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ABSTRACT

In the stereological unfolding problem for spheroidal particles the extremal shape factor is predicted. The
theory of extreme values has been used to show that extremes of the planar shape factor of particle sections
tend to the same limit distribution as extremes of the original shape factor for both the conditional and
marginal distribution. Attention is then paid to the extreme shape factor conditioned by the particle size.
Normalizing constants are evaluated for a parametric model and the numerical procedure is tested on real data
from metallography.
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INTRODUCTION

Consider a random collection of spheroidal
particles in a reference volume. We shall assume that
the particles are all oblate or all prolate. The size is
the length of a particle’s major semiaxis X, while W
is the length of the minor semiaxis. The shape factor
in our setting is given by T = X2=W2 � 1. It is clear
that 0 < W � X < η , and 0 � T < ω, where the
equalities X = W and T = 0 hold when the particles
are balls. Both X and W are nonnegative real random
variables. Values η and ω are fixed non-negative real
numbers, possibly infinite, the upper end-points of the
supports of distribution of X and T respectively. We
study random planar sections of the particles. These
sections form ellipses. An ellipse is characterized by
its size (major semiaxis length) Y, and its shape factor
Z = Y2=V2 � 1, where V is the length of the minor
semiaxis. It holds that 0 <Y � X, and 0� Z� T .

Let g(x; t) be the joint probability density function
of size and shape factor (X;T) of a particle. The
orientation of the particle is assumed to be isotropic,
i.e. a uniform random variable on the hemisphere
independent of size and shape. On the other hand we
do not assume independence between size and shape
factor.

Following (Cruz-Orive, 1976) the distribution of
the section size and shape factor (Y;Z) for oblate
particles has the joint probability density
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where 2M is the population mean caliper diameter of
particles. We will need the joint distribution of the

original size X and planar shape factor Z as well. Using
similar arguments we get the probability density
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and gx(t) = g(x; t)=
Rω

z g(x; t)dt is the conditional
density of T given X = x. Then the complementary
equation which together with (2) yields (1) is
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dx: (3)

We denote fy(z) the conditional density of shape factor
Z given size Y = y: The conditional probability density
of Z given X = x is equal to
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Further let h(z) denote the marginal density of the
transformed shape factor Z. We have
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Finally define fz(y); hz(x) as the conditional density of
size Y given shape Z= z, and size X given shape Z= z;
respectively.
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For the sake of completeness we provide the
formula for the density of the section characteristics
for prolate particles which is expressed in terms of
shorter semiaxes
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In the following, however, we restrict consideration to
oblate particles. For the prolate particle case analogous
results hold.

EXTREMAL PROPERTIES

A univariate distribution function K is said to
belong to the domain of attraction of a distribution
function L if there exist normalizing constants fang,
fbng such that the n-th power Kn

(anx+bn) converges
weakly to L, where L is one of the following
distributions

Li;γ(x)=

8<: exp(�x�γ
); x� 0; i = 1; Fréchet

exp(�(�x)�γ
); x� 0; i = 2; Weibull

exp(�e�x
); x2 R ; i = 3; Gumbel

(5)
where γ > 0. We shall write K 2 D(L) if K is in the
domain of attraction of L.

If the distribution K has a density k, there are
sufficient conditions (de Haan, 1975) for K to be in
D(L). These conditions are denoted (C1;γ), (C2;γ), (C3).

In Drees and Reiss (1992) the extremal properties
in the Wicksell corpuscule problem were studied.
This was developed so as to apply to the size-
shape unfolding problem of spheroidal particles.
Let Hx, H , Gx, Fy, Fz, Hz be the distribution
functions corresponding to densities hx, h, gx, fy, fz,
hz respectively. Then the following theorem holds
(Hlubinka, 2000):

Theorem 1 a) Suppose that for any fixed size x
the density gx(t) satisfies condition Ci;γ. Then the
distribution Hx 2 D(Li;β), i = 1;2;3, whereβ = γ for
i = 1, andβ = γ+1=2 for i = 2.

b) Assume that gx(t) satisfies condition Ci;γ
uniformly in x. Then Fy 2 D(Li;β) for all y, i = 1;2;3,
whereβ = γ for i = 1, andβ = γ+1=2 for i = 2.

c) Assume that gx(t) satisfies condition Ci;γ
uniformly in x. Then H2 D(Li;β); i = 1;2;3, where
β = γ for i = 1, andβ = γ+1=2 for i = 2.

The theorem says that the domain of attraction
for the shape factor is the same for a particle and its
section. We will not study further part c) since it is less
important for practical applications. Indeed, the total
extremal shape factor is useless if it is not related to
particle size.

To use the results of  theorem 1, part a), we need to
estimate normalizing constants an;bn;a

0
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where T(n) is the maximum of n observations, and
Λ is a random variable with the extremal type of
distribution.

A parametric model of gamma distribution will be
considered with the density

gx(t;α ;µ) =
tα�1µα

Γ(α )
e�µt; t � 0: (6)

where α and µ are positive constants which can
possibly depend on the given size x. Recall that the
gamma distribution is in the domain of attraction
of the Gumbel distribution. Using the techniques of
Takahashi (1987)  the following theorem was proved
in Hlubinka (2000):

Theorem 2 Assume that for any fixed size X= x the
shape factor T follows a gamma distribution. Then
both T and Z conditioned on X= x belong to the
Gumbel domain of attraction and their normalizing
constants are
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Using Theorem 2 we can approximate the
distribution Gn

x(t) of T(n) by Λ((t�bn)=an). Quantiles
of T(n) are estimated via bqp = bn+an[� log(� log p)],

and dET(n) = bn+anC, where C
:
= 0:5772 is the Euler

constant. Concerning the estimation of normalizing
constants an;bn using estimation of a

0

n;b
0

n; several
methods concerning the corpuscule problem are
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discussed in Takahashi and Sibuya (1998). We can
use for ecample a maximum likelihood method based
on the joint distribution of (T(n�k+1); : : : ;T(n)) which

is derived in Weissman (1968) to estimate a
0

n and b
0

n.
Note that since a

0

n = an = 1=µ does not depend on n the
main problem is to find a reasonable estimation of bn

based on d1=µ and bb0

n. This means the use of numerical
methods since α is unknown.

For the situation b) from theorem 1, unfortunately,
such a simple result as Theorem 2 is not available.

PRACTICAL APPLICATION

The prediction of the extremal particle shape factor
is important in metallography. Engineers claim that
damage to construction materials depends on extremal
rather than mean characteristics of the microstructure.
Therefore corresponding methods for prediction
of spatial extremes based on data from sections
(metallographic samples) have to be developed. In
Beneš et al. (1997) the problem of unfolding the size-
shape-orientation distribution has been theoretically
solved. We use data from that study, i.e. measurement
of an aluminium alloy specimens with oblate Si
particles. The assumptions of spheroidal shape and
isotropy are approximately fulfilled. Metallographic
samples were measured by means of an image analyser
to obtain samples from the joint distribution with
density f (y;z): The aim is to use Theorems 1 and 2 for
the prediction of the extremal shape factor of particles
for given size classes.

The gamma distribution parametric model (6)
for the shape factor given the size is used. Our
approach is to use formula (3) for unfolding the
size distributionof particles to obtain an empirical
distribution corresponding to the density h(x;z): This
is then fitted to the theoretical distribution obtained by
plugging (6) into (4). This serves two purposes: first
we can evaluate the degree of fit and conclude whether
the model is appropriate, secondly the parameters α
and µ are estimated and normalizing constants an, bn

obtained from Theorem 2.

In the first step we use discretization and the EM-
algorithm for the unfolding as described generally
e.g. in Ohser and Mücklich (2000). Equation (3) is
transformed to:

1�Fz(y) =
1

2M

Z η

y
p(x;y)hz(x)dx; (7)

where
p(x;y) = Mx

p
x2�y2:

It holds that

2M =
NA

NV
;

where NV is the mean number of paticles per unit
volume and NA is the mean number of particle sections
per unit area of the section plane. Equation (7) is thus
transformed to

NA(1�Fz(y)) = NV

Z η

y
p(x;y)hz(x)dx; (8)

where NA is estimated from the data. The y variable
is subdivided into classes with endpoints yk = bk; b a
given constant. Then for ζk =NA(Fz(yk)�Fz(yk�1)) we
have

ζk = NV

Z η

y
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�
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Assume that Hz(x) can be discretized to have values ai
for xi�1 � x< xi , where xi = bi; then

ζk = NV ∑
i

pik(ai�ai�1) =∑
i

pikξi ;

where pik = p(xi;yk�1) � p(xi;yk); i � k; pik = 0
otherwise. It holds that ξ i = NV(ai�ai�1); from which
the estimator of NV is NV = ∑i ξi : Now the iteration of
the EM-algorithm is given by (ν +1)�st step:

ξ ν+1
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ξ ν
i
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where ξ ν
i is the ν -th iterated ξi , qi = ∑k pik; rk =

∑i�k pikξ ν
i ; and the initial value ξ 0

i can be taken to
be ζ i : In this way probabilities ξ i=NV of the discrete
conditional distribution Hz(x) given z are estimated.
Using the empirical distribution function H(z) = F(z);
also the contrary conditional distribution function
Hx(z) can be directly estimated from Hz(x):

Then for the shape factor subintervals (zi�1; zi ]

denote H em
j = Hx(zi) � Hx(zi�1) for fixed x: The

corresponding theoretical probabilities H th
j for the

gamma model are obtained from (4) and (6) as
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and the integral Bt(s;u) =
R u

s

p
(1+z)=(t�z)dz is

given in the expression for Mx (following (2)). Since in
fact the unknown parameters play a role already in the
unfolding step (through the Mx term in kernel function
p), it is useful to suggest an analytical function
modelling the dependence of the parameters µ , α on x.

For a given size class we estimate the parameters
µ , α by minimizing either the ∑i(H

th
i � Hem

i )
2 or

max j j∑i� j H
th
i �∑i� j H

em
i j:

NUMERICAL RESULTS

A sample of m = 5694 particle sections of the
aluminium alloy discussed in Beneš et al. (1997)
was evaluated using the procedure described in the
previous sections. Si particles are oblate and there is a
strong correlation between the shape factor and size:
larger particles are thin with large shape factor and
vice versa. From the total measured area A we obtain
the estimator NA = n=A = 0:00125 µm�2. Using the
unfolding procedure we get NV = 2:1�10�4 µm�3.

Consider the subdivision into 4 � 4 classes of
bivariate size-shape histogram with size class factor
b = 2:99 µm. The upper bounds of intervals x
are in the Table 1 below together with relative
frequencies f (x) of the unfolded size distribution. All

size characteristics are in micrometers. Estimation of
parameters was done under the model of α fixed
and µ = c1x

c2 . Using the least squares criterion we
obtained α = 1:41, c1 = 1:40, c2 = �1:356: The
estimated values µ , α are in the Table. Further
we choose n for each size class corresponding to
the relative frequency g(x) in the unfolded sample.
The normalizing constants an, bn are obtained from
Theorem 2 and finally the extremal shape factor
characteristics dET(n), q̂0:95 for given n.

These numerical results demonstrate the
usefulness of the theory outlined above. For
comparison the largest observed particle section shape
factor in the particle population investigated was
1808.6 (corresponding to the last size class of the
largest particles). The results may be improved by a
more detailed model for parameters (e.g. non-constant
α ) which would make the numerical solution more
difficult. Also the analysis may be performed for a
larger number of classes. The open problem remains
still the application of b) in Theorem 1, which would
be more straightforward.
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Table 1. Numerical results.

x g(x) α µ n an bn dET(n) q̂0:95

2.99 0.22 1.41 0.317 1253 3.15 25.4 27.2 34.8

8.92 0.48 1.41 0.072 2733 13.89 123.1 131.0 164.4

26.7 0.26 1.41 0.0163 1480 61.35 504.3 539.4 686.5

79.7 0.04 1.41 0.0037 228 270.27 1683.2 1837.8 2486.0
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