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ABSTRACT

We apply the 2D wavelet transform (WTMM) method to perform a multifractal analysisof digitized
mammograms.Weshow thatnormalregionsdisplaymonofractalscalingpropertiesascharacterizedby theso-
calledHurstexponentH � 0 � 3 � 0 � 1 in fattyareaswhich look likeantipersistentself-similarrandomsurfaces,
while H � 0 � 65

�
0 � 1 in denseareaswhich exibit long-rangecorrelationsandpossiblymultifractal scaling

properties.Wefurtherdemonstratethatthe2D WTMM methodprovidesaveryefficientway to detecttumors
aswell asmicrocalcifications(MC) whichcorrespondto muchstrongersingularitiesthanthoseinvolvedin the
backgroundtissueroughnessfluctuations.Thesepreliminaryresultsindicatethat the texture discriminatory
power of the 2D WTMM methodmay lead to significant improvementin computer-assisteddiagnosisin
digitizedmammograms.

Keywords: breast tissue, fractional Brownian motions, Hurst exponent, image analysis, mammogram,
microcalcifications,multifractalformalism,roughsurface,scaleinvariance,wavelettransform.

INTRODUCTION

In the past 20 years, several national mass
screeningmammographyprograms,HealthInsurance
Plan of GreatestNew-York (1982) and the Swedish
2-county Programof MammographyScreeningfor
BreastCancer(1992)have shown thatearlydiagnosis
can significantly decreasebreastcancermortality of
about23 to 31 % in womenof age49 to 69. Thus
mammo-graphy(X-ray examination)hasbecomethe
mostreliableimagingtechniquefor theearlydiagnosis
of breastcancerwhich is still the leading causeof
cancer-relateddeathin women.Indeedmammography
plays a vital role in diagnosisof the diseaseas well
asin pretherapeuticmanagementandin controlduring
andaftertreatment.But theradiologicalinterpretation
of mammogramsis a rather difficult task since the
mammographicappearanceof normaltissueis highly
variable.Thisexplainsthat10 � 30%of cancerswhich
could have been detectedare missedwhile a high
percentageof patientscalled back at screeningturn
out not to have cancer. Recently, much researchhas
beendevoted to developing reliable computeraided
diagnosis (CAD) methods (see Doi et al., 1993,
for a general review). Many of thesemethodsare
basedon multiresolution analysis,global and local
thresholding,differenceimagetechniques,stastistical
approaches,neural networks, fuzzy logic, and the
wavelettransform(WT) andrelatedtechniques(Heine
et al., 1997; Netschet al., 1999; Qian et al., 2000).
Currentlymostof thesemethodsareoften combined

to detectand classify clustersof microcalcifications
(MC) which is an importantmammographicsign of
early(in situ) breastcancerdespitethefactthatseveral
benign diseasesshow MC as well. In the middle
nineties,fractalmethodshavealsobeenappliedto the
analysisof radiographicimageswith somesuccessin
improving theperformancesof previousCAD schemes
(Priebe et al., 1994; Lefebvre et al., 1995; Thiele
et al., 1996). But most of thesemethodshave been
intrinsically elaboratedon the prerequesitethat the
backgroundroughnessfluctuationsof normal breast
texturearestatisticallyhomogenous(i.e. monofractal)
and uncorrelated.Regions that contain statistical
aberrationsthat deviate from this monofractalpicture
are consideredasabnormalregionswheretumorsor
MC arelikely to befound.Our goalhereis to propose
an alternative wavelet-based method to perform
multifractal analysisof digitized mammograms.The
so-called2D WTMM methodwasoriginally designed
to describestatistically the roughnessfluctuationsof
fractal surfaces(Arneodoet al., 2000).In the present
work, we briefly summarizehow the 2D WTMM
method provides an efficient framework to study
syntheticand natural fractal images(Arneodoet al.,
2000;Decosteret al., 2000;Roux et al., 2000).Then
we report the resultsof a preliminary applicationof
this methodto mammogramanalysis,which arevery
encouragingfor potential use to classifying tissue
typesaswell asdetectingtumorsandclusteredMC.
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THE 2D WAVELET TRANSFORM
MODULUS MAXIMA (WTMM)
METHOD

Most of the fractal methods used to analyze
digitizedmammogramssimply rely upontheestimate
of the fractal dimension DF which is related to
the so-called Hurst exponent H that characterizes
statisticallythe global roughnessof the mammogram
landscape(Arneodo et al., 2000). The multifractal
formalism accountsfor possiblefluctuationsof the
local regularity of a rough surface as defined by
the Hölder (local roughness)exponent h

�
r � of the

function f
�
r � whosegraphdefinesthe roughsurface

understudy( f
�
r � l ��� f

�
r �	��
 l 
 h � r �� 
 l 
�� 0). The2D

WTMM method(Arneodoetal., 2000)providesaway
to estimatethe so-calledD

�
h� singularity spectrum

defined as the Hausdorff dimension of the set of
points r where the local roughnessexponent h

�
r �

is h. This methodconsistsin performinga wavelet-
basedmultiscaleCanny edgedetection.Let us define
two wavelets:ψ1

�
x � y��� ∂θ

�
x � y��� ∂x and ψ2

�
x � y���

∂θ
�
x � y��� ∂y , where θ

�
x � y� is a 2D smoothing

function well localized around x � y � 0. For any
function f

�
x � y��� L2 ��� � , theWT definedwith respect

to ψ1 andψ2 canbeexpressedasavector:

Tψ � f � � b � a��� ∇ � Tθ � f � � b � a��� � (1)

whereTθ � f � � b � a��� a 2 !"! d2r θ # a 1 � r � b �%$ f
�
r � . If

θ is just a gaussianθ
�
r ��� exp

� � r2 � 2� , then Eq. 1
definesthe 2D WT as the gradient vector of f

�
r �

oncesmoothedby dilatedversionsθ
�
r � a� of thisfilter.

At a given scalea & 0, the WTMM are definedby
the positionsb wherethe WT modulus ' ψ � f � � b � a�
is locally maximum in the direction ( ψ � f � � b � a� of
the gradient vector Tψ � f � . When analyzing rough
surfaces,theseWTMM lie on connectedchains(Figs.
1b and 1c). Then the WTMM maxima (WTMMM)
are identified as the local maxima of ' along the
WTMM chains.TheseWTMMM aredisposedalong
connectedcurvesacrossscales.TheWT skeleton(Fig.
1d) definedby thesemaxima lines containsa priori
all the informationaboutthehierarchicalorganization
of the singularitiesof the function f

�
r � . In particular,

onecanprove that, provided the first nψ momentsof
ψ arezero,then ' ψ � f �)� ah � r0  alonga maximaline
pointing to the point r0 in the limit a � 0* , where
h
�
r0 � �%+ nψ � is the local Hölder exponentof f . The

2D WTMM methodconsistsin definingthefollowing
partition functions directly from the WTMMM that
belongto theWT skeleton:

, �
q � a�-� ∑.0/1. � a

2
sup� x 3 a4  /1. 3 a4 5 a

' ψ � f � � x � a67��8 q

� aτ � q � (2)

where q � � . Note that the scaling exponent τ
�
q�

haswell-known meaningfor somespecificvaluesof
q: (i) � τ

�
0� is the fractal dimensionof the set of

singularitiesof f ; (ii) τ
�
1� is related to the fractal

dimensionof theroughsurface9 (z � f
�
x � y� ): df

� 9:�;�
max

�
2 � 1 � τ

�
1�<� ; (iii) τ

�
2� is relatedto the scaling

exponentβ of the spectraldensityS
�
k �=�>
 f̂ � k ��
 2 �
 k 
  β with β � 4 � τ

�
2� .

From the deepanalogythat links the multifractal
formalism to thermodynamics,the D

�
h� singularity

spectrum can be determined from the Legendre
transform of τ

�
q� : D

�
h��� minq # qh � τ

�
q� $ .

Homogenous (monofractal) self-affine functions
involve singularitiesof uniqueHölder exponenth �
∂τ � ∂q, i.e. theτ

�
q� spectrumis a linearfunctionof q.

Onthecontrary, anonlinearτ
�
q� curveis thesignature

of nonhomogenousfunctionsthatdisplaymultifractal
properties,in thesensethat the Hölderexponenth

�
r �

is a fluctuatingquantitythatdependsuponthespatial
positionr.

From a practical point of view, one often
prefersto avoid Legendretransforming.Insteadone
computesthe Boltzmann weights Wψ � f � � q ��?@� a�A�BBB sup� x 3 a4  /1. 3 a4 5 a ' ψ � f � � x � a6 � BBB q � , �

q � a� � which yield

to thefollowing expectationvalues:

h
�
q � a�C� ∑.D/E. � a ln

BBBBB sup� x 3 a4  /1. 3 a4 5 a
' ψ � f � � x � a6F� BBBBBG Wψ � f � � q ��?@� a� � (3)

D
�
q � a�C� ∑.D/E. � a Wψ � f � � q ��?@� a�G ln # Wψ � f � � q ��?H� a� $ � (4)

from which one extractsh
�
q�I� limaJ 0K h

�
q � a��� lna

and D
�
q�A� limaJ 0K D

�
q � a�<� lna, and therefore the

D
�
h� singularityspectrumby eliminatingq.

TEST APPLICATIONS OF THE 2D
WTMM METHOD TO ISOTROPIC
FRACTIONAL BROWNIAN
SURFACES

In the eighties, the fractional Brownian motion
(fBm) has becomea very popular model in signal
andimageprocessing(Peitgenet al., 1987).2D fBm
BH

�
r � indexed by H �L� 0 � 1 � are Gaussianstochastic

processeswith stationaryincrementsthatcanbeused
to generaterandomself-affine surfaceswith known
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statistical properties:τ
�
q�M� qH � 2. By Legendre

transforming τ
�
q� , one gets the following D

�
h�

singularityspectrum:D
�
h�	� 2 if h � H, andD

�
h�:�� ∞ for any otherh. Indeedonecanprove thatalmost

all realizationsof the fBm processare continuous,
everywhere non-differentiable, isotropically scale-
invariantandmonofractalascharacterizedby aunique
Hölderexponenth

�
r �L� H �ON r.

Fig. 1. 2D wavelettransformanalysisof BH P 1Q 3 R r S . θ is an isotropic 2D-Gaussianfunction. a) 32 grey-scalecodingof

thecentral 512T 512portion of theoriginal image. In b) a=2σW andc) a=20 U 1σW, are shownthemaximachains;thelocal
maximaof V ψ alongthesechainsare indicatedbydots( W ); fromeach dotoriginatesanarrowwhoselengthis proportional
to V ψ andits direction(with respectto thex-axis)is givenby X ψ . In b), thesmoothedimageθb Y a Z B1Q 3 (Eq.1) is shownasa
grey-scalecodedbackgroundfromwhite(min) to black (max). In d) is shownthecorrespondingwavelettransformskeleton
definedby the setof maximalinesobtainedafter linking the WTMMMacrossscales.σW=13 (pixels)is thecharacteristic
sizeof ψ at thesmallestresolvedscale.

Fig. 2. Determinationof theτ [ q \ andD [ h \ spectra of
2D fBm with the 2D WTMM method.a) log2 ] [ q ^ a \
vs log2a; the solid linescorrespondto the theoretical
spectrumτ [ q\�_ qH ` 2 with H _ 1 a 3. b) h [ q ^ a\ vs
log2a; the solid lines correspondto the theoretical
slopeH _ 1 a 3. c)τ [ q \ vsq for H _ 1a 3 ( b ), 1/2( c ) and
2/3 ( d ); thesolid linescorrespondto linear regression
fit estimatesof H. d) D [ h\ vsh asobtainedfromEqs.3
and4. Resultscorrespondto annealedaveragingover
32 (1024e 1024) fBm images. a is expressedin σW
units.

In Figs. 1 and 2 are reported the results of a
test application of the 2D WTMM method to 32
(1024 e 1024)realizationsof a2D fBm with H _ 1 a 3,
whenusinga first-orderanalyzingwavelet (Arneodo
et al., 2000). In Fig. 1 is illustratedthe computation

of the maxima chains and the WTMMM for an
individual image (Fig. 1a) at two different scales
(Figs. 1b and 1c). As seen in Fig. 1b, at a given
scale,the maximachainscorrespondto well defined
edge curves of the original image once smoothed
by the filter θ [ r a a \ . In Fig. 1d is illustrated the
correspondingWT skeleton definedby the maxima
lines obtainedby connectingthe WTMMM across
scales.In Fig. 2 are summarizedthe resultsof the
computationof the τ [ q \ and D [ h \ spectrausing the
Eqs 2 to 4. As shown in Fig. 2a for B1f 3, the
annealedaveragepartitionfunction ] [ q ^ a\ displaysa
remarkablescalingbehavior over morethan3 octaves
whenplottedversusa in a logarithmicrepresentation,
andthisfor aratherwiderangeof valuesof q gih7` 4 ^ 6j .
Whenproceedingto a linear regressionfit of the data
over the first two octaves,one gets the τ [ q \ spectra
shown in Fig. 2c for the three values of the fBm
index H _ 1 a 3 (anticorrelated),1 a 2 (uncorrelated)
and2 a 3 (positively correlatedincrements).Whatever
H, the data systematicallyfall on a straight line,
the signatureof homogenous(monofractal)scaling
properties. These results are corroboratedby the
computationof h [ q ^ a \ in Fig. 2b accordingto Eq. 3.
In the limit of small a values,the slope of h [ q ^ a \
vs log2 [ a \ is found not to dependon q: h [ q \=_ H _
1a 3 ^lk q. In Fig. 2d are reported the corresponding
estimatesof D [ h \ usingEqs.3 and4. Independently
of thevalueof q gmh7` 4 ^ 6j , B1f 3, B1f 2 andB2f 3 display
the samebehavior, namelyD [ h _ H \n_ 2 o 00 p 0 o 02.
Theresultsobtainedfor boththeτ [ q \ andD [ h \ spectra
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arethusin remarkableagreementwith the theoretical
predictions.We refer the reader to Decosteret al.
(2000), for similar applicationsof the 2D WTMM
methodologyto syntheticrandommultifractal rough
surfaces.

APPLICATION OF THE 2D
WTMM METHOD TO DIGITIZED
MAMMOGRAMS

As we want to study scaling properties of
digitized mammograms,we choseto use full-breast
images from the Digital Databasefor Screening
Mammography(DDSM) project (Heathet al., 1998)
which providesonlinemorethan2600studies(http://
marathon.csee.usf.edu/Mammography/Database.html)
sortedinto three categories:normal, cancer, benign.
Mammogramsweredigitized usinga 12 bits scanner
with both a goodspatialresolutionof 43.5µm. Full-
breastimagesenableusto selectabouttenoverlapping
1024 G 1024pixelssquares;indeed,in orderto master
edgeeffects,only coresof the imageswereusedfor
the computationof the WT skeleton and partition
functions.

Mammographic tissue classification:
dense and fatty tissues

Many statisticalstudiesdevotedto mammography
analysisactuallyusefractaltechniquesor models.Our
aim hereis to analyzenormalmammaryparenchyma
with our multifractal 2D WTMM method.We have
selecteda set of 10 imagesin the DDSM database
accordingto ACR breastdensity rating with some
index ranking from 1 to 4, as assignedby an
experiencedmammographer:5 fatty (rated1 on ACR
density scale) and 5 dense(rated 4) breasts.The
main steps of the 2D WTMM computationsare
illustrated in Fig. 3 on two (1024 G 1024 pixels)
imagesselectedrespectively in a dense-glandularand
in a fatty breasts.Figs. 3a and 3d show the original
(1024 G 1024)imagescut out of thesemammograms.
ThecorrespondingsmoothedimagesandWT maxima
chains computed at the scale a � 39 pixels are
shown in Figs. 3b and 3e, respectively. Figs. 3d
and 3f represent,at a smaller scale,the location of
the WTMMM ( q ) from which originatesan arrow
which representsthe WT vector Tψ � f � � b � a� . In Fig.
4 are reported the results of the computation of
the partition functions

, �
q � a� � h � q � a� and D

�
q � a�

obtainedwhenaveragingover12overlapping(1024 G
1024) imagescut out of the original denseand fatty
mammograms.As shown in Figs. 4a and 4b, both
denseand fatty tissuesdisplay rather good scaling
propertiesover two and a half octaves. The scaling

actually deterioratesprogressively when considering
largescales,duetofinite sizeeffects.Whenproceeding
to a linear regressionfit of log2

� , �
q � a�<� vs log2

�
a�

over therangeof scalesextendingfrom amin � 1 r 6σW

to amax � 4σW, oneobtainsthe τ
�
q� spectrareported

in Fig. 4c. From a simple visual inspection, one
realizes that denseand fatty breast tissuesdisplay
quitedifferentscalingproperties.Thelatterpresentsa
τ
�
q� spectrumwhich is remarkablylinearin therange

q � � � 3 � 3� with a slopeH � 0 r 25 s 0 r 05, while the
former presentsa larger slopeH � 0 r 65 s 0 r 05 with
somepossiblenon-lineardeparturewhich might be
the signatureof multifractality. This monofractalvs
multifractal discrimination betweenfatty and dense
breasttissuesis also evidencedby the computation
of the correspondingD

�
h� singularityspectrain Fig.

4d. However the multifractal diagnosis for dense
tissuesrequiresfurther numericalanalysisto ensure
statisticalconvergenceof theτ

�
q� exponentsfor large

valuesof 
 q 
 . Nevertheless,what seemsto be robust,
consideringthe whole set of processedimages, is
the fact that fatty tissuesdisplay monofractalscaling
behavior with a Hurst exponentH takingvaluein the
range � 0 r 20� 0 r 45� as the signatureof anti-persistent
roughnessfluctuations while dense tissue display
(possiblymultifractal)scalingwith H � � 0 r 55� 0 r 75� as
thesignatureof persistentlong-rangecorrelations.

Fig. 3. 2D wavelet transform analysis of 2
mammograms: a) densebreast tissue and d) fatty
breasttissue. θ is an isotropic 2D-Gaussianfunction.
In b) and e) is shown the WT modulus at scale
a � 3σW with thesamegrey levelcodingasin Fig. 1b;
the maximachains are shownfor comparison.In c)
and f) only the maximachainsand the local maxima
of ' ψ alongthesechainsare represented( q ) at scale
a=2.5σW.
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Fig. 4. Determinationof the τ
�
q� and D

�
h� spectra

of dense( q ) and fatty ( t ) breastswith the2D WTMM
method.a) log2

, �
q � a� vs log2a. b) h

�
q � a� vs log2a.

c) τ
�
q� vs q. d) D

�
h� vs h obtained from Eqs. 3

and 4. Sameanalyzingwaveletas in Fig. 3. These
results correspondto annealedaveraging over 12
(1024G 1024)squarescut out of full-breastimages.a
is expressedin σW units.

Detecting microcalcifications through
WT skeleton segmentation

The presenceof clusteredMC is oneof the most
important and sometimesthe only sign of cancer
in a mammogram.As a potential computeraided-
diagnosistool, let usshow how our WT methodology
canidentify MC which aresmall calciumdepositsin
tissue,appearingas clustersof bright spots.Fig. 5
shows how onecanactuallydetectMC by inspecting
the WT maximachains.Indeed,at the smallestscale
resolved by our WT microscope(σW � 13 pixels),
MC which can be consideredas strongsingularities,
arecontour-shapedby somemaximachains.Sincethe
averagesizeof MC is about200 µm (5 pixels), these

singularitiesareseenby our mathematicalmicroscope
asDirac singularities;thusthecorrespondingmaxima
lines pointing to the MC arelikely to displayscaling
properties with a local Hölder exponent h �u� 1
( ' ψ � f �n� a 1) down to scalesof the order of the
MC size where one should observe a cross-over to
the value h � 0 ( ' ψ � f �v� cst) as the signatureof
the discontinuity inducedby the MC boundary. The
behavior of the WT modulusalong several maxima
lines pointing to background points and to MC
is illustrated in Fig. 5b. One can thus perform a
classificationof theselines accordingto the behavior
of ' ψ � f � alongtheselines,andthenseparateMC (h �� 1) from densebackgroundtissue(h � 0 r 65 s 0 r 05).
Figs.5cand5dshow themaximachainsthatarefound
to correspondto MC at two different scales.We see
thatthesemaximachainscanbeusednotonly to detect
MC at the smallestresolved scale(Fig. 5c), but also
to perform MC clusteringwhen investigatinglargest
scales(Fig. 5d). Work in this direction is in current
progress.

CONCLUSION

Wehavepresentedanew space-scalemethodology
for studying,within the samealgorithmicframework,
background tissue properties and abnormal
singularities associatedwith breast cancer. For its
ability to revealing and distinguishingpersistentand
anti-persitentlong-rangecorrelations,the2D WTMM
method looks very promising in classifying tissues
by quantifying breast density in an very accurate
way. Furthermore,we plan to improve detectionand
segmentationof MC by mixing and combining the
2D WTMM methodwith neuralnetworks techniques,
with the ultimate goal of discriminatingbenignancy
from malignancy.

Fig. 5. Detectionandcharacterizationof microcalcifications.a) Original 726w 726imageof densebreasttissuecontaining
MC. b) Scalingbehaviorof the WTmodulusx ψ along somemaximalines pointing towardsdensetissuebackground( y )
andmicrocalcifications( z ). Thedashed(resp.solid) straight line correspondsto theslopeh=0.65(resp. { 1) characteristic
of background tissueroughnessfluctuations(resp. MC). (c) and (d) showthe maximachainsobtainedafter eliminating
backgroundtissuemaximachainsat scalesa � σW c) and2.5σW d), usingtheWTskeletonspace-scaleinformation.
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