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ABSTRACT 

When estimating a volume fraction VV from point count fractions PP using Delesse's principle VV = PP, very 
little information on the accuracy of the estimator can be obtained from the basic theory of stereology. 
Existing methods for quantifying the variability of PP are mainly large-sample approximations such as 
Cochran's formula for the variance of a ratio. Cruz-Orive proposed an alternative method, but this requires 
statistical assumptions to be made on the point counts P, that do not hold in general. We introduce two 
alternative methods for quantifying the variability of PP, namely the bootstrap method and explicit statistical 
modelling of the bivariate distribution. The bootstrap method requires few statistical assumptions about the 
point counts but requires large sample size. The explicit statistical modelling method does make 
assumptions, but they can be checked directly from the data. To explore this approach, we propose a 
statistical model, the Type I Bivariate Binomial (BVB) distribution to model the pairs of count data (P, P). 
We show how to fit the BVB model to the data and how to assess the goodness-of-fit of this model. A 
formula for the variance of PP under the BVB model is also derived. The three approaches are compared in 
their application to nine example data sets taken from macroscopic sections of cerebral hemispheres of 
selected domesticated animals. The BVB model appears to be a good fit to these data sets. Implications for 
stereological estimation are discussed. 

Keywords: bootstrap method, delta method, Monte Carlo, stereology, type I bivariate binomial distribution, 
volume fraction. 

INTRODUCTION 

Many parameters of interest in stereology are 
ratios of geometrical quantities such as the volume 
fraction 
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of a phase of interest, obj within the three-
dimensional reference space, ref. Stereological theory 
(Weibel, 1980; Baddeley, 1991), shows how to 
statistically estimate V(obj) and V(ref) by unbiased 
estimators, such as the Cavalieri's principle estimators 
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and 

 est (ref) . (ref)V t a P= ∑  

where a is the area per test point and t is the 
separation distance between the sections, based on 
test point counts P(obj) and P(ref). Usually, the ratio 
VV is estimated by taking the ratios of these 
estimators,  
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The important question for us is the accuracy of 
this estimator. Stereological theory (Weibel, 1980) 
does not provide much information about the 
variance of the individual estimators estV(obj), 
estV(ref) or their ratio. 

In a more general context, suppose we are 
interested in the parameter 
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where X and Y are geometrical measurements such as 
length, area or the number of counts of test points 
within a small planar section through an object. The 
parameter θ is usually estimated by the ratio 
estimator 
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Our aim is to estimate the variance, ( )ˆVar θ  of 

this estimator. 

The usual estimator of θ used in stereology is the 
ratio estimator (2) which does not require any 
specific model assumptions. Cruz-Orive (1980) 
proposed a semi-parametric approach to estimate θ, 
and in this paper, we use a parametric approach. We 
consider bivariate count data (X, Y) and the situation 
where n integer bivariate observations (x1, y1),...,(xn, 
yn), are obtained from n different images or sections 
of the material under study. These observations are 
assumed to be independent and to have the same 
bivariate distribution. 

EXAMPLE DATA SETS 

The data were extracted from a comparative study 
of neuroanatomy by Mayhew et al., (1990) and were 
kindly provided by Professor Mayhew. The samples 
were taken from the cerebral hemispheres of nine 
selected domesticated animals, namely three horses, 
one dog, one pig and four rabbits. 

A test system consisting of a grid of test points 
and a lattice of cycloid arcs was used to record 
various quantities of interest for the study. Volume 
fraction of cortex in the whole brain was estimated 
from VV(cort/ref) = P(cort)/P(ref) where “cort” 
represents cortex. In this paper, we denote P(ref) the 
number of test points which fell on the whole slice by 
X, and P(cort) the number of test points which fell on 
the cortex alone by Y. 

VARIANCE ESTIMATION 

We consider three approaches to estimate the 

variance of ˆ /y xθ = . They are the non-parametric, 
semi-parametric and parametric approaches. 

Bootstrap method 
A non-parametric bootstrap method (Efron, 1982) 

was applied to each of the nine data sets. For each 
data set, 1000 random samples (with replacement) 
from the data, of the same size as the original sample, 

were generated and the sample value of ˆ /y xθ =  

computed. The variance of θ̂  was estimated by the 
sample variance of the bootstrap replications. 

Delta/Cochran method 
One may apply the delta method (Lehmann, 

1999, p. 85) which assumes that ( ,X Y ) are 
asymptotically jointly normally distributed and 

approximates the variance of θ̂  by linearising the 

function ( ), /f x y y x=  around ( ) ( )( )E , EX Y . 

This yields an estimate of the variance of 
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where 2
xs , 2

ys  and xys  denote the sample variance of 

x and of y and the sample covariance of x and y 
respectively. Note that the above estimate of the 

variance of θ̂  is equivalent to the one given by 
Cochran (1977). 

Cruz-Orive method 
The semi-parametric approach adopted to estimate 

the variance of θ̂  was that proposed by Cruz-Orive 
(1980). This method is based on a conditional 
regression model which assumes linear regression of 
y on x and the variance of y given x is proportional to 
x. Under this model, 
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Parametric method 
For the parametric approach, we assume that the 

statistical model, Type I Bivariate Binomial 
distribution (BVB) is applicable to the data. Details 
of the BVB model are given in a further section 
below. We fitted this model to the data and used the 

variance of θ̂  predicted by the model. The following 
expression for the variance of θ  was derived from the 
BVB model where PA and PX are parameters of the 
distribution (see below), n is the number of 
sections/fields and m is the number of test points on 
the test system. 

( ) ( ) ( ) ( ){ }ˆVar 1 1 2 . 1A
A X X X

X

P
P P nm nm P P

P
θ − − − − −  %

 (4) 

RESULTS 

We applied the techniques of estimating the 

variance of θ̂  mentioned above to the nine example 

data sets. The estimates of the standard error of θ̂  
obtained are shown in Table 1 and Fig. 1. The 
bootstrap method, delta/Cochran method and Cruz-
Orive's formula yielded results that are roughly in 
agreement with each other for all the data sets, while 
they disagree with the estimates obtained by the BVB 
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model, particularly for the rabbit data (R2, R3, R4) 
which have small sample size. Further, we can see 
from Fig. 1 that for data sets R2, R3, R4, the 
bootstrap, delta/Cochran and Cruz-Orive methods 
produced estimates that fluctuate more than those 
yielded by the BVB model. 

A simulation study was then carried out to 

investigate the variance of the estimates of ( )ˆVar θ  

obtained by the four techniques assuming the BVB 
model is true. For a particular data set, we simulated 
1000 matching data sets from the BVB model using 
the maximum likelihood estimates of the parameters. 

The four methods of estimating ( )ˆVar θ  were then 

applied to the simulated data, and the corresponding 
sample variance/covariance matrix was computed. 

The nine variance/covariance matrices obtained all 

showed that the variance of the estimates of ( )ˆVar θ  

obtained by the BVB model is much lower than those 
yielded by the bootstrap, delta and Cruz-Orive 
methods. As an example, the variances for data set 
H1 were 3.6×10-7 for the BVB model, 7.4×10-6 for 
the bootstrap method, 4.4×10-6 for the delta/Cochran 
method and 3.8×10-6 for Cruz-Orive method. In 
addition, it was found that the latter three estimates 
were highly correlated. 

The results obtained from the four variance 
estimation methods and the simulation study indicate 
that if we believe the BVB model is true for our data, 
then it provides the most reliable way to estimate 

( )ˆVar θ  amongst the four methods considered. 

 

 

Fig. 1. Estimates of standard error of θ̂  using the bootstrap method, delta method, Cruz-Orive's formula and 
BVB model. 
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Table 1. Estimates of standard error of ˆ /y xθ =  using the bootstrap, delta/Cochran, Cruz-Orive methods and 
the BVB model(4). 

    Estimated Standard Error 
Data 
Set 

Species 
Sample 
size 

θ̂  
values 

Bootstrap 
Method 

Delta 
Method 

Cruz-Orive's 
Formula 

BVB 
Model 

H1 Horse 72 0.532 0.019 0.020 0.022 0.025 
H2 Horse 76 0.485 0.022 0.022 0.023 0.023 
H3 Horse 68 0.400 0.024 0.024 0.024 0.022 
Dg Dog 64 0.602 0.035 0.035 0.034 0.032 
Pg Pig 68 0.470 0.028 0.027 0.028 0.028 
R1 Rabbit 40 0.640 0.037 0.038 0.039 0.041 
R2 Rabbit 32 0.590 0.032 0.031 0.032 0.039 
R3 Rabbit 40 0.592 0.049 0.047 0.046 0.039 
R4 Rabbit 36 0.496 0.036 0.036 0.035 0.042 

TYPE I BIVARIATE BINOMIAL DISTRIBUTION 

The Type I bivariate binomial distribution (BVB) (Kocherlakota and Kocherlakota, 1992) is the joint, 
distribution of two random variables X and Y with the following joint probability mass function 

( ) ( ) ( ) ( )( )

( )min ,

max 0,

!
, ,

! ! ! !

a x y
a x a y a m x y a

A B C D
a x y m

m
P X x Y y P P P P

a x a y a m x y a

=
− − − − +

= + −
= = =

− − − − +∑  (5) 

where 0 � PA < 1, 0 � PB < 1, 0 � PC < 1, 0 � PD < 1, 0 � x � m and 0 � y � m. 

Parameter Estimation 

We derive the optimal estimator θ̂  of � from the 
BVB model using the identity given by (1). Let 
PX = PA + PB and PY = PA + PC. From (Kocherlakota 
and Kocherlakota, 1992, p. 61), ((X) = mPX and 
((Y) = mPY, where the maximum likelihood 
estimators of PX and PY given in (Kocherlakota and 

Kocherlakota, 1992, p. 80) are ˆ /XP x m=  and 

ˆ /YP y m=  respectively with 
1

1 n

ii
x x

n =
= ∑  and 

1

1 n

ii
y y

n =
= ∑ . Therefore, ˆ /y xθ = , which is the 

ratio estimator (2). 

Motivation 
We consider the case when PC = 0. The BVB 

model can be considered as arising from a sequence  
of m bivariate Bernoulli trials with a pair of 

characteristics being studied at each trial 
(Kocherlakota and Kocherlakota, 1992). Suppose we 
have some biological material consisting of empty 
spaces and two compartments, Tissue I and Tissue II 
such that Tissue II is contained in Tissue I. Fig. 2 
shows a sketch of such a material, upon which a test 
grid is superimposed. 

If a test point falls on Tissue II, then it must have 
also fallen onto Tissue I, but the converse is not 
necessarily true. That is, each test point on the test 
grid can be treated as a bivariate trial with ‘success’ 
being that the test point hits Tissue I or Tissue II as 
appropriate. If the different bivariate trials at different 
test points can be regarded as independent then the 
BVB model can be applied here with PC, the 
probability that a test point is not on Tissue I but is on 
Tissue II, equal to 0 and m, the number of trials, 
taken as the number of test points on the test grid. 
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Fig. 2. Sketch of biological material with Tissue II (darker region) contained in Tissue I (lighter region) where 
“+” indicates a test point on the test grid and white region represents empty spaces. 

Applying BVB to the data 
The scheme described above can be applied to the 

(X, Y) data if we treat “whole slice” as Tissue I and 
“cortex” as Tissue II. In our case where PC = 0, the 
probability mass function (5) becomes 

( ) ( ) ( ) ( )!
, .

! ! !
y x y m x

A B D

m
P X x Y y P P P

y x y m x
− −= = =

− −
 

To fit this model to the data, we estimate the 
probabilities using maximumlikelihood. The 
maximum likelihood estimators found are 
ˆ /AP y m= , ( )ˆ /BP x y m= −  and ˆ 1 /DP x m= − . 

Testing the goodness-of-fit of the BVB model 
to the data 
To assess the adequacy of the BVB model to the 

data, we perform a goodness-of-fit test of the BVB 
distribution against a completely unspecified 
alternative at the 5% significance level using a Monte 
Carlo test (Hope, 1968; Besag and Diggle, 1977). 
Following (Brooks et al., 1997) we use the maximum 
log-likelihood as the test statistics; this choice is 
justified by its connection to the likelihood ratio test. 

For each data set, we first fit the BVB model by 
maximum likelihood, yielding parameter estimates 
ˆ
AP , B̂P  and D̂P . Then we generate 99 simulated 

datasets, of the same size as the original dataset, 
drawn from the BVB distribution with these 
parameters. For each simulated dataset the BVB 
model is fitted by maximum likelihood, and the 
maximised value of the log-likelihood is recorded. 
The log-likelihood values from the 99 simulated 

datasets, and the value for the original data, are 
pooled and ranked in ascending order. The null 
hypothesis will be rejected at significance level 
2k/100 if the original data value of the maximum log-
likelihood is one of the k largest or k smallest values. 
We set k = 2. 

The simulation test procedure described above is 
applied to each of the nine data sets. The ranks and 
the Monte-Carlo p-values of the tests obtained are 
shown in Table 2 from which we can see that all data 
sets except that of R4 (marked with an asterisk) result 
in accepting the BVB model. 

Table 2: The ranks and p-values obtained from the 
Monte Carlo tests for the nine data sets. 

Data Rank p-value 

H1 78 0.23 

H2 2 0.99 

H3 94 0.07 

Dg 34 0.67 

Pg 26 0.75 

R1 85 0.16 

R2 94 0.07 

R3 8 0.93 

R4 96 *0.05 

To determine whether the BVB model can be 
considered as an appropriate model for the data from 
the simulation tests results, we assume that the results 
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for each dataset are independent. Then the probability 
of observing at least one rejection of H0 when H0 is 
true in each case is P(Bin(9, 0.05) � 1) = 0.37 which 
is not significant, where “Bin” represents the 
binomial distribution. Hence we conclude that the 
BVB model is applicable to (P, P) data in this 
context. 

A preliminary report of some of the data was presented 
at the Xth International Congress for Stereology, 
Melbourne, Australia, 1-4 November 1999. 
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