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ABSTRACT

This paper discusses various estimators for the nearest neighbour distance distribution functionD of a
stationary point process and for the quadratic contact distribution functionH q of a stationary random closed
set. It recommends the use of Hanisch’s estimator ofD, which is of Horvitz-Thompson type, and the minus-
sampling estimator ofHq. This recommendation is based on simulations for Poisson processes and Boolean
models.
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INTRODUCTION

Random sets are successful models for various
spatial structures such as porous media, phases in
two- or multi-phase materials or biological tissues.
They are studied in many stereological studies. In
their statistical analysis, contact distributions play an
important role, see Serra (1982), Stoyan, Kendall
and Mecke (1995), and Ohser and M¨ucklich (2000).
Of particular interest are the linear, spherical and
quadratic contact distribution function (cdf)Hl;Hs

and Hq. For a stationary random closed setX , the
spherical cdfHs is the distribution function of the
random distance from an arbitrary point outside ofX
to its nearest neighbour inX . The quadratic cdfHq

is the distribution function of an analogous distance
but measured in a Minkowski metric where the unit
sphere is the unit cube. It is of particular value in the
statistical analysis of pixel images, where the square-
based metric is natural. The cdf’s characterize in
some sense the size of the complementX c of X , as
introduced by Delfiner (1972). If, in the case of a
porous medium,X is a model for the matrix, thenX c

is the union of all pores and the cdf’s characterize the
size of the pores.

The spherical cdf is also used in point process
statistics, see Diggle (1983), where often the character
F is used. Perhaps still more important for point
processes is the nearest neighbour distance distribution
functionD (or G is Diggle’s notation), which does not
have a counterpart for general random closed sets.

The cdf’s and D play an important role in
the characterization of the variablity of spatial

structures. They are sometimes considered in second-
order stereology though they are not second-order
characteristics in the classical use of the term ‘second-
order’ in probability and statistics.

For the statistical estimation ofD and of cdf’s there
exist various methods, see Stoyan, Kendall and Mecke
(1995). The classical estimators are minus-sampling or
border estimators. Following Hanisch (1984) and Chiu
and Stoyan (1998), the approach of Horvitz-Thompson
(see Overton and Strehman, 1995) can be used, what
leads to refined estimators. Finally Kaplan-Meier-like
estimation is possible, see Baddeley and Gill (1997).

All these estimators are ratio estimators, which
contain in the denominator an unbiased estimator
of area fractionp or intensity λ . In the classical
estimation procedure,p andλ is estimated from the
whole window of observation, while the numerator
is obtained only from a subwindow or by some
form of edge correction. Consequently, numerator
and denominator may show little correlation and are
estimated with different precision. Thus it seems to
be natural to ask for estimators where numerator and
denumerator are (more) positively correlated and their
precision is closer, even if this leads to a loss of
precision of the denominator. A possible approach is to
use adapted estimators ofp andλ . Such a modification
of classical ratio estimators has been shown to be
very successful in the estimation of second-order
characteristics such as the pair correlation function of
random sets (Mattfeldt and Stoyan, 2000) and of point
processes (Landy and Szalay, 1993, and Stoyan and
Stoyan, 2000).

It is an open question which effect is possible
if adapted estimators ofp and λ are used in the
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estimation ofD and cdf’s. The present paper discusses
such estimators forD and Hq and compares their
behaviour with that of the classical minus-sampling
estimators. Since it is obviously very complicated
to do rigorous calculations, which are very difficult
even in the particular case of a Poisson process, the
behaviour of these estimators is investigated by Monte
Carlo simulations.

Simulations for Poisson processes, a cluster
process and Boolean models lead to a clear result:
For D the Horvitz-Thompson estimator introduced by
Hanisch (1984) should be used, while forHq all the
more sophisticated estimators are not better than the
classical minus-sampling estimator if the criterion is
the mean squared error.

ESTIMATORS OF THE NEAREST
NEIGHBOUR DISTANCE
DISTRIBUTION FUNCTION D

VARIOUS D ESTIMATORS

The functionD is the distribution function of the
distance from a typical point of the analysed point
processΦ in R

d to its nearest neighbour, see Stoyan,
Kendall and Mecke (1995). Φ is assumed to be
stationary and to have intensityλ . It is observed in
a sampling windowW , which is a compact convex set
of positive volumeνd(W ). In the case of a Poisson
process of intensityλ ;D(r) has the form

D(r) = 1�exp(�λ bdrd) for r � 0;

wherebd denotes the volume of the unit sphere ofR
d .

Before starting with the explanation of estimators of
D, it is helpful to give all points ofΦ in W two real-
valued markss andc. For a fixed pointx;s(x) denotes
the distance fromx to its nearest neighbour inW and
c(x) is the distance fromx to the edge ofW .

The classical and perhaps most natural estimator of
D is the minus-sampling or border-method estimator
D̂m,

D̂m(r) = ∑
[x;s]

1W	b(o;r)(x)1(o;r](s)=Φ(W	b(o;r)) (1)

for r � 0;

where the sum in the numerator yields the number of
points in the reduced windowW 	b(o;r) with nearest
neighbour closer thanr and the denominator is the total
number of points inW 	b(o;r).

The summation goes here and elsewhere in this
section over all marked point pairs[x;s] of Φ. The

structure of this estimator may be clarified by writing
the denominator as

∑
[x;s]

1W	b(o;r)(x):

The estimatorD̂m is frequently used and yields for
samples not too small acceptable or good results, see
also below. As a function ofr; D̂m(r) is not necessarily
monotonous, see Fig. 4.14 in Stoyan, Kendall &
Mecke (1995) and Fig. 9 in Baddeley et al. (1993).

Formula (1) can be rewritten as

D̂m(r) =
Dm(r)

λ̂m(r)
(2)

with

Dm(r) =

∑
[x;s]

1W	b(o;r)(x)1(0;r](s)

νd(W 	b(o;r))

and

λ̂m(r) =
Φ(W 	b(o;r))
νd(W 	b(o;r))

;

whereνd(W 	b(o;r)) is the volume ofW 	b(o;r).

Obviously, λ̂m(r) is an unbiased estimator ofλ ,
which could be called the minus-weighted estimator
of intensityλ , andDm(r) is an unbiased estimator of
λ D(r). Thus,D̂m(r) is a ratio-unbiased estimator of
D(r) of the type described in the introduction, with
adapted intensity estimator. One can expect positive
correlation, betweenDm(r) andλ̂m(r), i.e., large values
of Dm(r) are connected with large values ofλm(r).
This relationship reduces fluctuations ofD̂m(r) and
explains the good experience with the border-method
estimator. Note that it does not help if the true value
of λ would be known; replacinĝλm(r) by λ leads to
much larger squared deviations in the estimation of
D(r).

TheHanisch estimator of D(r) uses all points inW
with nearest neighbour inW and is defined as

D̂H(r) =
DH(r)

λ̂H

(3)

with

DH(r) = ∑
[x;s]

1W	b(o;s)(x)1(0;r](s)

νd(W 	b(o;s))

or

DH(r) = ∑
[s;c]

1[0;c)(s)1(0;r](s)

νd(W 	b(o;s))
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and

λ̂H = ∑
[x;s]

1W	b(o;s)(x)

νd(W 	b(o;s))
:

(λ̂H is pracically the same asD4(R) on page 140
of Stoyan, Kendall & Mecke, 1995).DH(r) is an
unbiased estimator ofλ D(r), and λ̂H is an adapted
unbiased estimator ofλ . DH(r) counts all pointsx
with s(x) < c(x) weighted by the volumeνd(W 	
b(o;s(x))); it is so organized that it can be really
determined using the information in the sampling
windowW . While D̂H(r) appeared in Hanisch (1984)
as anad hoc estimator, Baddeley (1998) showed that it
is a Horvitz-Thompson estimator.

The intensity estimator̂λH is independent ofr.
This guarantees that̂DH(r) is monotonous inr. The
authors do not know whether there is an estimator ofλ
which is better adapted toDH(r) and produces better
estimates ofD(r).

Unfortunately, Hanisch (1984) had presented
(perhaps following a wrong recommendation by the
first author D.S.) together witĥDH(r) (his formula (4))
also otherD-estimators, for example

D̂N(r) =

∑
[x;s]

1W	b(o;s)(x)1[0;r](s)

∑
[x;s]

1W	b(o;s)(x)
:

Just this estimator appeared later in Cressie (1991),
p. 638, and was also used in Baddeley et al. (1993).
It is not an unbiased estimator and also not a ratio-
unbiased estimator. As simulations showed (see
below), it has a large squared deviation and it should
be forgotten.

COMPARISON OF D ESTIMATORS

In order to compare and to evaluate the various
estimators(D̂m; D̂N andD̂H), they were applied to each
1000 simulated point patterns in the unit square and
cube ofR2 andR3, respectively.

For Poisson processes of intensitiesλ = 50, 100
and 200 the following results were obtained. The
biases ofD̂m andD̂H in the planar and spatial cases are
small, typically negative, usually in the order of 0.001
. . . 0.005. They are smaller ford = 2 than ford = 3 and
smaller forD̂H than forD̂m.

Fig. 1 shows the estimation standard deviations(r)
for the Hanisch estimator̂DH in dependence onr for λ
= 50. The behaviour forλ = 100 andλ = 200 and for
the spatial case is similar, the values decrease (for fixed

window) with growing intensityλ or point number
probably in proportionality to 1=

p
λ . The estimation

standard deviations for̂Dm are similar. The form of
the s(r)-curve shown in Fig. 1 is quite natural: For
r = 0, whereD(r) and all its estimators vanish, and for
larger, whereD(r) and its estimators are close to one,
there is no much room for fluctuations, which appear
for medium values ofr.

For D̂N quite large biases appear. The maximum
values are 0.068 (λ = 50), 0.044 (λ = 100) and 0.027
(λ = 200) in the planar case (d = 2) and 0.159 (λ = 50),
0.124 (λ = 100) and 0.100 (λ = 200) in the spatial case
(d = 3).

As an example of a non-Poisson point process, a
planarGauss-Poisson process (as in Stoyan, Kendall
& Mecke, 1995, p. 161) with parametersλ p =
λ ; p1 = p2 = p3 = 1=3 and inter-pair distance 0.15
was analysed. This process belongs to the few number
of processes which are not Poisson processes but for
which there are known formulas forD(r). It is a
Neyman-Scott cluster process with empty clusters,
‘clusters’ consisting of a single point and two-point
clusters with constant distance between the points.

For this process, the biases turned out to be a bit
larger than for the Poisson process, but the standard
deviationss(r) for the Hanisch estimator are quite
similar to those for the planar Poisson process of equal
intensity. The star in Fig. 1 marks the maximum ofs(r)
for D̂H(r) in the Gauss-Poisson process case andλ =
50. Also here the biases for̂DN are much larger than
for D̂m andD̂H .
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Fig. 1: Estimation standard deviation s(r) for the
Hanisch estimator D̂H in the case of a Poisson process
in dependence on r for λ = 50. Star: maximum of s(r)
for Gauss-Poisson.

Concluding, we recommend the use of the
Hanisch estimatorD̂H(r) in the form (3). It
produces monotonous estimates with small biases and
estimation variances. It is easy to implement, see
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Stoyan & Stoyan (1994), p. 296 (replaceβ there by
βi).

ESTIMATORS OF CONTACT
DISTRIBUTION FUNCTIONS

VARIOUS CONTACT DISTRIBUTION
ESTIMATORS

Contact distribution functions (cdf’s) are
frequently used in the statistical analysis of point
processes as well as random closed sets. In this section
we concentrate on the case of random closed sets with
positive volume fraction. As a practically important
particular case the quadratic cdfHq is considered,
which is of special interest in statistical analyses of
pixel images.

Let X be a stationary random closed set inRd .
Its volume fractionp satisfiesp = P(o 2 X), where
o denotes the origin. It is assumed thatp > 0. The
quadratic cdf is defined as

Hq(r) = 1�P(o 62 X� q̆(r)jo 62 X)

= 1�P(o 62 X� q̆(r))=(1� p)

where q(r) is the cube of side lengthr with one
vertex ino and sides emanating ino along the positive
coordinate axes; it is ˘q(r) =�q(r).

For the case of a Boolean model the formulas in
Stoyan, Kendall and Mecke (1995), p 79-81, lead to
explicit expressions forHq(r). In particular, if in the
planar case the primary grains are isotropic squares of
side lengtha (for this case the simulations were carried
out), then

Hq(r) = 1�exp
�
�λ

�8a
π

r+ r2
��

for r � 0 (4)

whereλ denotes the intensity of the germ process.

The classical minus-sampling or border-method
estimator ofHq(r) is

Ĥq(r) = 1�∆(r) (5)

with

∆(r) =
νd((W 	q(r))\ (X� q̆(r))c)

νd(W 	q(r)) νd(W\Xc)
νd(W)

: (6)

Note that formula (6.3.6) in Stoyan, Kendall and
Mecke (1995) is corrected here. The termνd(W \
Xc)=νd(W ) is the usual estimator of 1� p.

The estimatorĤq(r)will be compared with another
estimator ofHq(r), namelyĤa

q (r). It differs fromĤq(r)
by different handling with volume fractionp: Ĥa

q (r)
uses an adapted estimator ofp, namely

p̂(r) = νd(W 	q(r)\X)=νd(W 	q(r));

which is of the same nature aŝλm(r) above and
intensity estimators used in the context of second-order
characteristics.

Consequently, it is

Ĥa
q (r) = 1�∆a(r) (7)

with

∆a(r) =
νd((W 	q(r))\ (X� q̆(r))c)

νd(W 	q(r)\X c)
: (8)

Furthermore, two estimators are considered which
follow the Horvitz-Thompson idea, see Stoyan,
Kendall and Mecke (1995), p. 215, and Chiu and
Stoyan (1998),

ĤHT
q (r) =

Z

W

1W	q(d(x))(x)1(0;r](d(x))

νd(W 	q(d(x)))
dx=(1� p̂HT)

where

1� p̂HT =

Z

W

1W	q(d(x))(x)1Xc(x)

νd(W 	q(d(x)))
dx

and ĤHT;a
q (r) is defined asĤHT

q (r) but with the term
p̂(r) from above. Here,d(x) denotes the distance from
x to X measured in the metric corresponding to the
unit cube. For a given pixel image, the integrals are
replaced by sums in a natural way.

Four of the estimators introduced above were
compared for a long series of simulated stationary and
isotropic planar Boolean models. For each case the
primary grains were isotropic congruent rectangles;
the same rectangular primary grain was combined with
a series of germ process intensitiesλ ; see Mattfeldt
and Stoyan (2000) for more details. In total, 200 series
with each 100 replications were simulated in a 512�
512 square. The statistical analysis was then carried
out for the central 128� 128 square.
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COMPARISON OF THE CONTACT
DISTRIBUTION FUNCTIONS
ESTIMATORS

The results for all simulations were similar:
There are no significant differences between the four
estimators, the simple minus-sampling estimator is
even a little better than the competitors if the mse
(mean squared deviation of estimator from true value)
is used as quality measure.

We give here details for the particular case of
square primary grains of side length 20. In Table 1, the
square roots of the mse’s ofĤq(r) are given for various
values ofλ and in comparison to the best competitor
under the other estimators.

The values ofr were chosen as integers and such
that Hq(r) takes small, medium and large (close to 1)
values. As a function ofr the mse behaves similarly as
s(r) in Fig. 1, in particular it has small values for small
and larger.

Obviously, the simple minus-sampling estimator
is preferable because of its quality and conceptional
simplicity.

Table 1: Square roots of mean squared deviations of
estimators from true values (mse)

λ r Ĥq(r) competitor
0.0005 2 0.0055 0.0046

4 0.0108 0.0092
20 0.0401 0.0380
47 0.0328 0.0344
56 0.0231 0.0253

0.003 1 0.0069 0.0069
4 0.0196 0.0197

12 0.0195 0.0192
15 0.0146 0.0148

0.006 1 0.0132 0.0136
2 0.0209 0.0215
7 0.0221 0.0227
9 0.0167 0.0171

0.01 1 0.0259 0.0259
2 0.0355 0.0357
4 0.0331 0.0334
6 0.0229 0.0232
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