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ABSTRACT

This paperpresentsa methodto simulatehigh densitynonoverlappingspherestructureswith anisotropy and
heterogeneity.

Keywords:3D mathematicalmorphology, non-overlappingspheres,structuresimulation.

INTRODUCTION

Morphologicalmodelsof randomsets(Matheron,
1975; Serra, 1982) provide a means to represent
in a synthetic way the morphologicalpropertiesof
microstructures,andto generate3D simulationsusing
the identification of models basedon the available
information,namelypartof theChoquetcapacity.

The aim of this work is to propose multi-
scalesimulationsof anisotropicstructurescontaining
aggregates of non-overlapping spheres. Such
microstructuresarevery commonin materials,andin
thepresentcasewerestudiedin ajoint researchproject
(Delarue,2000).Compositematerialswereelaborated
from an aluminiumor a PMMA matrix incorporating
Zircon or Zircon-Silicasphericalinclusions.Materials
were preparedin the GEMPPM (INSA de Lyon)
and in the LTPCM (Grenoble).3D imagesof this
materialsareobtainedby X-ray microtomographyin
theSynchrotronof theESRF(Grenoble)with a 2 µm
resolutionpervoxel.

In the Centrede MorphologieMathématique,we
characterizedthesestructuresby 3D measurements
such as the covariance in various directions,
a tortuosity index obtained from 3D geodesic
propagation, local volume fraction of inclusions,
distancefunctionsandangulardistributions(to study

the anisotropy of the neighborhoodof inclusions)
(Delarue,2000).

The first part of this paper is a presentationof
a standardmethodto generaterandomhomogeneous
and isotropic non-overlappingspherestructure,and
problemsrelatedto high densities.The secondpart
presentsmeasurements,able to characterizespatial
distribution from multi scale histograms.The next
part presentsthe resultsof the measurementson 3D
microtomographyimagesof real materials.The last
partdescribesanalgorithmof multi-scalesimulations,
to obtain heterogeousand anisotropichard spheres
structureswith a highdensity.

3D HIGH DENSITY HARD
SPHERE SIMULATION

Theimplantationof non-overlappingsphereswith
random coordinatesis practically impossible if the
density is larger than 30 or 35%. To generate
simulationswith a higher densityof hard spheres,it
is betterto startfrom an ordereddensestructure,like
cfc (cubic face centered).But this kind of structure
is completely ordered.Disorder can be introduced
by deletingsomespheresat randomand by random
translationof theremainingspheres.

Fig. 1. Image and 2 points correlation function Pi j

�
h ��� P � x � Ai;x � h � A j; i �� j � of a cfc 3D structure (40%).
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ALGORITHM OF SIMULATION

In thispart,weconsidersimulationof hardspheres
with a fixed radiusR � 1. The first stepof a random
hard spherestructuresimulationwith a high density
is to implant orderedhardspherewith cfc orderand
with the higherhardcore radiusRHc. The maximum
theoreticalhardcoreradius,for a p densitystructure,
is givenby:

RHc � 3

	
π

3
 2p �
The highestdensity, when RHc � 1, is 74� 04%.

Thisresultcorrespondsto Kepler’sconjuncture,which
wasrecentlyprovedby Th. Hales(Aste,2000).

After implantation,spheresaremovedby random
translations.At eachstep, a sphereand a direction
is chosen.The translationis fifty times smaller than
the sphereradius.This is acceptedif the translation
of the sphereis madewithout any sphereoverlap.If
it is accepted,the sametranslationsare repeated10
times.This methodis very fastbut it is importantto
know how many translationsareneeded,andto define
a criterionof convergenceof theprocess.

CONVERGENCE

Measurementof the probability for two points
to be in two separatedspheresP � x � Ai;x � h �
A j; i �� j � is used to characterize the spherical
packing.For a cfc structurelike that in Fig. 1, this
measurementproducescurveswith many oscillations.
After translationsof spheres,the order disappearsin
the structureand oscillationsdecrease(Fig. 2). The
convergencecriterion Cc is definedby the following
formula:

Cc �� 10r

h � 2r � 10r � h � � P � x � Ai;x � h � A j; i �� j ��� p2 � 2dh �
For a low density(20 or 30 %), few translations

areneededfor convergence.For a higherdensity(40
or 50 %) thenumberof translationsincreasesquickly
(Fig. 3). Thehighestvolumeconcentrationof random
spheressimulatedby this techniqueis closeto 55%.

Densityof hard
spheres

Numberof translationsby
sphere

20% 120
30% 250
40% 700
50% 2700

Fig. 2. Image and 2 points correlation function of 3D random hard sphere structure (40%).

Fig. 3. Convergence test: the number of iterations by sphere increases with the density.
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CHARACTERIZATION OF THE SPATIAL
DISTRIBUTION FROM MULTI SCALE
HISTOGRAMS

In this part, we presenta 3D characterizationof
granulararrangementsbasedon the estimationof the
histogramof the number of spheresincluded in a
characteristicvolume. To accountfor the anisotropy
of the structure,this volume is a parallelepipedwith
differentorientations.Differentsizesof parallelepiped
areusedto obtaininformationat variousscales.

In Fig. 4, histogramsof local grain numbersare
the samein both directionsx and y. But, if a longer
parallelepipedis taken (Fig. 5), histogramsbecome
anisotropic. In this last histogramit is possible to
find themaindirectionof aggregates(in this case,the
horizontal direction). With parallelepipedsshowing
different orientations,it is possibleto study the size
andorientationof aggregates.

This measurementis quite fast because,for
example, for an image of 1 � 2 � 1 � 2 � 1 � 2 mm3,
with a resolution of 2 µm and measurementswith
parallelepipedswith dimensions64 � 64 � 128 µm3

and 64 � 64 � 256 µm3 every 32 µm returns a
measurementmore than 103 faster than covariance.
Themainadvantagesof this typeof measurementsare
the characterizationof heterogeneityand anisotropy,
andthevery low costof calculation.

MEASUREMENT ON REAL
MATERIALS

Figs. 6 and 7 show measurementsobtainedon
two different structures(Delarue, 2000). The first
structure (Fig. 6) is homogeneousand isotropic
without aggregates, with 40% volume fraction of
spheres.

Fig. 4. Histogram of local grain number. At this scale, the structure is isotropic.

Fig. 5. Histogram of local grain number. At this scale, the structure is anisotropic.
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Fig. 6. Measurement on an homogeneous and isotropic structure.

Fig. 7. Measurement on anisotropic aggregates.

The secondstructure(Fig. 7) is a 35% aggregate
structure which was compressedalong the z axis.
The heterogeneityis apparentfor the two types of
histograms.Thefirst oneis isotropicandcorresponds
to thesmallerdimensionof aggregates.Thehistogram
with the largerparallelepipedis sensitive to the larger
dimensionof the aggregate.As the covariance,this
measurementcan detectthat aggregatesare flat (like
disksorthogonalto theZ axis).

Real structuresneedtwo typesof information to
be completelycharacterized.The characterizationof
thespatiallocalizationof inclusionsobtainedwith the
measurementspresentedhere,and the granulometry
becauseof the non unique hard sphere radius of
inclusions. The granulometry can be obtained by
labelisationof inclusions(asmallerosionis sometimes
requiredto separategrains)andvolumemeasurement
of each of them. We assumethat inclusions are

spherical. Fig. 8 presentsthe granulometry of a
homogenousandof aheterogenousstructure.

Fig. 8. Granulometry of real materials (distribution of
volumes of inclusions).

STRUCTURE SIMULATION

Startingfrom theexperimentalhistogramsof local
grain numbersand the granulometry, shown to be
characteristicof a given material, it is possible to
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simulate three dimensionalstructuresfollowing the
same distributions. In a first step, a hard sphere
structure with a random distribution (for a high
densityin moststudiedmaterials)is simulated.Then
random translationsof the spheresare generated,
controlling the difference between the histograms
of local sphere numbers of the referenceand of
simulated structures. The size of the translation
decreaseswhenthe simulationproceeds,like cooling
in a thermodynamicalsystem.If N is thetotal number
of translations,for the i-th translation,the maximal
sphereranged

�
i � is givenby theformula,

d
�
i ��� d0e � k i

N �
Sphere motion is accepted if this difference

decreases.The procedureis iterated until a given
number of steps (typically N � 25000 for about
1000 spheres)or a level of error is reached.As the
histogram is estimatedfor each spheremovement,
the importanceof a very fast measurementprocess
is clear. Such constrained simulations follow a
simulatedannealingprocess(Yeong,1998;Manwart,
2000). Similar approacheswere followed in 2D:
simulationsreproducethe histogramsdistributionsof
thenumberof pixelsof themicrostructurein different
windows (Srivastava, 1994),or the covarianceof non
overlappingdiscs(Rintoul,1997).

GAP GENERATION

Structureswith a high heterogeneityand a high
densityarevery difficult to simulateby this method.
Random translations(under histogram control) of
individualspherescanhardlygenerateaggregateswith
a high local densityand large emptyspacesbetween
grains.A solution to this problemwas developedby
thecontrolledgenerationof gaps(Fig. 9).

To simulate a heterogeneousstructurewith the
density referenceDre f , a homogeneoushard sphere
structureis generatedwith thedensityDSimul (DSimul �
Dre f ). After that,spheresaredeletedandthedifference
betweenthe histogramsof local spherenumber of
referenceand simulated structure is controlled. If
the difference decreases,the deletion is accepted.
When the density of the simulatedstructureDSimul
reachesDre f , randomtranslationsunderthecontrolof
histogramdifferencesstart,aspreviously.

RESULTS

After simulation, structuresare validated with
respectto referencestructuresby a direct comparison
of the histograms (to locate and explain their
differences)andby estimatingtheprobability for two
pointsto bein two differentinclusions,whichis typical
of the anisotropy of the distribution of inclusions
(Delarue,2000).

Fig. 9. Simulated structure. Image and measurement look similar to those in Fig. 7.
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CONCLUSION

In this paper we presentthe different steps to
obtain hard spheresimulationsusing histogramsof
spherecenter numbersincluded in a characteristic
volume. For a homogeneouslow density structure,
only two steps are neededto obtain simulations:
randomimplantationand randomtranslationundera
referencestructurehistogramcondition. For higher
densities,randomimplantationmustbe replacedby a
denseperiodic implantationandrandomtranslations.
We show that the numberof translationsneededto
convergeto disorderincreaseswith thedensity. In the
caseof very heterogeneousstructures,four stepsare
needed:orderedimplantationof sphereswith a higher
density than the referenceone, random translation,
randomsuppressionand translationundercontrol of
thereferencestructurehistograms.
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