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ABSTRACT

Many images consist of two or more “phases”, where a phase is a collection of homogeneous zones. For
example, the phases may represent the presence of different sulphides in an ore sample. Frequently, these
phases exhibit very little structure, though all connected components of a given phase may be similar in some
sense. As a consequence, random set models are commonly used to model such images. The Boolean model
and models derived from the Boolean model are often chosen. An alternative approach to modelling such
images is to use the excursion sets of random fields to model each phase. In this paper, the properties of
excursion sets will be firstly discussed in terms of modelling binary images. Ways of extending these models
to multi-phase images will then be explored. A desirable feature of any model is to be able to fit it to data
reasonably well. Different methods for fitting random set models based on excursion sets will be presented
and some of the difficulties with these methods will be discussed.

Keywords: excursion set, model fitting, random field, texture modelling.

INTRODUCTION a continuous domain to ensure the fitted models at
different resolutions are consistent with each other.

The work described here was motivated by the
need to model segmented images of core samplé= )
5 .
.

of sulphide ores, such as that shown in Fig. 1. (A
description of the segmentation method used is give
in Wilson and Rychlik, 1996). In this sample, there Ny
are three minerals present, giving three phases. Itwa 4 - -
desired to construct statistical models describing the* b4 4
spatial distribution of the phases in such core samples .
The initial intentions were to use the fitted models e q
for classification of the ores and to simulate input ll-‘ Fs »
to numerical models for rock fracture. This paper " - ‘5 -
was presented at theXInternational Congress for ! v
Stereology (Melbourne, November 1999) and reviews b -
results found in Nott and Wilson (1997a, 1997b, 2000 { r ¥ v
and David Nott's Ph.D. thesis, as well as presenting f 2 4 .
some additional unpublished insights and comments. = ' &

|

-

In general, the pixels in these images take valuegs - - -»
in an index set = {0,...,k — 1}, where each element

in | is associated with one ok different mineral | * ar i - ah
types. Many different approaches have been developq_qg. 1.Core sample image of sulphide ore.

to model the spatial behaviour of such multi-phase

images (see Haindl, 1991 for a review). For binary |n the following section, the types of random
images, random closed sets can be used (see, fgields and the properties of their excursion sets
example, Stoyaet al, 1995). One way of obtaining will be discussed, including examples. In section 3,
a random set is to consider the excursion set of &arious methods for fitting excursion set models to
random field, obtained by truncating a random field abinary images will be presented, with some comments
some level. As the images can be obtained at differentegarding their strengths and weaknesses. In the final
resolutions, it is assumed that the random field is ovesection, models for multi-phase images and methods
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for fitting these models will be discussed. The details EXAMPLES
of the methods presented here can be found in

Nott (1997) and Nott and Wilson (1997a, 1997b By careful choice of the covariance function for
2000). ’ ‘the random fieldv (t), properties of the image to be

modelled can be aligned with corresponding properties

of the excursion sef\u(Y). Some of the possibilities
EXCURSION SETS are as follows (see Section 2.5.1 of Cressie, 1993 for a

more complete list; see Nott and Wilson, 1997b also):

Suppose that{Y(t);t € R?} is a stationary 0
Gaussian random field with zero mean, variance one R(t) = exp{—6,]|t[|}, ®3)
and covariance functioR(t; 8), wheref € R is some
vector of unknown parameters. Theevel excursion (whered=2,6, >0,0< 6, <2),
set ofY, Ay(Y), is simply the set of points wheMis

not less than, Ry ] 13 3 i<,
Ay(Y) ={te R?:Y(t) > u}. 0, otherwise
The morphology ofA,(Y) depends o, the type of (whered = 1, 8, > 0)
covariance function used and the valuédsee Adler, ol '
1982 for geometrical properties of excursion sets). 1t -8,
R(t) = <1+ ?> , (5)
PROPERTIES 1

As the distribution of a Gaussian random field is(whered = 2, 6,>0,6,>0),
completely determined by its mean and covariance
function, the distribution of the excursion set must 2 2
' R(t) = 67||t||K, (65]|t 6
also be considered in terms of these. For convenience, (6) = BrtliKy (Bt ©)

define the binary random fiel(t) by (whered = 1, andK,(.) denotes the modified Bessel

Bu(t) = { 1 if t € Au(Y), function of the second kind).
u

10 otherwise In the following, Eqgs. 3—6 will be referred to as the

_ _ d{(Blgeneralised) exponential, spherical, rational quadratic
If Ry(t) denotes the covariance function (centerecyng whittle covariance functions respectively. Fig. 2

about the mean) d8, (and hence oA,(Y)), it can be  ghqys simulated excursion sets for these covariance
shown (see p. 27 of Craenand Leadbetter, 1967) that f,nctions using the level = 0.5.

1 (RO exp(IT“i) The covariance functions above are isotropic.
RO =5, | iz %% (1)  Anisotropy can be introduced through linear
transformations ot; that is, replaca by At where
Whenu = 0, this expression simplifies to A is a 2x 2 matrix of parameters. This transformation
B 1 . stretches one axis relative to the other and rotates them.
Ro(t) = (2m) ~arcsin(R(Y)). As well, periodicity can be introduced by multiplying

the covariance function by cas,t, + a,t,), wherea,

The relationship Eq. 1 is monotone, and henceanda are additional parameters
y :

invertible. Thus, the distribution of the random field
Y(t) can be determined fromandR,(t) (that is, from
the second order moments Bf(t)). In addition, the EXCURSIONS AND THE BOOLEAN

(joint) distribution of the binary random field over a  MODEL

bounded domain can be expressed in terms of that of

the random field. There is a close association between the Boolean
model and high level excursion sets of smooth
Gaussian random fields. It is well known that, with
suitable scaling, the high level maxima of such fields
are distributed according to a Poisson random field.

Rather than using a Gaussian random fielg,%a
random field could be used. For)@f field, a similar
relationship to Eq. 1 exists:

RO exp(*—“z) —exp(*—“z) As well, the connected components of the excursion
Ru(t) = 1 / e Y2/ dz (2) set, again after suitable scaling, are approximately
tJo 1-2 distributed as independent ellipses (the grains in the
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Boolean model), with their major and minor axesbe made is that of a covariance function. This can be
determined by the second order spectral moments afone in anad hocmanner, using experience of the
the covariance function (see, for example, Wilson ananorphological properties of the excursions for each
Adler, 1982). Using the methods of Leadbetter andbf the various possibilities or by fitting each in turn
Hsing (1990), it can be shown that the random measurand determining which achieves the best result. The
defined by the area of the excursion set and suitablfirst requires the development of some exploratory data

scaled converges to a compound Poisson random fielghalysis tools, which are currently being considerd.

with the mark distribution given by that of the area of _ _ _ _
the random ellipses. Upon choosing an appropriate covariance function,

there are a number of methods for estimating the
parameters. The two most commonly used are (a) to
use least squares to fit some functional of the model to
the corresponding empirical version from the data, and
(b) to use a likelihood based method. Both approaches
have advantages and disadvantages, which will be
illustrated below. Firstly, using least squares with the

covariance function will be discussed.

LEAST SQUARES: COVARIANCE
FUNCTION
Egs. 1 and 2 suggest a method of estimatthg

using the empirical covariance function of the image.
Firstly, the levelu is estimated by solving the equation

ﬁ: 1_(D(0)7

wherep'is the observed area fractianisthe estimator

of u and ® denotes the standard normal distribution
function. Denote the empirical (centered) covariance
function of the image byr,(t) — this can be obtained
using morphological operations. Usirgy,(t) instead

of Ry(t) in Eg. 1 (or in Eq. 2), invert the integral
numerically to obtairR(t), the estimated random field
covariance. Least squares can be used to fit a non-
linear regression of eith&(t; 6) toR,(t) or of R(t; )

to R(t).

Depending on which covariance function is
chosen, it may be possible to convert the second of
these into a linear regression. For instance, if the
exponential covariance function given by Eq. 3 is
used, then the problem can be converted to a linear
regression of IG—In(R(t)) on

Fig. 2. Simulated excursion sets with=10.5. (a)
Exponential model6, = 0.02, 6, = 1 (b) Exponential
model:8, = 0.02, 6, = 2(c) Rational quadratic model:
6, = 8, 6, = 0.5 (d) Rational quadratic model6, =
12,6, — 2 (¢) Whittle model8, — 0.3and (f) Spherical In(6y) + 6, In([Itl)-
mode_l: 0, = 40. (Reproduced Wlth_ permission from 1,0 problems can arise in this method. Firstly, due
Elsevier Science — see Nott and Wilson, 1997b.) {5 the discretization of the image, the shape of the
estimated covariance function near the origin can
be distorted, thereby influencing adversely the fitted
ESTIMATION FOR TWO model. Secondly, depending upon the size and number
PHASE IMAGES of images available, the empirical covariance function
goes negative, even though the theoretical covariance
There are a number of approaches to fittings strictly positive. This is due to sampling creating
excursion set models to images. The first choice tmegative correlation with “holes” around connected
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components. As well as not being able to take logs of The example involves data from Diggle (1981),
the empirical covariance, it increases the slope and soho fitted a Boolean model with random discs. The
biases the results. The best results seem to be obtainddta (Fig. 3) describes the incidence of heather in
when the first few lags are ignored and only the lagsiédras, Sweden. An area was divided into square plots
up to about a third of the way to where the empiricaland a binary mosaic was constructed by recording ones

covariance first goes negative are considered. and zeros, depending on the incidence of heather in
each plot. Estimating the levalfrom the area fraction

It should be noted that the process of inversionys e right half gave uy = 0.112. Least squares
using Eq. 1 does not preserve nonnegative deﬂn¢ene§§as used to estimat@, using lags equally spaced
of covariance functions, so that the resulting estimatgfour pixels apart due to correlations in the empirical

of R(t) cannot be used directly for texture simulation. distribution) between 8 and 32 and giviég = 0.067.
In fact, the estimated covariance matrix for the

Gaussian vector corresponding to the observatio — ==
lattice in the excursion set model can have a significarn 'I"""- -
proportion of negative eigenvalues. iy s 8r

LEAST SQUARES: SIZE
DISTRIBUTIONS

Other functionals, which capture important
features of the data, can be used instead of th
covariance function; for example, size distributions. If
possible, an analytic form of the functional should be_ . ,
used; otherwise, Monte Carlo methods can be used fo'9- 3- Heather incidence data. (Reproduced with
evaluate a numerical version for the parameter valugR€rmission from Biometrics.)
considered in the search for fitted values. For size
distributions for excursion sets of Gaussian random|,
fields, the analytic form involves finding probabilities
for the maximum of the random field over bounded
sets. These can be derived for certain cases only.

Numerical calculation ofinear size distributions
can be done efficiently. For excursion sets, these
are related to first passage distributions for
certain one dimensional processes and their Pal
processes following an upcrossing. There are existing (a) (b)
computational methods for rapidly calculating Fig. 4. Left half of data (a), simulation from fitted
these first passage distributions, making linear sizghodel (b).
distributions very convenient for exploring excursion
set geometry. Here, an example will be given to o
illustrate what can be achieved (see Nott and Wilson,
1997a for more details) — Fig. 3 has been reproduced
with permission oBiometricsand Figs. 4—6 of World
Scientific Publishing.

0.8

F(r)

Two types of linear size distribution can be
defined: number weighted and measure weighted.
Heuristically, the first describes the length of a
“typical” linear intercept of a random set as a fixed
line is traversed, while the second describes the length
of an intercept containing a fixed point known to
belong to a random set. Number weighted linear size
distributions will be used in the example below. As the r
Gaussian field needs to be “smooth” enough to deriv&ig. 5.Fitted linear size distr. for right half (solid) with
the distribution, it was assumed that the covariancestimated linear size distr’s for left half in horizontal
function is exponential ané, = 2. (dotted line) and vertical (broken line) directions.

10 20 30
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Fig. 4 shows the left half of the data with a extra information. In the case here, the observed data
simulation from the model fitted to the right half, is whether the random field is above or below a level,
while Fig. 5 shows a plot of the fitted linear size while the complete data is the random field itself.
distribution for the right half with the empirical linear The EM principle is to maximise the expected log
size distributions for the left half. The fitted model likelihood of the complete data given the incomplete
seems to capture well the geometry of the observedata iteratively.
images..Fig. 53how$ that the general shape of the size Even so, theE step (finding the expectation of
dlstrl_b_utlon_for t_he _fltte_d model matches that of they,, log likelihood of the complete data given the
empirical size distribution, though there may be t°,°|ncomp|ete data) is difficult to perform. One way to
few small intercepts and too many large intercepts inyercome this is by using Markov chain Monte Carlo
simulations from the fitted model. methods. This is still time consuming, so the stochastic
EM algorithm (in which only one simulation is
used to approximate the expected log likelihood) is
used in Nott and Wilson (1997b) to estimate the
unknown parameters. The function evaluations needed
to maximize the log likelihood are difficult for a
high dimensional Gaussian vector. To make these
more efficient, a modification inspired by methods
for simulating random fields and involving embedding
the random field values into a larger random vector
whose likelihood is easier to calculate can be used.
No statistical approximations are introduced by this
embedding. See Nott and Wilson (1997b) for more
background and details.

0.20

C(h)
0.10

0.0

Despite the various modifications above, the
h stochasticEM algorithm for excursion sets is still

] ) ] _very slow. In the next section, an alternative approach,

line) and fitted covariance function (broken line) with jn ‘Nott and Ryan (1999), is described. It is both

upper and lower simulation envelopes obtained fromyenerally applicable and computationally attractive.
49 simulations from model fitted to right half (dotted).

PAIRWISE LIKELIHOOD

As a check on the adequacy of the model, the  Rather than using the full likelihood, it is
empirical covariance for the left half was plotted possible to use the product of the bivariate or
with the fitted covariance and simulation envelopesairwise likelihood as an “approximation” to the full
obtained from 49 simulations from the model fitted to|ikelihood. This approach has been taken in Hjort and
the right half (Fig. 6). The simulation envelopes fromOmre (1994) and Lindsay (1988) for other situations.
the fitted model to the right half suggest the model is

satisfactory. In practice, it is usually not necessary to take the

product in the pairwise likelihood over all distinct
pairs of observations, but only over pairs which show
MAXIMUM LIKELIHOOD significant spatial dependence. Nott and By@1999)

In theory, the joint distribution of the binary show consistency and asymptotic normality under

random field can be written down in terms of fairly general conditions for certain image models
multiple integrals of the joint distribution of the (including excursion set models and the Boolean

Gaussian random field. However, this is obviouslyModel)-

impracticable. One possible approach is to usettkle Pairwise likelihood is computationally attractive
algorithm as described in Nott and Wilson (1997a)for random set models, since bivariate likelihoods
The EM algorithm (Dempsteret al, 1977) is an can be computed from the area fraction and random
iterative method for calculating maximum likelihood set covariance. Hence, whenever these quantities are
estimates in missing data problems. In situations whereasily computed or approximated from simulations
the EM algorithm can be applied, data is observedhen pairwise likelihood can be easily used. Simulation
which is incomplete while there is unobserved data studies suggest that using pairwise likelihood is still
which can be considered as complete and containgasonably efficient when compared with methods
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based on the full likelihood (Nott and Rgd, 1999). each can be fitted as in the previous section, taking into

An example using pairwise likelihood will be given in account that some parts of the random set (that masked

the following section. by higher order phases) are missing. These types of
models seem to have been first used by Greical.
(1979) as a model for sinter textures.

MULTI-PHASE IMAGES
_ o . CONTOURS OF RANDOM FIELDS
In Section “Estimation for two phase images”, The third possible model is obtained by

various ways of fitting random set models have S . .
been discussed. Many images (like Fig. 1) consist 0ron&derlng contours of a random field at different

more than two phases and, in this section, methodgve.ls' As with the previous F“Ode': the _ph_ases are
again ordered, this time by an inclusion principle; that

of constructing and fitting three such models will ; . .
be discussed. These multi-phase models have quif@’ the background phase is again the bottom phase

different properties. It is important to note these an hd each subsequent phase is contained within the

then choose a model appropriate for the observe wer order phases. Inthis.situation, all phases can be
relationships between the phases observed fully and are not independent of each other.

Estimation of the parameters is straightforward

LABELLINGS OF RANDOM SETS using pairwise likelihoods as the bivariate probabilities
(which may be across phases and hence contours)

In images where there is a *background” phasegim 1 involve bivariate normal probabilities.
and the other phases have similar morphology and are

not adjacent, it may be possible to assume that the
union of the non-background phases constitute a single ANALYSIS OF A SULPHIDE ORE

random set. The connected components of this random |n this section, the methods described above
set can then be assumed to have been allocated to (@il be used to fit a multi-phase model based
labelled as) the different phases. Estimation for then labellings to a core image of a sulphide ore.
random set can be carried out using any of the methodpnis and further examples can be found in Nott
of Section “Estimation for two phase images”. Thisand Wilson (2000). (Figs. 1 and 7-10 have been

idea of labelling components of a random set has beefeproduced with permission of Elsevier Science.)
considered by Molchanov (1984) and others.

There are various methods for labelling the :
connected components. One of the simplest is to j'- . _
assume that there is a collection of covariates (say| - ,4" . - -
particle size, perimeter, relationship to other particles, - L
orientation) whose values determine the phase which - || “".- Lt ™
is most likely for the particle under consideration; that T, -
is, the allocation is modelled by a polytomous logistic . ' '.' ‘e v
regression, conditional on the observed random set, .) . "' _
Estimation for the parameters in the logistic regression CA | : -~
can be carried out using standard methods (see, for (@) (b)

example, Hosmer and Lemeshow, 1989). Fig. 7. First particle phase (a) and second particle

phase (b).
MODELS DEFINED FROM MULTIPLE

RANDOM SETS

In cases where there is a background phase and EXAMPLE
the remaining phases can be adjacent, it may be

ible t that h dominat The data of Fig. 1 is to be modelled with a model
possibie 10 assume that some phases dominale B e ijng described in Section “Labellings of random
cover other phases. In this situation, the phases ar,

. $ets”. Fig. 7 shows the two particle phases of the
assumed to be ordered, with the background phasg, 46 Tghe union of these ispto be mpodelled as an

belng_ the “bottom” phase and subsequent phases Excursion set of a stationary Gaussian random field.
covering the lower order phases. Hence the top phaspne steps involved are as follows:

can be observed completely, while the lower phases
are masked. The simplest model is to assume the nod- Calculate the empirical covariance function for the
background phases are independent random sets, so excursion set.

76



Image Anal Stereol 2001;20:71-78

2. Transform it to one for the random field via the
functional relationship Eq. 1.

3. Choose an appropriate form for the covariance.

4. Estimate the levall from the area fraction (as in
Section 3.1).

5. Use the pairwise likelihood to estimate the
covariance function parameters.

Fig. 8 shows the estimated covariance function for
the random field covariance in the east-west and north-
south directions. There seems very little evidence
for anisotropy and so an isotropic rational quadratic
covariance function was chosen.

(©) (d)
= Fig. 9. (a) Image of sulphide ore; (b)-(d) simulations
® from fitted model.
S <
x o

0 10 20 30 40 50

h
Fig. 8.Empirical covariance function for random field:
E-W (solid), N-S (dotted).

The estimate fou was 14977. In the pairwise
likelihood, the product was taken only over pairs of
pixels which were either adjacent or separated by one
pixel horizontally or vertically. Support for this choice © (d
is given in Nott and Rydh (1999). The estimates for
6, and6, in the rational quadratic covariance function
were 83519 and 126 respectively.

The final stage is to use logistic regression to
model the assignation of connected components to the - E
two phases. In this example, the number of particles (e) ®

in the first phase was too few and no covariatesiy 19 Empirical correlation and cross-correlation
were used; that is, each connected component Wag§nctions (solid), with means (dashed) and simulation
assumed to be assigned independently (equivalent {gyelope (dotted) from fitted model. (a) First phase:
fitting only an intercept term in the logistic regression).g-w; (b) First phase: N-S; (c) Second phase: E-W;
The estimated probability of being assigned to thgd) Second phase: N-S; (e) Cross-correlation between
first phase was.097. The data is shown with three phases: E-W; (e) Cross-correlation between phases:
simulations from the fitted texture model in Fig. 9.  N-S.
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To check the adequacy of the model, the empiricaHaindl M (1991). Texture synthesis. CWI Quarterly 4:305-
correlation functions for the phases in the east- 31.
west and north-south directions, together with meangjort NI, Omre H (1994). Topics in Spatial Statistics. Scand
ag;j _up[c)jefr and4|gw¢r sllr?_ulatl(?n en;/ﬁlo?t?sdfor tr&e'lse J Stat 21:289-357.
obtained from 49 simulations from the fitted model, : -
were plotted. Similar plots for the cross-correlations Osger DW, Llsmeiho‘li‘f V\?I (1989). Applied  Logistic
between phases were also obtained. The results are "c9'o°S!0N NEW YOrk- VWiey. -
shown in Fig. 10, and suggest that there is no rea_u.eadb.e.tter MR,'HS|ngT(1990).L|m|ttheoremsforstrongly
reason to question the adequacy of the model as the mixing stationary random measures. Stoch Proc Appl
empirical functions lie well within the confidence 36:231-43.

envelopes. Lindsay B (1988). Composite likelihood methods. In:
Prabhu NU, eds. Statistical Inference from Stochastic
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