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ABSTRACT

Sediments are routinely analyzed in terms of the sizing characteristics of the grains of which they are
composed. Via sieving methods, the grains are separated and a weight-based size distribution constructed.
Various moment parameters are computed from the size distribution and these serve as sediment
characteristics. This paper examines the feasibility of a fully electronic granularity analysis using digital
image processing. The study uses a random model of three-dimensional grains in conjunction with the
morphological method of granulometric size distributions. The random model is constructed to simulate
sand, silt, and clay particle distributions. Owing to the impossibility of perfectly sifting small grains so that
they do not touch, the model is used in both disjoint and non-disjoint modes, and watershed segmentation is
applied in the non-disjoint model. The image-based granulometric size distributions are transformed so that
they take into account the necessity to view sediment fractions at different magnifications and in different
frames. Gray-scale granulometric moments are then computed using both ordinary and reconstructive
granulometries. The resulting moments are then compared to moments found from real grains in seven

different sediments using standard weight-based size distributions.
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INTRODUCTION

Grain size characteristics and surface area
measurements are of great importance to
sedimentologists, whose interest lies in soil
characterization and trace elemental chemistry
(Horowitz and Elrik, 1987). Size distributions
provide good quantification for soil studies and carry
information concerning the weathering phenomena
about the transport, sorting, and sediment source
(Kranck and Milligan, 1985; Kranck et al., 1996a, b;
Lang and Stevens, 1999). Weathering phenomena
include chemical decomposition and mechanical
disintergration.

The present paper examines the feasibility of an
electronic granularity analysis based on digital image
processing. In practice, this would be accomplished
by digital image capture and the consequent
computation of granulometric size distributions based
on the images. It would require fairly sensitive
imaging equipment and a stable lighting environment to
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insure consistency between samples. To emulate these
conditions, the present study uses a random model of
three-dimensional grains formulated to simulate natural
sediment mixtures under the assumption of weight-
volume proportionality. Morphological granulometric
size distributions are computed digitally from the
grain-model images and their moments are then
compared to the moments arising from a conventional
statistical analysis of the real sediment samples.

The natural sediment grains under comparison
have been obtained from the Ore estuary (North
Sweden). Four spots along the estuary have been
selected that are prediminantly silicious type. The
samples are predominantly quartz and plagioclase
feldspar groups. Samples la and 1b sand fractions
contain significant amounts of the mica group (biotite)
and iron oxides (hematite or magnetite). Their silt and
clay fractions also contain mica and chlorite. Sample 2
has more chlorite. Sample 3 has more montmorillonite
and mica. Samples 3b, 4a, and 4b have montmorillonite
in mid to small size fractions (silt - clay groups). Fig. 1
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shows the structure of various sediment groups. Grain
shapes are mostly uniform in silicious sediment groups.

At each of the selected spots (sample numbers 1
to 4), near surface samples (1-5 cm deep) are given a
sufix 'a'. Samples of the same core taken at deeper
pits (30-35 cm) are given a sufix 'b.' The silicious
sediment spots have been selected considering results
of (Forsgren et al., 1993). The selected samples fall
under the following categories: sample 1(a) - fine and
very fine sand, and coarse silt; sample 1(b) - coarse
silt and very fine sand; sample 2 - coarse, medium and
fine silt; samples 3(a), 3(b), 4(a), 4(b) - predominantly
fine and very fine silt.

Conventional sieves have been used to obtain the
size distribution for grains sizes > 32 pm (i.e) sand
and coarse silt. Grains smaller than this range have been
measured in the residual suspension using a coulter
counter. Grain size analysis on these selected natural
samples have been performed and the results compared
to the image-based granulometric sizing results.

After postulating a random model and applying
image-based granulometric analysis to the simulated

A

©)

BALAGURUNATHAN Y ET AL: Granulometric sediment analysis

grains, the concordance between the statistical
analysis applied to both physical and simulated grains
is checked. Comparisons are made on both disjoint
and non-disjoint grain models. The latter case is
likely more practical because it is difficult to
physically separate grains. In the non-disjoint model,
grains are segmented using watershed transform prior
to granulometric analysis. Granulometric sizing is
adapted to the sediment sieving process and both
ordinary and reconstructive granulometries are
applied, the latter being more akin to sediment
sieving. As will be seen, the first and second
moments based on image processing are very close to
those derived from weight measurements of real
sediment grains. The order of magnitude between
samples is maintained for the third and fourth
moments, there being a shift between the two
methods.

The results obtained indicate the potential for
image-based sediment granularity analysis. The next
step would be to build a prototype image capture
system and then apply granulometric analysis directly
to the images.
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Fig. 1. Structure of minerals occurring in natural sediments (a) Quartz, (b) Albite, (c) Orthoclase and Sanidine,

(d) Hematite crystal.
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MORPHOLOGICAL
GRANULOMETRIES

Morphological granulometries model sieving
processes (Matheron, 1975). The essential idea is to
operate on an image in such a way that fine structure
is progressively eliminated. The area of the remaining
image is continuously diminished, and this decreasing
area is considered as a size distribution. For a
granular image, the image is sieved by successively
trying to fit structuring elements into the grains and
removing grains into which the probes do not fit. For
compact grains, eventually all are sieved from the
image and the size distribution reaches the value zero.

We begin by defining a binary granulometry and
its size distribution. Consider a fixed compact, convex
set B. For any positive real number t, the opening of a
set S by structuring element tB is denoted by Vis(S)
and defined as the union of all translates of the
structuring element that are subsets of S. As t
increases, Vig(S) diminishes, which means that for
t>r, Vis(S) U Via(S). The parameterized mapping Vig is
called a granulometry. For each set S, a size
distribution is defined by letting Q(t) be the area of
Vis(S). Q(0) is the area of S. The pattern spectrum P
of S is defined by normalizing the size distribution so
that it is increasing and goes from O to 1, namely,
d(t)=1-Q()/Q(0). The pattern spectrum is a
probability distribution. Often the derivative of @ is
used. The moments of @, called “granulometric
moments,” are powerful pattern and texture descriptors
(Dougherty and Pelz, 1991; Dougherty et al., 1992;
Batman and Dougherty, 1997; Sand and Dougherty,
1998; Theera-Umpon and Gader, 2000). In pattern
recognition, S is a random set, the pattern spectrum is
a random function, and granulometric moments are
random variables.

For a set S composed of a union of disjoint
compact grains, a reconstructive granulometry is
defined by passing in full any grain not completely
eliminated by the opening. Whereas an ordinary
granulometry generally diminishes each grain
progressively until its elimination, a reconstructive
granulometry represents a true sieve: for each grain
there exists a value ty such that the grain is unchanged
for t <ty and 1s eliminated for t > t,. The cut-off value
to is called the granulometric size of the grain. A
grain is passed by a reconstructive granulometry if
and only if its granulometric size exceeds the
parametric multiple of the primitive B. The pattern
spectrum of a reconstructive granulometry is defined
in the same manner as for an ordinary granulometry.
Reconstructive granulometries are used both for
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pattern classification and image filtering (Chen and
Dougherty, 1999). Pedagogical details and applications
can be found (Dougherty and Astola, 1999).

A single-opening gray-scale granulometry involves
opening a gray-scale image f (X, y) by a structuring
element that is also a function. The most common
approach involves the special case of opening a
function by a set. The opening, Vs(f), of f by a
compact set B at the point (X, y) is the supremum, at
the point (X, y), of all translates of B in three-
dimensional space that fit beneath the graph of f. A
granulometry generated by B takes the form yig(f),
and the size distribution Q(t) is defined by the
volume beneath the graph of ys(f). We assume that f
has bounded support so that Q(t) = 0 for sufficiently
large t. Gray-scale granulometric moments have been
used successfully for texture-based classification in
medical applications (Chen et al., 1993; Chen and
Dougherty, 1994; Baeg et al., 1999). For two reasons,
we use a square structuring element: (1) the sieve used
for the real grains has a square mesh, and (2) there are
fast implementations for square structuring elements.

We consider random grain models for both disjoint
and non-disjoint grains. Each grain is modeled as
nonnegative function on a compact domain. The
domains are disjoint in the disjoint model and are
allowed to intersect according to an intersection
model in the non-disjoint model. Since weight-based
size distributions currently used in sedimentology are
based on individual grains, we apply the watershed
transformation to segment intersecting grains (Meyer
and Beucher, 1990, Beucher and Meyer, 1993).
Finding good markers is essential for successful
watershed application. Automatic methods devised to
find markers are often specific to a given set of images.
To avoid over segmentation, in our simulation the
modeled grains have been hand marked.

GRANULOMETRIC ANALYSIS OF
SEDIMENTS

To adapt granulometric sizing to sediment samples,
we assume sediments are classified into three size
classes, all being disjoint with the others: sand, silt,
and clay (conventional size ranges were used). For
image processing, the grains cannot be analyzed
without magnification because they are too small for
good pixel resolution. Moreover, the different sizes
cannot be viewed under a single magnification. Classes
must be observed with different levels of magnification.
Granulometric sizing is carried out individually on
these discrete classes and later combined to form the
sample sizing distribution.



Proceeding generally, if we have n non-
overlapping decreasing size classes, C;, C,,..., C,
viewed at decreasing magnifications M;, M,,..., M,
and all grains for all classes are employed for
granulometric calculation, then the overall size
distribution for the magnified grains can be computed
from the class size distributions. Let Q(t) be the size
distribution for class Cy¢ at magnification M. A
change of scale is required to convert the size
distribution back to the original pre-magnified
scaling. This change means that t is replaced by Mt.
Moreover, the total volume at magnification My is
M’ times the original volume. This means that, in
terms of Q(t), the size distribution for Cy at the pre-
magnified scale is given by M >Q(Mt). The overall
size distribution, Q(t), at the original scale is the sum
of the size distributions:

Q) = ; M7Q, (M,1). )

Qy has been determined at the magnified setting,
whereas Q is at the original scale.

In practice, two adjustments have to be made.
First, we do not use all grains we are given because
this would require an enormous image grid at the
levels of magnification necessary to accurately reveal
grain structure. Hence, for each class C, we use only
a fraction ax of the volume we are given. This means
that the formula for Q(t) must be adapted by
multiplying by 1/a, in the Cy term. In addition, we are
only supplied with a sampling of each full class. If
the grains we are given for class Cx compose the
fraction py of the total volume of all grains (not just
those given to us for granulometric analysis), then for
it to be relative to the total sediment population, the
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size distribution must be normalized by a factor of p
for class Cy. It thus takes the form

Qn =3 paMIRMY. @
The corresponding volume is given by
Q(0) = ; paMIQ0). ()
Hence, the pattern spectrum is
i p.a'MQ, (M,1)
e =1--5 (4)

Z Pa, M, "Q, (0)
Differentiation yields the pattern-spectrum density
n g 3 dQ (M t
p.a; Y : 3 (M, 1)
=1 dt

3 Pa M, Q, (0)

do) _ | L)

dt

The pattern spectrum @y for Qy satisfies the identity,
dod/dt = —(dQ,/dt)/Q«(0). Hence,

2 “lpg -3 d®, (M,t)
do(t) _ kZ:IIOkak M, "Q,(0) kd'[ ‘ . (6)
a > Pa M0, (0)

Given the pattern spectrum, we use standard
probabilistic definitions to compute its moments, in
particular, the mean, standard deviation, skewness,
and kurtosis. Fig. 2 shows the process pictorially.
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Fig. 2. Pictorial view of the steps involved to obtain granulometric sizing of real sediment grains.

SIMULATION AND DISCUSSION

In our simulations we consider the magnifications
M; < M, < M; for sand, silt, and clay, respectively,
and for these the size of the digital image is set at
1024 x 1024 pixels, 2048 x2048 pixels, and
4096 x 4096 pixels, respectively. In our experiment
the magnification factors are set at M; =232, M, =
2250, and M, = 8000.

To model sand, silt, and clay, we use different
parameterized three-dimensional random shaped
primitives. Multisided polyhedrons are used to model
sand and silt type sediments, as most of these grains
closely resemble these shapes. To model mid-size
grains — silt fraction, two types of polyhedrons are used.
Clay-type grains were modeled as random ellipses,
Chemical and physical weathering phenomena’s makes
them close to circular shape. We refer to Fig. 14 in
Sondi et al. (1995) for photomicrograph of clay in
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suspension. In general, an n-sided (total sides)
polyhedron has n—1 random sides, n —2 random
angles, and n — 2 intensity functions. In this paper we
prefer to address such shapes by its random sides
rather than the total number of edges.

The first grain fraction, sand, is modeled by a
polyhedron with six random sides and an additional
fixed closing side makes it seven total sides. Six
sides, five random angles and five intensity functions
are randomly picked from a uniform distribution.
Intensities have been chosen to provide linearly
increasing and linearly decreasing slopes. The second
fraction, silt is modeled by an equal proportion of
five and four-sided polyhedrons. Since this fraction
had a wide mixture of grain shapes and sizes, two
shapes were used to model this fraction in order to
better describe the randomness. The edge lengths,
intensity functions and angles are randomly picked
from a uniform distribution. A six-sided polyhedron



has five randomly selected sides, four random angles
and an additional side forms the closing edge. Similarly,
a five-sided polyhedron has four randomly chosen sides
and three random angles and an additional closing
side. Depending on the edge lengths and angles, the
polyhedron takes a variety of shapes. In most cases,
polyhedrons generated are non-regularly shaped, and
therefore referring to them by their random sides is
appropriate. The third fraction, clay, is modeled by
random ellipses. The major, minor axis, and inclination
are randomly picked from a uniform range. Depending

BALAGURUNATHAN Y ET AL: Granulometric sediment analysis

on the axis dimensions, the shape will vary from a circle
to an ellipse and placed (rotated) at an arbitrary
direction. The size ranges in pixels units for all the
fractions (at respective magnification) are shown in the
Appendix. Fig. 3 shows the parameterized grain model.

Model sizing has been chosen so that the volume
ratios of simulated grains (in an imaging sense) are
equal to the weight ratios of the natural sediments (in
a geological sense). The assumption is that weight
information is carried by grain intensity.

Top View

Side View

Sand Grain Model (L, ©,I) - 6 sided polygon

R0

Top View

Side View

Clay Grain Model (A, B, I)—Random Ellipse

Fig. 3. Above figure illustrates parameterized grain model. Random shaped polyhedrons, ellipses used to model

natural sediments.
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Shapes also have intensity parameters. For
polyhedrons, the shape can be approximated by a
finite number of triangles, with additional intensity
dimensions. Each base triangle is referred to as the
face of a polyhedron. Intensity levels on its faces
linearly change (increase or decrease) from randomly
picked start and end levels, whose ranges are shown
in the appendix. The intensity ranges and the factor of
increase on each face have been chosen such that the
intensity profile is peaked towards the center of the
grain. Intensity at any point t will be a linear function
l(t) on the k™ face of the polyhedron. In this
simulation, intensity ranges are preset to have a
smooth increase and a decrease on each of its faces.
An elliptical shape has maximum intensity level at the
center and the intensity linearly slopes down to the
minimum level towards the edges. The size range and
intensity ranges have been chosen to closely model
natural sediments with convexity in mind. In the
simulation, grains were not rejected if, otherwise,
certain combinations of the randomly chosen lengths
and angles produce non-convex shapes (which occur in
real sediments). Overall, the random grain model
closely models both the randomness and structural
shapes of the natural sediments. Fig. 4 illustrates
fractional samples of natural grains. The simulation is
finalized by performing a morphological opening with
a disc-shaped structuring element to smooth the
grains. Fig. 5 shows the simulated grain models. The
image volumes were matched to the given prior
knowledge of the sediment weight ratios of the
individual fractions and granulometric sizing was
computed later, following the procedure described in
the previous section.

While the overall model might appear complex, it
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is greatly simplified in comparison to real grains.
Simpler models have been tried, including binary
models, but these did not provide the results
comparable to sizing distributions for real sediments.
Inclusion of intensity as a grain parameter played a
crucial role in modeling the fractions, as weight ratios
play a major role in quantifying the grain sizes in real
sieving. The final model chosen yields grains that
appear visually akin to the real grains, as well as
comparable granulometric results.

The various parts of Table 1 compare the moment
results for the seven samples listed in the leftmost
column. The natural sediment results are from
weight-based moment calculations using real
sediments. There are four columns for image-based
granulometries applied to the simulated model. Two
are for reconstructive granulometries, applied to both
disjoint grains and segmented non-disjoint grains.
Two are for ordinary opening granulometries applied
to the same two models. The results are very close for
the first two moments using all four approaches. For
the third and fourth moments, the imaging-based
moments preserve the sizing among the moments, but
are systematically lower. Owing to this systematic
lowering, further study could perhaps arrive at a
linear correction factor; however, this is outside our
purpose of showing feasibility using a random model.
The parts of Fig. 6 compare the moments from actual
weight-based size distributions to the simulated size
distributions, both disjoint and segmented models: (a)
reconstructive mean; (b) opening (non-reconstructive)
mean; (c) reconstructive standard deviation; (d) opening
standard deviation; (e) reconstructive skewness; (f)
opening skewness; (g) reconstructive kurtosis; (h)
opening kurtosis.
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Fig. 4. Sample of real sediment grains (a) sand fraction, (b) silt fraction and (c) clay fraction was magnified
using 5x, 10x, 40x lens respectively using Zeiss Axiovert 35 light microscope.
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Fig. 5. Sample of modeled sediment grains (a) sand fractions, (b) silt fractions and (c) clay fractions. Images
gray level intensities was inverted for better view.
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Table 1. Comparison of conventional sieving (mm scale) with granulometries.

(a) Mean (My)

Natural Sediment

Simulated Model

(I) Conventional Sieving (IT) Reconstructive Opening (IIT) Opening Granulometry
Granulometry
Sample Method of Disjoint grains | Non-Disjoint: | Disjoint grains | Non-Disjoint:
moments Segmented Segmented

la 0.0794 0.0920 0.0779 0.0794 0.0676

1b 0.0596 0.0772 0.0733 0.0660 0.0635

2 0.0346 0.0330 0.0340 0.0284 0.0291

3a 0.0175 0.0198 0.0198 0.0171 0.0171

3b 0.0159 0.0188 0.0174 0.0164 0.0151

4a 0.0126 0.0157 0.0167 0.0136 0.0145

4b 0.0114 0.0151 0.0155 0.0131 0.0134
(b) Standard Deviation (So)

Natural Sediment Simulated Model

(I) Conventional Sieving (II) Reconstructive Opening (IIT) Opening Granulometry
Granulometry

Sample Method of Disjoint grains | Non-Disjoint: | Disjoint grains | Non-Disjoint:
moments Segmented Segmented

la 0.0935 0.0961 0.0786 0.0871 0.0715

1b 0.0510 0.0880 0.0833 0.0786 0.0756

2 0.0389 0.0534 0.0570 0.0479 0.0505

3a 0.0352 0.0332 0.0329 0.0296 0.0300

3b 0.0247 0.0294 0.0293 0.0276 0.0272

4a 0.0240 0.0221 0.0267 0.0206 0.0245

4b 0.0214 0.0202 0.0212 0.0187 0.0199

(c) Skewness (Sk)

Natural Sediment

Simulated Model

(I) Conventional Sieving (IT) Reconstructive Opening (IIT) Opening Granulometry
Granulometry
Sample Method of Disjoint grains | Non-Disjoint: | Disjoint grains | Non-Disjoint:
moments Segmented Segmented

la 2.5370 0.7808 0.8031 0.9974 1.0183

1b 2.6832 1.0997 1.1312 1.3238 1.3370

2 3.7366 2.9426 3.0499 3.2656 3.3302

3a 5.8785 5.0747 4.9078 5.3126 5.2443

3b 8.7620 7.3394 7.2104 7.6866 7.4757

4a 10.958 8.0509 9.0084 8.2548 9.2047

4b 12.220 9.2662 9.0428 9.5068 9.3419
(d) Kurtosis (Kg)

Natural Sediment

Simulated Model

(I) Conventional Sieving (IT) Reconstructive Opening (IIT) Opening Granulometry
Granulometry

Sample Method of Disjoint grains | Non-Disjoint: | Disjoint grains | Non-Disjoint:
moments Segmented Segmented

la 10.6280 2.1112 22142 2.6783 2.8058

1b 15.6350 2.7287 2.8472 3.4852 3.5655

2 25.5330 10.8481 12.0479 13.519 14.6143

3a 47.0863 30.9721 29.1573 34.837 33.6859

3b 112.680 63.8623 59.7666 70.4523 64.9891

4a 154.830 79.7931 96.3213 84.5380 102.480

4b 194.220 112.9803 102.4933 120.4910 109.811
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Fig. 6. Comparison of conventional weight-based sizing (statistical) moments of natural sediments compared
with morphological granulometric moments. Where (a) reconstructive mean, (b) opening (non-reconstructive)
mean, (c) reconstructive standard deviation, (d) opening standard deviation, (e) reconstructive skewness, (f)
opening skewness, (g) reconstructive kurtosis, (h) opening kurtosis.
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CONCLUSION

The purpose of this study has been to investigate the
possibility of an imaging-based system to provide
quantitative granulometric sediment analysis. The
closeness of the image-based granulometric features to
the conventional weight-based statistical moments of
the seven real sediment samples shows the potential of
both reconstructive and opening granulometries.
Discrepancies in the weight-based and image-based
methods likely result from using a random grain model,
together with using the third dimension (intensity) to
capture volume (weight), especially in the more
sensitive higher moments. The good point is that,
according to the data of this study, order is preserved in
the higher order moments and the difference can be well
corrected by a linear correction factor. More importantly
perhaps, practical implementation of an image-based
system would involve high-quality image acquisition,
together with the digital tools employed here, and any
calibration would be relative to moment relations
between image-based granulometries and weight-based
size distributions on real grains, not on modeled grains.
The success of the watershed segmentation in the non-
disjoint model, together with its historical success in
many other contexts, indicates that sediments need not
be sifted into disjoint grains for an imaging-based
approach.
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APPENDIX

Following parameter settings was used in the
simulation: length (pixel unit at respective magnifications),
angels in degrees.

Six-sided Polyhedron (six random sides with
additional closing edge, five random angles and five
intensity functions):

L1~ U [25,80], L2 ~ U [20, 70], L3 ~ U [15, 67],
L4 ~UJlL,66],L5~U[5, 65], L6 ~ U [5, 55].

81 ~ U [120, 178], 82 ~ U [115, 135], 83 ~ U [110, 135],
84 ~ U [105, 175], 85 ~ U [105, 165].

Intensity | (p) ~ U [90, 250]

Face 1: start intensity = 0,
end intensity = (start intensity of face 1 + I (p)).

Face 2: start intensity = end intensity of face 1,

end intensity = (start intensity of face 2 + 0.3*I (p)).
Face 3: start intensity = end intensity of face 2,

end intensity = (start intensity of face 3 + 0.3*I (p)).

Face 4: start intensity = end intensity of face 3,
end intensity = (start intensity of face 4 - 0.4*I (p)).

Face 5: start intensity = end intensity of face 4,
end intensity = (start intensity of face 5 - 0.5*I (p)).

Five-sided Polyhedrons (five random sides with
additional closing edge, four random angles, four intensity
functions):

L1~U [20,90], L2 ~ U [10, 105], L3 ~ U [7, 105],
L4~U[7,50], L5 ~ U [5, 65].

91 ~ U [115, 180], 82 ~ U [120, 130], 83 ~ U [130, 140],
04 ~ U [135, 145].

99

Intensity | (p) ~ U [60, 200]

Face 1: start intensity = 0,
end intensity = (start intensity of face 1 + 1 (p)).

Face 2: start intensity = end intensity of face 1,
end intensity = (start intensity of face2 + 0.3*I (p)).

Face 3: start intensity = end intensity of face 2,
end intensity = (start intensity of face 3 - 0.25*I (p)).

Face 4: start intensity = end intensity of face 3,
end intensity = (start intensity of face 4 - 0.2*I (p)).

Five-sided Polyhedron (four random sides with additional
closing edge, three random angles, three intensity functions):

L1 ~U[20,90], L2 ~ U [10, 105], L3 ~ U [7, 105],
L4~U[7,50]
81 ~ U [115, 180], 82 ~ U [120, 130], 83 ~ U [130, 140]

Intensity | (p) ~ U [60, 200]

Face 1: start intensity = 0,
end intensity = (start intensity of face 1 + I (p)).

Face 2: start intensity = end intensity of face 1,
end intensity = (start intensity of face 2 + 0.3*I (p)).

Face 3: start intensity = end intensity of face 2,
end intensity = (start intensity of face 2 - I (p)).

Ellipse

Major axis: a~ U [4, 16].

Minor axis: b~ U [4, 16].

Rotation angle ~ U[0, 40].

Intensity I (p) ~ U [30, 120].

Edge intensity = 0.

Center intensity = (edge intensity + I (p)).
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