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ABSTRACT

A new formulais establishedo evaluatethe EulerPoincaé characteristiof a polycorvex subsetX in RY
startingonly from measurementsf X in the cells of a tessellation.SimplificationsoccurwhenX is a union
of cells of the tessellation]Jeadingto anotherformula that unifies and extendsseveral classicaldigitization

results.
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INTRODUCTION

Let X be a polycorvex subset(finite union of
compactcorvex subsets)n RY (usuallyd = 1,2 or 3).
How canwe evaluatethe EulerPoincaé characteristic
(EPC)of X whenX istoolargeto beentirelycontained
in only one measuremenfield? An answer was
givenwhenthe measuremerfields are parallelotopes
(Bhanu-Prasaet al., 1989). This papergivesa more
generalanswerby assumingthe measurementields
to be corvex polytopes.A simple and naturalway to
introducethem s to considerthem as the cells of a
tessellationas in the next section. The formula for
the EPCof X is thengivenin the following section
and shavn to generalizethat of Bhanu-Prasaet al.
Simplificationsoccurin the casewhen X is a union
of cells of the tessellationThe formula thus derived
has interestingconsequencesvhen the cells of the
tessellatiorareinterpretedasdigitization cells. In this
case theformula obtainedunifiesandextendsseveral
classicaligitizationresults(e.g. Serra,1982).

TESSELLATION

A tessellatioris afamily (Z,i € 1) of subsetsn R
thatsatisfieghefollowing properties:

i) All Z are corvex polytopes with non-empty
interiofr.

ii) Theinteriorsof the Z;’s arepairwisedisjoint.
i) Theunionof thez'sis RY.

iv) The family is locally finite: the numberof Z’s
hitting any boundedsetis finite.

Fig. 1. Examplesof planartessellations.

Eachpolytope Z, is called a cell. Dependingon
the problemaddresseda cell canbe seeneitherasa
measuremerfield or asa digitization cell. Becausef
i) andiv), acorvex tessellatiorhasa countablenumber
of cells. Examplesof tessellationsinclude regular
grids,thezonesof influenceof ary infinite andlocally
finite populationof points, the polytopeslimited by
ary infinite andlocally finite setof hyperplanesFig.
1 shonvs afew examplesof planartessellations.

A tessellation is usually handled via the
intersectionsbetweenits cells. The non-emptyones
arecalledfacets Note thatafacetis not necessarilya
faceof a polytope.For instance the horizontaledges
of therectangleson top right of Fig. 1 arenot facets.
Note also that a facet can often be written in more
thanoneway asanintersectiorof cells. For instance,
a vertex on top left of Fig. 1 can be written as the
intersectioneither of 4 rectanglesor of 2 diagonally
opposedectanglesLet F be a facet. The dimension
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of F, saydimF, is definedas the dimensionof the
smallestaffine subspacehatcontainsF. It shouldnot
be mistalenwith the order of F thatis the numberof
cells that containsF. The setof all facetsis denoted
by 7.

REGIONAL MEASUREMENT

Let X beapolycornvex subsebf RY, andlet (Z,i €
1) be atessellatiorin RY. Assumethatits cellsactas
measuremeritelds.In orderto evaluatethe EPCN(X)
of X, let usstartwith

N(X) = N(XNRY)
N (XN (Uig1Z4))

= N(Uig(XNZ)) -

)
BecauseheEPCis additive,N(X) canberewritten

N(X) = (-1)®7IN(XNZ,), (@)

0£JCl

whered] isthecardinalityof J, andwhereZ, =N, ,Z;.
(Eq. (2) is a mere generalizationof the standard
formulaN(X) = N(XNZ) +N(XNZ;) - N(XNZnN
Z;) that holds if X is containedin the union of
both cells Z, and Z;.) The next stepis to group all
Zy's correspondingto the same facet. After some
calculationgseeAppendix1), we obtain

NX) = 5 (=) MN(XNF).
FeF

(3)

Fig. 2. Example of regional measuement. The
measuemenfieldsarethecellsof thetessellationThe
EPCof thedark domainis N(X) = 14— 23+ 10= 1.

As an illustration, supposethat X is the dark
domain of Fig. 2. This domain hits 14 facets of
dimension2 (cells), 23 facetsof dimensionl (edges)
and 10 facetsof dimension0 (vertices). Moreover
N(XNF) = 1for eachfacetF hitting X. Accordingly;
the EPCof X is N(X) = 14— 23+ 10= 1.

DISCRETIZATION

Thesametessellation(Z;,i € I) is still considered,
but from now onthesetX is assumedo bea union of
cells. One possibleinterpretationis to saythat X is a
digitized set,the cellsactingas’pixels’ or digitization
cells.(For practicalpurposesywe donotlimit oursehes
to regulartessellations)lt canbe shovn thatthe EPC
of X involves only the facetscontainedin X (see
Appendix2)

N(X) = -1 dimF 1
(X) Fezy( )1

(4)

X’

In thecasewhereX is acell of thetessellationEq.
(4) is nothingbut theusualEulerformulafor polytopes
(seeAppendix2)

L= 3 (D" Ly (5)
wherea€q. (3) gives
)%= Y (DML - (6)

Fes

Fig. 3. If X is a union of cells, then only the facets
within it needto be consideed.Eq. (4) givesN(X) =
9—-45+36=0.

As an example, considerthe shadeddomain on
Fig. 3. This domain contains9 facetsof dimension
2 (cells), 45 facetsof dimensionl1 (edges)and 36
facetsof dimension0 (vertices).Applying Eq. (4),
we find that its EPC is equalto 9 — 45+ 36 = 0.
Of course,the EPC of X could have beenobtained
as well starting from Eqg. (3): N(X) = 27— 63+
36 = 0. Notice however that Eq. (3) producesmore
complicatedcoeficientsthanEq. (4) for two reasons.
Firstly, all facetshitting X andnotonly thosecontained
in X are accountedfor. The differenceis already
significantin the presenttwo-dimensionalcase (27
cells insteadof 9, and 62 edgesinsteadof 45). It
may be considerablgor three-dimensionatiigitized
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sets. Secondly the contribution of eachfacetis not
alwaysequalto 1 (e.g. the edgein the hole of X has
acontributionequalto 2).

Eg. (4) remindsus of that usedfor measuringhe
EPCof setddigitizedonregulargrids(e.g. Serra, 1982)
for the squaretriangularandcubic grids). This is not
surprising insofar as regular grids and tessellations
can both be used for sampling a set. In the first
case the sampledsetis countableandits topological
propertiesare specifiedby a graphinducedon the
grid. In the secondone, the setis approximatedas a
unionof cells(Schmitt,2000).1t thereforestill remains
continuouslts topologicalpropertiesare specifiedby
theneighbourhoodelationshipdetweerthecells.

The various EPC formulaefor digitized setscan
simply be obtainedby replacing each pixel of the
digitizedsetby its zoneof influenceonthegrid, taking
theunionof thezonesf influenceandapplyingEq.(4)
to the setobtained.This proceduravorkswhateverthe
typeof grid considered.

CONCLUSION

In this papertwo formulae have beenproposed
for evaluating the EPC of continuous sets using
tessellationsThe first one is designedto cope with
the problemsassociatedvith regional measurements.
The secondone provides a unifying framework for
measuringthe EPC on digitized sets.Both formulae
arevalid whateverthe workspacedimension.

Although not explicitly mentionedin the paper
the formulae obtained can be extendedto evaluate
ary additive functional on polycorvex sets (e.g.
Minkowski functionals).
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APPENDIX 1: PROOF OF EQ. (3)

Becauseof (2), we alreadyknow thatthe EPC of
X canbewrittenas

N(X) =
FeF

E(F)N(XNF) (7)

with

e(F) = z(—l)#]_llzjzlr -

It remaingto shaw thatthevaluatione(F) is equal
to (—1)9-9mF for eachfacet F. This is made by
inductionon the workspacadimension.

Supposeat first d = 1. If dimF = 1, then F
is a cell and ¢(F) = (1)1 = 1. If dimF = 0,
then F is the intersectionof two adjacentcells and
g(F) = (-1)>"1= —1.In bothcaseswe have (F) =
(_1)d—dimF.

Suppose now that the result is valid for
tessellationsin R4-1. We want to establishit for
tessellationsn RY. To achieve this goal, two cases
areconsidered:

First case: dmF > 0

Thenthe (relative) interior of F containsat least
two distinctpoints.Let H be their medialhyperplane.
The tessellation 2 = (Z;,i € 1) induces another
tessellationZ” = (Z/,i € I') in H, with Z/ = Z,NH,
andl’={iel:ZnNH # 0}.

Fig. 4. Example of a tessellation induced on a
hyperplane

Note that F N H is a facetof 2. Its valuation
ise'(FNH) =Y, (-1)"11 \—Fnn- Butthesubsets
J C I suchthatZ) = F NH coincidewith the subsets
J C | suchthatZ, = F. Accordingly, &'(FNH) = &(F).
Moreover, we have &(F N H) = (—1)d-1-dim(FnH)
becauseof the induction assumption.Finally, the
dimensionof F NH isdimF — 1. Consequently

e(F) = €&(FNH)
_1)d—1—dim(FnH)

_q)d-1-(dimF-1)

|
—~ A~

_qyd-dimF

(8)
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Second case: dmF=0

In this caseF is a vertex, sayv. Thereexists a
scalard > 0 suchthatthe hyperspheres with center
v and radius d hits all facetsthat containv (except
{v} itself) and only them. The intersectionf these
facetsandSarethefacesof a hypersphericgbolytope,
on which the EulerPoincaé formula (Sommerville
(1958))canbeapplied

Z (_1)dim(GnS)1GQF —1— (_1)d ,
GeF
(G 2 F meansG D F andG # F). Usingthefactthat
dim(GNS) =dimG — 1, we canderive

(—1)d_dimGle;F =1- (—1)d .
GeF

(9)

(10)

Notealsothatthefacetsnvolvedin thesummation
havetheirdimensiorstrictly positive. Accordingto the
first casethis gives

> &(G) g =
GeF

1—(-1)9. (11)

Now, the left hand side of this equationis very
similar to what we getif we apply (5) with X = F.
Theonly differenceis thatthefacetF doesnotappear
in the summation Accordingly, we have 1 — ¢(F) =
1—(—1)9, or equivalently

£(F) = (-1 =

which completeghe proof.

(_1)d—dimF , (12)

APPENDIX 2: PROOF OF EQ. (4)

As a matterof fact, we are going to establisha
moregeneralresultthanEg. (4): if X is afinite union
of facetsthen

N(X) = (—1)dimF1ch-
FeF

(13)

Letusassumatfirst thatX is afacet.ThenX can
beseerasacorvex polytopeof RIMX  |ts facesarethe
facetsof thetessellatiorthatit contains Applying the
Eulerformula,we obtain

1_(_1)dimX — Z (_1)dimF1

FeZ

FCX o (14)

(F ¢ X meang= C X andF # X). But 1= N(X) and
the term (—1)9™X correspondgo the facetF = X.
Thereforetheformulais valid for facets.

Assumenow that X is afinite union of facets,say
X = Uj¢;F;. BecauseN is additive, we have

NX) = Y (CDRINGR). (15)

0£KCd

EachFy is eithera facetor empty In both cases,
we canwrite

N(F) = 5 (=) 1 . (16)

FeZ

—D)*E S (DML . (17
m;@( ) Fezy( )" ek, - (A7)

The summatiororderis now reversed

N(X) = Z (D™ 1 Z (_1)#(_11FK3F'

FeF 0£KCJ
(18)

Now, let L = {£ € J|F, D F}. NotethatF, D F if and
only if K C L. Consequentlyve have

@#ZCJ(_l)#(_llFKDF = @}CL(_]-)#K_:L.

Becauseéhe numberof subsetof L with cardinalityk
is (1), theright-handsideis equalto

e - é(’jﬁ)(—l)k-l (20)

- —[(—1+1)#L—1] (21)
= 1. (22)

(19)

It thensufficesto insertthis resultinto Eq. (18) to get
thedesiredresult.

152



