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ABSTRACT

Many images consist of two or more “phases”, where a phase is a collection of homogeneous zones. For
example, the phases may represent the presence of different sulphides in an ore sample. Frequently, these
phases exhibit very little structure, though all connected components of a given phase may be similar in some
sense. As a consequence, random set models are commonly used to model such images. The Boolean model
and models derived from the Boolean model are often chosen. An alternative approach to modelling such
images is to use the excursion sets of random fields to model each phase. In this paper, the properties of
excursion sets will be firstly discussed in terms of modelling binary images. Ways of extending these models
to multi-phase images will then be explored. A desirable feature of any model is to be able to fit it to data
reasonably well. Different methods for fitting random set models based on excursion sets will be presented
and some of the difficulties with these methods will be discussed.
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INTRODUCTION

The work described here was motivated by the
need to model segmented images of core samples
of sulphide ores, such as that shown in Fig. 1. (A
description of the segmentation method used is given
in Wilson and Rychlik, 1996). In this sample, there
are three minerals present, giving three phases. It was
desired to construct statistical models describing the
spatial distribution of the phases in such core samples.
The initial intentions were to use the fitted models
for classification of the ores and to simulate input
to numerical models for rock fracture. This paper
was presented at the Xth International Congress for
Stereology (Melbourne, November 1999) and reviews
results found in Nott and Wilson (1997a, 1997b, 2000)
and David Nott’s Ph.D. thesis, as well as presenting
some additional unpublished insights and comments.

In general, the pixels in these images take values
in an index setI = f0; :::;k�1g, where each element
in I is associated with one ofk different mineral
types. Many different approaches have been developed
to model the spatial behaviour of such multi-phase
images (see Haindl, 1991 for a review). For binary
images, random closed sets can be used (see, for
example, Stoyanet al., 1995). One way of obtaining
a random set is to consider the excursion set of a
random field, obtained by truncating a random field at
some level. As the images can be obtained at different
resolutions, it is assumed that the random field is over

a continuous domain to ensure the fitted models at
different resolutions are consistent with each other.

Fig. 1.Core sample image of sulphide ore.

In the following section, the types of random
fields and the properties of their excursion sets
will be discussed, including examples. In section 3,
various methods for fitting excursion set models to
binary images will be presented, with some comments
regarding their strengths and weaknesses. In the final
section, models for multi-phase images and methods
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for fitting these models will be discussed. The details
of the methods presented here can be found in
Nott (1997) and Nott and Wilson (1997a, 1997b,
2000).

EXCURSION SETS

Suppose thatfY(t); t 2 R
2g is a stationary

Gaussian random field with zero mean, variance one
and covariance functionR(t;θ), whereθ 2 R d is some
vector of unknown parameters. Theu-level excursion
set ofY, Au(Y), is simply the set of points whereY is
not less thanu,

Au(Y) = ft 2 R2 : Y(t)� ug:
The morphology ofAu(Y) depends onu, the type of
covariance function used and the value ofθ (see Adler,
1982 for geometrical properties of excursion sets).

PROPERTIES

As the distribution of a Gaussian random field is
completely determined by its mean and covariance
function, the distribution of the excursion set must
also be considered in terms of these. For convenience,
define the binary random fieldBu(t) by

Bu(t) =
�

1 if t 2 Au(Y);
0 otherwise:

If Ru(t) denotes the covariance function (centered
about the mean) ofBu (and hence ofAu(Y)), it can be
shown (see p. 27 of Cram´er and Leadbetter, 1967) that

Ru(t) =
1

2π

Z R(t)

0

exp
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p

1�z2
dz: (1)

Whenu= 0, this expression simplifies to

R0(t) = (2π)�1arcsin(R(t)):

The relationship Eq. 1 is monotone, and hence
invertible. Thus, the distribution of the random field
Y(t) can be determined fromu andRu(t) (that is, from
the second order moments ofBu(t)). In addition, the
(joint) distribution of the binary random field over a
bounded domain can be expressed in terms of that of
the random field.

Rather than using a Gaussian random field, aχ 2

random field could be used. For aχ 2
1 field, a similar

relationship to Eq. 1 exists:
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EXAMPLES

By careful choice of the covariance function for
the random fieldY(t), properties of the image to be
modelled can be aligned with corresponding properties
of the excursion set,Au(Y). Some of the possibilities
are as follows (see Section 2.5.1 of Cressie, 1993 for a
more complete list; see Nott and Wilson, 1997b also):

R(t) = expf�θ1ktkθ2g; (3)

(whered = 2, θ1 > 0, 0< θ2 � 2),

R(t) =

(
1� 3

2
ktk
θ1
+

1
2
ktk3

θ3
1
; if ktk< θ1;

0; otherwise;
(4)

(whered = 1, θ1 > 0),

R(t) =
�

1+
ktk2

θ2
1

��θ2

; (5)

(whered = 2, θ1 > 0, θ2 > 0),

R(t) = θ2
1ktkK1(θ

2
1ktk); (6)

(whered = 1, andKν(:) denotes the modified Bessel
function of the second kind).

In the following, Eqs. 3–6 will be referred to as the
(generalised) exponential, spherical, rational quadratic
and Whittle covariance functions respectively. Fig. 2
shows simulated excursion sets for these covariance
functions using the levelu= 0:5.

The covariance functions above are isotropic.
Anisotropy can be introduced through linear
transformations oft; that is, replacet by Λt where
Λ is a 2�2 matrix of parameters. This transformation
stretches one axis relative to the other and rotates them.
As well, periodicity can be introduced by multiplying
the covariance function by cos(α1t1+α2t2), whereα1
andα2 are additional parameters.

EXCURSIONS AND THE BOOLEAN
MODEL

There is a close association between the Boolean
model and high level excursion sets of smooth
Gaussian random fields. It is well known that, with
suitable scaling, the high level maxima of such fields
are distributed according to a Poisson random field.
As well, the connected components of the excursion
set, again after suitable scaling, are approximately
distributed as independent ellipses (the grains in the
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Boolean model), with their major and minor axes
determined by the second order spectral moments of
the covariance function (see, for example, Wilson and
Adler, 1982). Using the methods of Leadbetter and
Hsing (1990), it can be shown that the random measure
defined by the area of the excursion set and suitably
scaled converges to a compound Poisson random field
with the mark distribution given by that of the area of
the random ellipses.

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Simulated excursion sets with u= 0:5. (a)
Exponential model:θ1 = 0:02, θ2 = 1 (b) Exponential
model:θ1=0:02, θ2=2 (c) Rational quadratic model:
θ1 = 8, θ2 = 0:5 (d) Rational quadratic model:θ1 =

12, θ2= 2 (e) Whittle model:θ1= 0:3and (f) Spherical
model: θ1 = 40. (Reproduced with permission from
Elsevier Science – see Nott and Wilson, 1997b.)

ESTIMATION FOR TWO
PHASE IMAGES

There are a number of approaches to fitting
excursion set models to images. The first choice to

be made is that of a covariance function. This can be
done in anad hocmanner, using experience of the
morphological properties of the excursions for each
of the various possibilities or by fitting each in turn
and determining which achieves the best result. The
first requires the development of some exploratory data
analysis tools, which are currently being considerd.

Upon choosing an appropriate covariance function,
there are a number of methods for estimating the
parameters. The two most commonly used are (a) to
use least squares to fit some functional of the model to
the corresponding empirical version from the data, and
(b) to use a likelihood based method. Both approaches
have advantages and disadvantages, which will be
illustrated below. Firstly, using least squares with the
covariance function will be discussed.

LEAST SQUARES: COVARIANCE
FUNCTION

Eqs. 1 and 2 suggest a method of estimatingθ
using the empirical covariance function of the image.
Firstly, the levelu is estimated by solving the equation

p̂= 1�Φ(û);

wherep̂ is the observed area fraction, ˆu is the estimator
of u and Φ denotes the standard normal distribution
function. Denote the empirical (centered) covariance
function of the image bŷRu(t) – this can be obtained
using morphological operations. UsinĝRu(t) instead
of Ru(t) in Eq. 1 (or in Eq. 2), invert the integral
numerically to obtainR̂(t), the estimated random field
covariance. Least squares can be used to fit a non-
linear regression of eitherRu(t;θ) to R̂u(t) or of R(t;θ)
to R̂(t).

Depending on which covariance function is
chosen, it may be possible to convert the second of
these into a linear regression. For instance, if the
exponential covariance function given by Eq. 3 is
used, then the problem can be converted to a linear
regression of ln(�ln(R̂(t)) on

ln(θ1)+θ2 ln(ktk):

Two problems can arise in this method. Firstly, due
to the discretization of the image, the shape of the
estimated covariance function near the origin can
be distorted, thereby influencing adversely the fitted
model. Secondly, depending upon the size and number
of images available, the empirical covariance function
goes negative, even though the theoretical covariance
is strictly positive. This is due to sampling creating
negative correlation with “holes” around connected
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components. As well as not being able to take logs of
the empirical covariance, it increases the slope and so
biases the results. The best results seem to be obtained
when the first few lags are ignored and only the lags
up to about a third of the way to where the empirical
covariance first goes negative are considered.

It should be noted that the process of inversion
using Eq. 1 does not preserve nonnegative definiteness
of covariance functions, so that the resulting estimate
of R(t) cannot be used directly for texture simulation.
In fact, the estimated covariance matrix for the
Gaussian vector corresponding to the observation
lattice in the excursion set model can have a significant
proportion of negative eigenvalues.

LEAST SQUARES: SIZE
DISTRIBUTIONS

Other functionals, which capture important
features of the data, can be used instead of the
covariance function; for example, size distributions. If
possible, an analytic form of the functional should be
used; otherwise, Monte Carlo methods can be used to
evaluate a numerical version for the parameter values
considered in the search for fitted values. For size
distributions for excursion sets of Gaussian random
fields, the analytic form involves finding probabilities
for the maximum of the random field over bounded
sets. These can be derived for certain cases only.

Numerical calculation oflinear size distributions
can be done efficiently. For excursion sets, these
are related to first passage distributions for
certain one dimensional processes and their Palm
processes following an upcrossing. There are existing
computational methods for rapidly calculating
these first passage distributions, making linear size
distributions very convenient for exploring excursion
set geometry. Here, an example will be given to
illustrate what can be achieved (see Nott and Wilson,
1997a for more details) – Fig. 3 has been reproduced
with permission ofBiometricsand Figs. 4–6 of World
Scientific Publishing.

Two types of linear size distribution can be
defined: number weighted and measure weighted.
Heuristically, the first describes the length of a
“typical” linear intercept of a random set as a fixed
line is traversed, while the second describes the length
of an intercept containing a fixed point known to
belong to a random set. Number weighted linear size
distributions will be used in the example below. As the
Gaussian field needs to be “smooth” enough to derive
the distribution, it was assumed that the covariance
function is exponential andθ2 = 2.

The example involves data from Diggle (1981),
who fitted a Boolean model with random discs. The
data (Fig. 3) describes the incidence of heather in
Jädraås, Sweden. An area was divided into square plots
and a binary mosaic was constructed by recording ones
and zeros, depending on the incidence of heather in
each plot. Estimating the levelu from the area fraction
of the right half gave ˆuR = 0:112. Least squares
was used to estimateθ , using lags equally spaced
(four pixels apart due to correlations in the empirical
distribution) between 8 and 32 and givingθ̂R= 0:067.

Fig. 3. Heather incidence data. (Reproduced with
permission from Biometrics.)

(a) (b)

Fig. 4. Left half of data (a), simulation from fitted
model (b).
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Fig. 5.Fitted linear size distr. for right half (solid) with
estimated linear size distr’s for left half in horizontal
(dotted line) and vertical (broken line) directions.
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Fig. 4 shows the left half of the data with a
simulation from the model fitted to the right half,
while Fig. 5 shows a plot of the fitted linear size
distribution for the right half with the empirical linear
size distributions for the left half. The fitted model
seems to capture well the geometry of the observed
images. Fig. 5 shows that the general shape of the size
distribution for the fitted model matches that of the
empirical size distribution, though there may be too
few small intercepts and too many large intercepts in
simulations from the fitted model.
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Fig. 6. Estimated covariance from left half (solid
line) and fitted covariance function (broken line) with
upper and lower simulation envelopes obtained from
49 simulations from model fitted to right half (dotted).

As a check on the adequacy of the model, the
empirical covariance for the left half was plotted
with the fitted covariance and simulation envelopes
obtained from 49 simulations from the model fitted to
the right half (Fig. 6). The simulation envelopes from
the fitted model to the right half suggest the model is
satisfactory.

MAXIMUM LIKELIHOOD

In theory, the joint distribution of the binary
random field can be written down in terms of
multiple integrals of the joint distribution of the
Gaussian random field. However, this is obviously
impracticable. One possible approach is to use theEM
algorithm as described in Nott and Wilson (1997a).
The EM algorithm (Dempsteret al., 1977) is an
iterative method for calculating maximum likelihood
estimates in missing data problems. In situations where
the EM algorithm can be applied, data is observed
which is incomplete, while there is unobserved data
which can be considered as complete and contains

extra information. In the case here, the observed data
is whether the random field is above or below a level,
while the complete data is the random field itself.
The EM principle is to maximise the expected log
likelihood of the complete data given the incomplete
data iteratively.

Even so, theE step (finding the expectation of
the log likelihood of the complete data given the
incomplete data) is difficult to perform. One way to
overcome this is by using Markov chain Monte Carlo
methods. This is still time consuming, so the stochastic
EM algorithm (in which only one simulation is
used to approximate the expected log likelihood) is
used in Nott and Wilson (1997b) to estimate the
unknown parameters. The function evaluations needed
to maximize the log likelihood are difficult for a
high dimensional Gaussian vector. To make these
more efficient, a modification inspired by methods
for simulating random fields and involving embedding
the random field values into a larger random vector
whose likelihood is easier to calculate can be used.
No statistical approximations are introduced by this
embedding. See Nott and Wilson (1997b) for more
background and details.

Despite the various modifications above, the
stochasticEM algorithm for excursion sets is still
very slow. In the next section, an alternative approach,
applied to excursion sets and the Boolean model
in Nott and Rydén (1999), is described. It is both
generally applicable and computationally attractive.

PAIRWISE LIKELIHOOD

Rather than using the full likelihood, it is
possible to use the product of the bivariate or
pairwise likelihood as an “approximation” to the full
likelihood. This approach has been taken in Hjort and
Omre (1994) and Lindsay (1988) for other situations.

In practice, it is usually not necessary to take the
product in the pairwise likelihood over all distinct
pairs of observations, but only over pairs which show
significant spatial dependence. Nott and Ryd´en (1999)
show consistency and asymptotic normality under
fairly general conditions for certain image models
(including excursion set models and the Boolean
model).

Pairwise likelihood is computationally attractive
for random set models, since bivariate likelihoods
can be computed from the area fraction and random
set covariance. Hence, whenever these quantities are
easily computed or approximated from simulations
then pairwise likelihood can be easily used. Simulation
studies suggest that using pairwise likelihood is still
reasonably efficient when compared with methods
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based on the full likelihood (Nott and Ryd´en, 1999).
An example using pairwise likelihood will be given in
the following section.

MULTI-PHASE IMAGES

In Section “Estimation for two phase images”,
various ways of fitting random set models have
been discussed. Many images (like Fig. 1) consist of
more than two phases and, in this section, methods
of constructing and fitting three such models will
be discussed. These multi-phase models have quite
different properties. It is important to note these and
then choose a model appropriate for the observed
relationships between the phases.

LABELLINGS OF RANDOM SETS

In images where there is a “background” phase
and the other phases have similar morphology and are
not adjacent, it may be possible to assume that the
union of the non-background phases constitute a single
random set. The connected components of this random
set can then be assumed to have been allocated to (or
labelled as) the different phases. Estimation for the
random set can be carried out using any of the methods
of Section “Estimation for two phase images”. This
idea of labelling components of a random set has been
considered by Molchanov (1984) and others.

There are various methods for labelling the
connected components. One of the simplest is to
assume that there is a collection of covariates (say
particle size, perimeter, relationship to other particles,
orientation) whose values determine the phase which
is most likely for the particle under consideration; that
is, the allocation is modelled by a polytomous logistic
regression, conditional on the observed random set.
Estimation for the parameters in the logistic regression
can be carried out using standard methods (see, for
example, Hosmer and Lemeshow, 1989).

MODELS DEFINED FROM MULTIPLE
RANDOM SETS

In cases where there is a background phase and
the remaining phases can be adjacent, it may be
possible to assume that some phases dominate or
cover other phases. In this situation, the phases are
assumed to be ordered, with the background phase
being the “bottom” phase and subsequent phases as
covering the lower order phases. Hence the top phase
can be observed completely, while the lower phases
are masked. The simplest model is to assume the non-
background phases are independent random sets, so

each can be fitted as in the previous section, taking into
account that some parts of the random set (that masked
by higher order phases) are missing. These types of
models seem to have been first used by Grecoet al.
(1979) as a model for sinter textures.

CONTOURS OF RANDOM FIELDS

The third possible model is obtained by
considering contours of a random field at different
levels. As with the previous model, the phases are
again ordered, this time by an inclusion principle; that
is, the background phase is again the bottom phase
and each subsequent phase is contained within the
lower order phases. In this situation, all phases can be
observed fully and are not independent of each other.

Estimation of the parameters is straightforward
using pairwise likelihoods as the bivariate probabilities
(which may be across phases and hence contours)
simply involve bivariate normal probabilities.

ANALYSIS OF A SULPHIDE ORE

In this section, the methods described above
will be used to fit a multi-phase model based
on labellings to a core image of a sulphide ore.
This and further examples can be found in Nott
and Wilson (2000). (Figs. 1 and 7–10 have been
reproduced with permission of Elsevier Science.)

(a) (b)

Fig. 7. First particle phase (a) and second particle
phase (b).

EXAMPLE

The data of Fig. 1 is to be modelled with a model
of the kind described in Section “Labellings of random
sets”. Fig. 7 shows the two particle phases of the
image. The union of these is to be modelled as an
excursion set of a stationary Gaussian random field.
The steps involved are as follows:

1. Calculate the empirical covariance function for the
excursion set.
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2. Transform it to one for the random field via the
functional relationship Eq. 1.

3. Choose an appropriate form for the covariance.

4. Estimate the levelu from the area fraction (as in
Section 3.1).

5. Use the pairwise likelihood to estimate the
covariance function parameters.

Fig. 8 shows the estimated covariance function for
the random field covariance in the east-west and north-
south directions. There seems very little evidence
for anisotropy and so an isotropic rational quadratic
covariance function was chosen.
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Fig. 8.Empirical covariance function for random field:
E-W (solid), N-S (dotted).

The estimate foru was 1:4977. In the pairwise
likelihood, the product was taken only over pairs of
pixels which were either adjacent or separated by one
pixel horizontally or vertically. Support for this choice
is given in Nott and Ryd´en (1999). The estimates for
θ1 andθ2 in the rational quadratic covariance function
were 8:3519 and 1:26 respectively.

The final stage is to use logistic regression to
model the assignation of connected components to the
two phases. In this example, the number of particles
in the first phase was too few and no covariates
were used; that is, each connected component was
assumed to be assigned independently (equivalent to
fitting only an intercept term in the logistic regression).
The estimated probability of being assigned to the
first phase was 0:097. The data is shown with three
simulations from the fitted texture model in Fig. 9.

(a) (b)

(c) (d)

Fig. 9. (a) Image of sulphide ore; (b)-(d) simulations
from fitted model.
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Fig. 10. Empirical correlation and cross-correlation
functions (solid), with means (dashed) and simulation
envelope (dotted) from fitted model. (a) First phase:
E-W; (b) First phase: N-S; (c) Second phase: E-W;
(d) Second phase: N-S; (e) Cross-correlation between
phases: E-W; (e) Cross-correlation between phases:
N-S.
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To check the adequacy of the model, the empirical
correlation functions for the phases in the east-
west and north-south directions, together with means
and upper and lower simulation envelopes for these
obtained from 49 simulations from the fitted model,
were plotted. Similar plots for the cross-correlations
between phases were also obtained. The results are
shown in Fig. 10, and suggest that there is no real
reason to question the adequacy of the model as the
empirical functions lie well within the confidence
envelopes.
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