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ABSTRACT

Two methods for the estimation of number per unit volumeNV of spherical particles are discussed: the
(physical) disector (Sterio, 1984) and Saltykov’s estimator (Saltykov, 1950; Fullman, 1953). A modification
of Saltykov’s estimator is proposed which reduces the variance. Formulae for bias and variance are given for
both disector and improved Saltykov estimator for the case of randomly positioned particles. They enable the
comparison of the two estimators with respect to their precision in terms of mean squared error.
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INTRODUCTION

Estimating the mean number of particles per unit
volume NV is a fundamental stereological problem.
There are two main approaches, the choice of which
is mostly driven by practical considerations.

In cases where the structure of interest can be
investigated as a three-dimensional structure, as e.g. in
confocal microscopy, the (optical) disector is the most
convenient method, and it gives unbiased estimates of
NV (Sterio, 1984; Howardet al., 1985). Therefore it is
very well established in biological sciences. However
if the matter is opaque, the physical disector has
to be used which is based on parallel sections a
known distance apart. Then it is necessary to identify
particles that are hit by both sections, which requires
perfect registration of the relative position of the two
images. Moreover a bias may be introduced because
particles that are smaller than the distance between the
two section planes cannot be detected. Both optical
and physical disector imply a lot of manual work of
qualified assistants.

Often it is practically very difficult or even
impossible to make parallel sections, as of hard
and brittle material. This is a reason why
classical stereological methods using single sections
are traditionally preferred e.g. by materials scientists.
These methods are based on assumptions about the
shape of the particles. Perhaps the most popular
estimator is Saltykov’s method (Saltykov, 1950;
Fullman, 1953). It assumes that the particles are
spherical, an assumption which in engineering is very
often quite realistic. Saltykov’s estimator requires
only to measure the diameters of the (circular) particle

profiles. In many cases this can be accomplished
by automated image analysis. The estimator is often
blamed for its theoretically infinite variance, which is
caused by very small intersection circles. As shown in
this paper, it can easily be improved by binning these
small diameters. Then its variance is finite at the cost
of a negligible bias.

Up to now, hardly anything has been known about
the statistical properties of the physical disector and
the improved Saltykov estimator. It is clear that
the variance of the estimators largely depends on
the degree of regularity of the investigated structure,
however the relationship is very complex, and in
practical applications it is difficult to investigate the
spatial variability of particle arrangement. We give
formulae for variance and bias of both methods based
on the assumptions that the particles are spherical
and completely randomly positioned. Accuracy of
the estimators is computed for various distributions
of sphere diameters. The results lead to practical
recommendations for the observation window size
which is necessary to obtain a given mean squared
error.

ESTIMATORS OF NV

A well-known classical planar-section estimator
N̂S

V of NV (Saltykov, 1950; Fullman, 1953) is based
on the observation of section circles with centres in
a planar windowW of areaA(W ). Their (random)
number isn, their diameters ares1; :::;sn. Then

N̂S
V =

2
πA(W )

n

∑
i=1

1
si
: (1)
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This estimator is unbiased, given the section plane
is randomly positioned or, in terms of the model-
approach, the system of spheres is homogeneous, i.e.
can be described by a stationary germ grain model
(Stoyanet al., 1995). Unfortunately, the variance of
N̂S

V is infinite due to the occurence of very small section
circles. In practice microscopical image resolution
sets a natural lower limit to the diameters that can be
observed, i.e. there is a lower bound for thesi. But still
the variance of̂NS

V will be very large.

Thus it is natural to modify the estimator such
that very small section circles are not measured but
only counted. To this purpose a lower diameterε is
introduced such that all section circle diameters larger
thanε are measured while all smaller ones are set equal
ε=2. With the notation

s�i (ε) =

(
ε=2 if si < ε;
si otherwise

the modified estimator is

N̂S�

V =
2

πA

n

∑
i=1

1
s�i (ε)

: (2)

Clearly, N̂S�

V must have a bias which increases with
increasingε. As shown below, the bias is rather
small and the variance of̂NS�

V is finite, decreasing with
increasingε.

The physical disector estimator̂ND
V (Sterio, 1984)

is based on counts made on two parallel section planes
of distancet. The numberQ� of particles which
appear in a counting frame in the reference plane but
do not hit the look up plane has to be determined. With
t denoting the distance of the two planes andA(W ) the
area of the counting frame,

N̂D
V =

Q�

tA(W )
: (3)

This estimator is unbiased only if there are not any
particles with diameter smaller thant. Otherwise
such small particles may be situated between the two
planes and therefore are overlooked, which results in
a negative bias. Furthermore, the disector requires the
distancet to be precisely known and that it is possible
to decide whether profiles in the two planes belong to
the same particle or not. The same assumptions about
homogeneity of the particle system or randomization
of the section planes are made as for the estimatorsN̂S

V

andN̂S�

V .

STATISTICAL PROPERTIES OF
THE NV ESTIMATORS

Under the homogeneity assumptions made in the
previous section, the means and biases ofN̂S�

V andN̂D
V

can be calculated quite easily. In this section only
results are presented, for sketches of their derivation
see the Appendix.

Means (and biases) of the estimators depend on the
distribution functionDV of the sphere diameters. In the
Appendix it is shown that

EN̂S�
V =NV

�
2
π

Z ∞

ε
arccos(

ε
d
)DV (dd)

+
4

πε

Z ∞

0

�
DV (

p
u2+ ε2)�DV (u)

�
du

� (4)

and

EN̂D
V = NV

�
1�

1
t

Z t

0
(t�d)DV (dd)

�
: (5)

Using these formulae the relative bias
B� =

�
EN̂�V �NV

�
=NV was calculated for the two

estimators. Five diameter distributions were
considered, all with mean one: constant diameters,
uniform (on [0.7,1.3]) and triangular (on [0.1,1.9]) as
examples of bounded distributions, as well as Rayleigh
distribution and lognormal distribution (with variance
0.1). The corresponding density functions are depicted
in Fig. 1.
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Fig. 1. Density functions of the diameter distributions.
U – uniform, T – triangular, R – Rayleigh, L –
lognormal. For the parameters see text. ( C – line
representing constant diameters � 1.)

Since the relative bias is dimensionless, the results
also hold for diameter distributions with the same
shape but with mean d̄V different from one. To this
end, B� is regarded as a function of the ratio ε : d̄V or
t : d̄V , resp.
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Fig. 2. Relative bias (a) of the improved Saltykov
estimator and (b) of the disector as a function of
the ratios ε : d̄V or t : d̄V , resp. for the diameter
distributions in Fig. 1.

Fig. 2 shows (a) BS�

for ε : d̄V 2 [0;1] and (b) BD

for t : d̄V 2 [0;1:4].

The absolute value of the relative bias BS�

of the
improved Saltykov estimator is very small (between
0.0004 and 0.0026) for all considered distributions if
ε � 0:2. It still does not exceed 0.0082 for ε � 0:4.
Therefore a ratio “ε : mean diameter” of 0.2 or even
0.4 can be recommended for practical use.

The disector is unbiased if the distance t is smaller
than the smallest sphere diameter, e.g. for t < 1 in
case of constant diameters. In general the bias of
the disector depends very much on the form of the
diameter distribution.

In contrast to mean or bias, the variance of
the estimators also depends on the variability in
spatial arrangement of the particles. In general the
relations are very complex. However it is possible to
give formulae for the case of independently random
positioned sphere centres and independent diameters,
i.e. for the Poisson case.

The variance of N̂S�

V is given by

Var N̂S�
V =

NV

A(W )

�
4
π2

Z ∞

ε

1
d

ln

�
d
ε
+

s�
d
ε

�2

�1

�
DV (dd)+

+
16

π2ε2

Z ∞

0

�
DV (

p
u2+ ε2)�DV (u)

�
du

�
;

(6)

and the variance of N̂D
V is

Var N̂D
V =

NV

A(W )
�

1
t

�
1�

1
t

Z t

0
(t�d)DV (dd)

�
; (7)

see the Appendix.

In parallel with relative bias, relative variance
V � = Var N̂�V �

�
d̄V A(W )

�
=NV was calculated for both

estimators as a dimensionless quantity. Fig. 3(a)
shows V S�

for ε 2 [0;1]. The variance does not very
much depend on the distribution of the diameters.
As to be expected, it decreases with increasing ε .
For ε = 0:2, V S�

takes values between 1.75 (constant
diameters) and 2.18 (Rayleigh distribution), and for
ε = 0:4; V S�

2 [1:48;1:71].

The relative variance V D of the disector method is
shown in Fig. 3(b). Obviously it depends even less on
the type of diameter distribution than the variance of
N̂S�

V does. It is quite large (V D
> 3:25) for t < 0:3, but

it decreases with increasing t because then the volume
of the three-dimensional counting box increases which
is used for the disector estimator, i.e. the sample size
increases.

PRECISION OF THE
NV ESTIMATORS

Performance of an estimator is usually expressed
by the mean squared error (MSE), that is the average
squared distance of the estimate to the true estimated
parameter. MSE is a combination of variance and bias:
MSE� = E

�
N̂�V �NV

�2
= Var N̂�V +

�
bias N̂�V

�2
:

For any number density NV and any window size
A(W ), the MSE of the NV estimators can easily be
calculated from relative variance V � and relative bias
B�:

MSE� =
NV

d̄V A(W )
V �

+N2
V (B

�

)
2
= N2

V

�V �

En
+(B�)2�

;
(8)

where En = d̄V NV A(W ) is the mean number of section
circles counted in the observation window or counting
frame, respectively.

This enables the comparison of the precision of
the estimators N̂S�

V and N̂D
V using the formulae and

diagrams of the previous section. Clearly, MSE
depends on the diameter distribution and on NV
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Fig. 3. Relative variance (a) of the improved Saltykov estimator and (b) of the disector as a function of the ratios
ε : d̄V or t : d̄V , resp. for the diameter distributions in Fig. 1.

itself, two factors that are intrinsic to the investigated
structure and cannot be altered. Yet the experimenter
can influence MSE by the choice of observation
window area A(W ) and design parameters ε or t, resp.

A popular rule of thumb advises to chose the
sample size — here represented by the window area —
such that the variance part of MSE is not smaller than
the bias part. This means, in terms of (8), that V �=En
should be greater or equal to (B�)2. The two parts are
of equal size if the observation window or counting
frame size is chosen to be A(W )opt =V �=

�
d̄V NV (B

�)2
�
.

As an example, two cases are studied of a
structure with independent randomly positioned
spheres of constant and independent Rayleigh
distributed diameters, resp. The number density
is NV = 1000 [mm�3], and the mean diameter is
d̄V = 0:02 [mm]. For the disector, the section distances
t = 0:02 and t = 0:01 [mm], and for the improved
Saltykov estimator, ε = 0:008 and ε = 0:004 [mm] are
considered, corresponding to ratios t : d̄V of 1 and 0.5
resp., and ε : d̄V of 0.4 and 0.2, resp.

Table 1 shows relative bias and variances, as well
as the MSE for a window of area 10 (“MSE10” ), and
the area A5000 of a window such that MSE = 5000.
The absolute bias of the improved Saltykov estimator
is very small for any of the considered distributions.
Its contribution to MSE is practically negligible. For
the physical disector, the bias strongly depends on the
diameter distribution. If the structure has a relatively
high proportion of small particles, a small bias can
only be obtained with a small section distance t. But
then the variance is very large, again leading to a large
MSE. E.g. in the case of the Rayleigh distribution, N̂D

V
with t = 0:5d̄V has both a larger relative bias and a
larger relative variance than N̂S�

V with ε = 0:4d̄V , see
Table 1. As the bias of N̂S�

V (0:4) is negligible compared
to the variance and as variance of N̂D

V increases with
decreasing section distance, N̂S�

V (0:4) is better than any
disector with distance t < 0:5d̄V . Generally spoken,
the improved Saltykov estimator is particularly useful
if the diameter distribution has a large range.

Taking into account that the disector uses two
section planes, the total window area which is required

Table 1. MSE10 = MSE [mm�6] for a window of area 10, and A5000 = area [mm2] of a window such that MSE
= 5000, of disector and improved Saltykov estimator for different parameters t and ε , resp. N V = 1000 [mm�3],
d̄V = 0:02 [mm]. For further details see text above.

constant diameters Rayleigh distribution
B� V � MSE10 A5000 B� V � MSE10 A5000

N̂D
V : t : d̄V = 1 0 1.000 5000.0 10.0 -0.2101 0.7899 48087.9 — �

t : d̄V = 0:5 0 2.000 10000.0 20.0 -0.0618 1.8765 13197.6 79.2

N̂S�

V : ε : d̄V = 0:4 0.0038 1.4809 7418.5 14.9 -0.0080 1.7118 8622.3 17.3
ε : d̄V = 0:2 0.0004 1.7479 8739.8 17.5 -0.0010 2.1811 10906.7 21.8

—� : A5000 does not exist, MSE > 5000 for any window area.

212



Image Anal Stereol 2000;19:209-214

to achieve the same precision is smaller for N̂S�

V even
in the case of constant diameters. However measuring
diameters in the case of N̂S�

V means acquiring more
information of the window than bare counting as in the
case of N̂D

V , and therefore perhaps a little higher effort
to evaluate the sections.

A preliminary report was presented at the Xth
International Congress for Stereology, Melbourne,
Australia, 1-4 November 1999.
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APPENDIX: DERIVATION OF
ESTIMATOR MEANS AND
VARIANCES

Following the notation in Stoyan et al. (1995,
p. 355), the particle system is represented by a spatial
germ grain model (or marked point process) ΨV =
f[xn;yn;zn;dn]g of spherical particles, where (xn;yn;zn)
is the centre of the nth sphere and dn is its diameter.
The corresponding unmarked point process of particle
centres has density NV .

In order to calculate the mean of N̂D
V , we translate

the number Q� into that notation. A sphere of diameter
d with centre in (x;y;z) intersects both reference and
look up plane if z� d

2 < 0< z+ d
2 < t. Then it produces

a section circle of radius r =
p

(d=2)2� z2. The circle
is counted in the counting frame if its centre falls inside
the frame shifted by the vector (r;r). Hence

N̂D
V =

Q�

tA(W )

=
1

tA(W ) ∑
[x;y;z;d]2ΨV

1W(r;r)
(x;y)�

�1
�
z�

d
2
< 0 < z+

d
2
< t
�
;

where W
(r;r) represents the counting window in the

reference plane shifted by the vector (r;r) and the
symbol 1(:) denotes a version of the indicator function:
1(A) = 1 if the expression A is true and 1(A) = 0 if A
is false.

In the following a number of expectations of
sums similar to the sum above have to be calculated.
Application of Campbells’ theorem for marked point
processes (e.g. Stoyan et al., p. 108) yields for any non-
negative measurable function f

E

�
∑

[x;y;z;d]2ΨV

1W(r;r)
(x;y) f (z;d)

�

=

Z ∞

0

Z
IR

Z
IR

Z
IR

1W(r;r)
(x;y) f (z;d)NVdxdydzDV (dd)

= NV A(W )

Z ∞

0

Z
IR

f (z;d)dzDV(dd)

= E

�
∑

[x;y;z;d]2ΨV

1W (x;y) f (z;d)

�
:

(9)

Consequently, the mean of the disector is

E N̂D
V = NV

1
t

Z
IR

Z
IR

1W
(r;r)

(x;y) �

�1
�
z�

d
2
< 0 < z+

d
2
< t
�
dzDV (dd)

= NV
1
t

�Z ∞

t
tDV (dd)+

Z t

0
dDV (dd)

�

= NV

�
1�

1
t

Z t

0
(t�d)DV(dd)

�
:

Under the assumption that the particles are
independent randomly positioned and that their
diameters are independent identically distributed,
i.e. that ΨV is a Poisson process, the number Q�

of particles counted in the disector box is Poisson
distributed. Therefore VarQ� = EQ� and thus (7)
follows from

Var N̂D
V =

EQ�

t2A(W)2
=

E N̂D
V

tA(W )
and (5).

The improved Saltykov estimator can be written as

N̂S�

V =
2

πA(W ) ∑
[x;y;z;d]2ΨV

1W (x;y)�

�1
�
�d=2 < z < d=2

� 1
s�(ε;d;z)

;

where

s�(ε;d;z) = 1
�p

d2�4z2 � ε
�p

d2�4z2+

+1
�p

d2�4z2
< ε
�ε

2
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is the modified section circle diameter. Following (9),
the mean of N̂S�

V is

E N̂S�

V = NV
2
π

�Z ∞

0

Z p
d2+4z2

�
p

d2�4z2

dz
p

d2�4z2
DV (dd)+

+
2
ε

Z
IR

Z ∞

0
1
�
4z2

< d2
< 4z2 + ε2

�
DV (dd)dz

�

= NV
2
π

�Z ∞

ε
arccos

ε
d

DV (dd)+

+
2
ε

Z ∞

0

�
DV

�p
u2 + ε2

�
�DV

�
u
��

du

�
:

The second moment of N̂S�

V is

E

�
2

πA(W )∑
1

si(ε)

�2

=
4

π2A(W )2
E∑ 1

s�i (ε)2
+

+
4

π2A(W )2
E∑ 6= 1

s�i (ε)s�j(ε)
=: V1 +V2:

With the Campbell theorem (9),

V1 =
4

π2A(W )2
E ∑
[x;y;z;d]2ΨV

1W (x;y)1
�
jzj<

d
2

�
�

�

 
1
�p

d2�4z2 � ε
�

d2�4z2
+

1
�p

d2�4z2
< ε
�

ε=2

!

=
4

π2A(W )
NV

�Z
IR

Z ∞

p
4z2+ε2

DV (dd)
d2�4z2

dz+

+
4
ε2

Z ∞

0

�
DV

�p
u2 + ε2

�
�DV

�
u
��

du

�

=
4NV

π2A(W )

�Z ∞

ε

1
2d

ln
d +

p
d2� ε2

d�
p

d2� ε2
DV (dd)+

+
4
ε2

Z ∞

0

�
DV

�p
u2 + ε2

�
�DV

�
u
��

du

�
:

The value of V2 depends on the distribution of
ΨV . In the particular case of centres forming
a stationary Poisson process and of independent
identically distributed diameters, it is V2 = (E N̂S�

V )2.
Then Var N̂S�

V =V1, which leads to (6).
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