significant numbers of particles in 
every composite grade class. In contrast, the corrected 
grade distributions predict very little material in the  

20-70% grade range, indicating that much of the 
sphalerite has been liberated at the –75+53 µm grind 
size. These results are potentially important for the 
economic viability of the mineral processing. 

Fig. 4 demonstrates clear differences between the 
results of stereological correction methods A, B and 
C, particularly for the feed sample. There is a 
consistent difference of ~4% in the cumulative grade 
predictions of method A and method B over most of 
the composite grade classes for the feed sample. 
However, the differences in the amount of pure 
liberated material predicted by stereological methods 
A, B and C for both samples are relatively small in 
comparison to the difference between stereologically 
corrected and apparent values. 
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Fig. 4. Apparent (areal) and stereologically corrected (methods A, B and C) sphalerite cumulative grade 
distributions for laboratory flotation cell feed and concentrate samples of -75+53 µm particles from an 
Australian lead/zinc mine. 

 

Differences between the results of methods A, B 
and C do vary with sample. A bias associated with 
method A of underestimating the average volumetric 
grade (at larger error norms), generally increases with 
the error norm of the solution. The optimal sphalerite 
feed grade distribution estimated by method A has the 
largest error norm of the samples reported (~4.7%) 
and underestimates by ~3% (absolute) the average 
grade of the sample. For the samples reported here, the 
differences between LEO QEMSCAN and chemical 

assay estimates of average volumetric grade are < 1%, 
indicating that the number of particle sections 
analysed is representative of the parent population. 
Our experience with a variety of feed, concentrate and 
tail ore types from the processing streams of several 
mines has been that the imposition of Delesse's 
theorem as a constraint further stabilises the inversion 
procedure but usually increases the error norm 
associated with the solution. The latter could be 
interpreted as an indication that the ‘true’ kernel 
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function representative of the texture of the particular 
sample diverges from the optimal kernel function 
selected from those available as the residual error 
norm of the solution increases. 

Error estimates for the results of stereological 
correction procedures are not currently available. 
However, a useful approach is to consider the 
statistical significance of differences between apparent 
distributions and those corrected by various 
stereological procedures. The chi-VTXDUHG �$2) test for 
two samples was applied to the binned differential 
grade distributions derived for this study. In terms of 
the number of sections sampled to determine the 
apparent grade distributions, all of the results 
(apparent, methods A, B and C) are significantly 
different for all of the samples. In the absence of a 
definitive scaling for the stereologically corrected data, 
UDQNLQJ E\ WKH $2-statistic of the differences between 
the various results is still seen as useful. This 
approach indicates that as expected, the most 
significant differences are between the apparent and 
WKH YDULRXVO\ FRUUHFWHG JUDGH GLVWULEXWLRQV� 7KH $2-
statistic differences between the results of methods B 
and C are of the same order as the differences between 
the method A and method B/C sets of results. This 
result supports the view that the variation in the grade 
distribution induced by the change in the discretisation 
scheme for estimation of the average grade constraint 
is of the same order as the variation due to adding 
Delesse's theorem as a constraint on the 
transformation kernel approach. However for all cases 
investigated, the use of Simpson's rule rather than 
Euler integration to estimate the average grade 
UHVXOWHG LQ D ODUJHU $2-statistical difference to the 
transformation kernel method results unconstrained by 
average grade. The use of Delesse's theorem with 
Euler integration to estimate the average grade seems 
to be the most conservative approach. 

CONCLUSION 

Correction of stereological bias is essential to the 
accurate estimation of mineral liberation from single 
section samples. Liberation analyses of flotation feed 
and concentrate samples from an Australian lead/zinc 
mine show that single section apparent grade 
distributions can substantially over-estimate the 
proportion of pure liberated mineral of interest and 
gangue. Predictions of mineral processing plant 
performance based on such data could lead to serious 

technical and/or economic problems. The use of 
Delesse's theorem as an average grade constraint on 
the transformation kernel method of stereological 
correction is appropriate in order to ensure prediction 
of a volumetric grade distribution that is physically 
plausible for the sample under consideration. The 
stereologically corrected liberation results presented in 
this study in some instances show significant 
differences in predicted grade distribution due to the 
application of the average grade constraint. However, 
the choice of discretisation scheme for calculation of 
the average grade constraint can introduce changes to 
the corrected grade distribution of similar order to that 
caused by the imposition of the average grade 
constraint itself. Application of Delesse's theorem as 
an additional constraint in the correction process, with 
average grade determined by Euler integration, is 
recommended in cases where the best fit kernel results 
of the transformation kernel method produce a 
relatively large error norm and substantial error in 
estimated average grade. 

The availability of a kernel matrix that accurately 
represents the texture of the sample currently under 
consideration is an important problem in the 
application of the transformation kernel approach to 
stereological correction of single section mineral 
liberation distributions. In the absence of a sufficient 
number of reliable stereological estimators to 
construct transformation kernels from single section 
information, the experimental determination of a broad 
range of kernel functions suitable for the large variety 
of textures likely to be encountered in mineral 
processing operations is an immediate concern. 

A preliminary report of some of the data was presented 
at the Xth International Congress for Stereology, 
Melbourne, Australia, 1-4 November 1999. 
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