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ABSTRACT

For a transmission at 60 GHz inside the buildings, the models of propagation currently developed do not take
into account the 3D roughness of surfaces under consideration. In this paper, we deal with the evaluation of
the 3D roughness of surfaces in this kind of environment. An indoor environment includes different types of
surfaces but the most representative of 3D roughness are walls, ceiling and floor. We propose a method to
characterise the 3D roughness of these surfaces by constructing an image space made up of the original
image, the image of gradient, the image of curvature and the image of the angles between the perpendicular
to the grey level surface and the perpendicular to the whole image. The method we have developed is based,
first, on the study of correlation variations of our image space, and second on a frequency analysis of the
angle image histograms. The elaborated criteria allowed us to classify the surfaces studied.
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INTRODUCTION

Due to the huge development in telecommuni-
cations, the operators of communication networks
have to improve their techniques in order to use the
frequency spectrum more efficiently. Thus, they have
improved the intelligence in the systems through the
concept of frequency re-use (Cichon and Wiesbeck,
1994). That has led to mobile cellular radio
communication systems such as the GSM (900 MHz),
the DCS 1800 (1800 MHz) and the recent UMTS,
which represents the new generation of mobile system.
At the same time, to enable a high rate data
transmission inside buildings by Hertzian channel,
studies are being carried out to optimize the phenomena
of transmission at 60 GHz. Thus, the corresponding
wavelength is in millimeters. At this frequency, it is
important for the operators to have information
related to physical characteristics and surface nature
of the walls encountered during the transmission. The
models of propagation of radio electric waves,
currently developed for an indoor environment, do not

take into account the 3D roughness of surfaces and the
intrinsic properties of materials.

To optimize the models of radioelectric wave
propagation inside buildings, we propose to evaluate
the 3D roughness of the main reflection surfaces. An
indoor environment includes different types of walls:
the room walls, the ceiling, the floor and the furniture
surfaces. If we consider roughness, room walls are
more representative of an indoor environment than
furniture surfaces. For this reason, we analyse in a
first stage, 3D roughness of wall, floor and ceiling.
Thus we consider four room walls with different
degrees of roughness (Fig. 1a-d), a portion of ceiling
(Fig. 1e), and a floor covering of fitted carpet (Fig.
1f). The local relief of these walls has an average
height varying from 1 - 5 mm. The surfaces studied
can be considered as stochastic textures. The images
of these surfaces are taken with a gray level camera.
The conditions of the shots are chosen in order to
obtain, on one hand, a sufficient resolution (one pixel
= 0.9 mm²) to emphasize the local relief of the walls,
and on the other hand, to have optimal conditions for
illuminant (Chantler, 1995).
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a) Roughness 1 b) Roughness 2 c) Roughness 3

      
d) Roughness 4 e) Roughness 5 f) Roughness 6

Fig. 1. Samples of indoor environment surfaces.

SUGGESTED METHODS

In optics, the intensity I received by the camera
sensor can be expressed by:
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The intensity I is therefore a function of  the
luminance L of the camera sensor, the angle α
between the camera axis and the perpendicular to the
surface of reflection and the distance r between the
camera and the surface studied. (x, y) represent the
continuous planar coordinates, and Z is the magnitude
of the relief studied.

For a surface of uniform colour, the variations of
gray levels in the image can be representative of the
variations of relief Z. The different types of surfaces
we have studied in an indoor environment correspond
to this assumption.

CONSTRUCTION OF AN IMAGE
SPACE
We consider therefore that the variations of gray

levels in the image correspond to a great extent to the
variations of the relief. So first, we propose to define
a set of images highlighting the variations of
curvatures in the image. Our image space will be
made up of the original image, the image of gradient,
the image of curvature and the image of the angles
between the perpendicular to the local gray level
surface and the perpendicular to the whole image.

To characterize the original image geometrically,
we first studied, a point neighbourhood, which is

characterized by the image of gradient (Fig. 2a). Let
us consider a random texture whose gray levels are
noted jiI , where (i, j) designate discrete coordinates.
The image of local gradient, noted ∆I, in (i, j) can be
expressed by:
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where (i + 1, j) and (i, j+1) are two neighbours of the
coordinates (i, j) of the point under consideration
(Deutsch and Belknap, 1972). In order to take into
account the different scales of 3D roughness, the
image of the gradients was calculated on different
scales. Thus, the gradient image gives access to the
amplitude variations of gray levels, and the frequency
distribution of these variations.

In order to highlight the curvature variations in
the image, we construct first, the image of the angles
θ between the perpendicular to the gray level surface
and the perpendicular to the whole image. The angle
θ(i, j) in (i, j) can be expressed by:
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In addition, to take into account a possible texture
pattern, we calculate this image on different scales
and we consider the four neighbours in different
directions of the image.

Then, we make the image of the curvatures from
the original image. The surface S of the image is
defined locally by a parametric representation:

TyxIyxyxS )),(,,(),( = . The local derivatives of
the first and second order of the image are noted

xI , yI , xxI , xyI , yyI . In each point of S, we suppose
that the surface is orientated by the perpendicular
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fundamental forms, we obtain the principal maximal
ρmax and minimal ρmin curvatures of the image surface.
Their combination enables us to define the Gaussian
curvature and the average curvature. Our aim is to
extract information about the three-dimensional relief
variations from a two-dimensional image surface.
Thus, the variations of average curvature are more
significant than those of the Gaussian curvature. For
this reason, we used the average curvature ρmoy
obtained from the average of the principal curvatures
ρmax and ρmin of the image surface. So:
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We show on Fig. 2b and c respectively the image
of the angles and the image of the curvature for room
wall of roughness 4.

        
Image of angles a) Original image

        
b) Image of curvatures c) Image of gradient

Fig. 2. Sample of image space for mural wall of
roughness 4.

CRITERIA FOR CLASSIFICATION
To classify our textures in terms of 3D relief, we

considered as a first criterion, the maximum of the
partial gradients of correlation surface: we extracted
the slopes from the surface of correlation then
calculated their average (King and Spedding, 1983).
We fixed a threshold on the image of correlation,
checked against the whole of our image bank. The
value of the threshold is obtained after computing the
gradient of the surface of correlation and corresponds
to the coordinates of the maximum value of this
gradient. Thus, the first criterion will be expressed by:
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where ),( st are the parameters of translation and C is
the correlation surface.

In the first criterion, we used information from
partial derivatives. Nevertheless, these partial
gradients are sensitive to the surface rotation. At this
stage, we add a second criterion based on the main
eigenvalues λ of these correlation surfaces C.
Although the distributions of gradient vary, the
eigenvalues remain unchanged. A classification based
on the eigenvalues must be unchanged with rotation
(Chantler and McGunnigle, 2000). Consequently, the
eigenvalues can be representative of the degree of
surface roughness. So, a second criterion is defined:

=2Crit  main value of eigenvalues  λ . (6)

To complete our study, we deal with an analysis
of low frequencies of the angle image histograms in
order to highlight the variations of curvatures of the
3D relief. A low value of roughness can be reflected
in the histograms of the angles by a concentration of
occurrences of the angles in the low value areas, and
also by a decrease of its standard deviation. Thus, a
third criterion can be defined from the standard
deviation of the low frequencies of these histograms.

3 var ( ( ))Crit histogram Iθ= , (7)

where Iθ is the angle image and "var" is the variance
of histogram of values Iθ.

RESULTS

We tested these criteria, for each wall, on fifty
images of different zones. The values given in figure
3 are the average values of these tests. The three
elaborated criteria are applied to our set of images.
We represent in Fig. 3 the evolution of these criteria
according to wall roughness (1, 2, 3 and 4), ceiling
(5) and floor roughness (6). Thus, we observe a rise
in the maximum value of the slopes of correlation
surface with an increase in the surface roughness
(Fig. 3a). The same texture classification is observed
overall by the standard deviation values of the low
frequency of the angle image histograms (Fig. 3c).
We also notice the decrease in the main eigenvalue
with an increase in 3D roughness of the surfaces.
This decrease of eigenvalues is illustrated in Fig. 3b.
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Fig. 3. Evolution of the criteria according to 3D roughness, a
2 and c. Evolution of criterion 3.

These criteria enable us to define a global
criterion of 3D roughness based on the first and second
order statistics of these criteria. A discriminating
vector X defines it by :

[ ])(),(),( 321 xCritxCritxCritX = .

In order to compare the 3D roughness X of a studied
surface to 3D roughness of our image bank, we first
apply, the three criteria to the image. Then, we
compute the Mahalanobis distance between the
vector X and the vector )(irug  defined by
[ ]))(,(),)(,(),)(,( 332211 imimim σσσ ; the values (mi, σi),
with 3,2,1=i , represent respectively the average
value and the standard deviation of the three criteria
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Table 1. Evolutions of the Mahalanobis distance according to

Distance values roughness 1 roughness 2 roughne
x ∈  roughness 1 0.09 0.48 1.54
x ∈  roughness 2 0.59 0.05 0.29
x ∈  roughness 3 1.28 0.30 0.10
x ∈  roughness 4 21.02 16.30 16.6
x ∈  roughness 5 74.32 47.95 72.1
x ∈  roughness 6 12.65 9.47 8.24

These results show the difficulty of classifying roughne
others levels.
1: Ceiling : roughness 5
2: Wall of roughness 1
3: Wall of roughness 2
4: Wall of roughness 3
5: Carpet portion : roughness 6
6: Wall of roughness 4
. Evolution of criterion 1, b. Evolution of criterion

lied to the roughness i  of our image bank. The
halanobis distance (Basseville, 1988) between
tors X and )(irug  is expressed by:
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The Class i of roughness X is selected such that
 Mahalanobis distance between the two vectors is
imal. Table 1 shows the obtained results following
e x  of X.

 3D roughness x.

ss 3 roughness 4 roughness 5 roughness 6
12.71 100.17 1.24
9.39 108.1 0.56
8.28 113.74 0.35

7 0.17 93.78 1.78
7 64.71 0.23 44.14

5.55 119.15 0.81

ss levels 2 and 3 (see Fig. 3), compared to the 4
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CONCLUSION

In this paper, we developed a method for the
classification of surfaces studied in terms of 3D
relief. This method is based, on one hand, on the
study of correlation variations of our image space,
and on the other hand, on a frequency analysis of the
histograms of the image of angle. The application of
these criteria to our bank of images allowed a relative
classification of the surfaces studied in terms of 3D
relief. To finalise our study of indoor environment
roughness, we will have to extend our method to
colour images. In this case, we will have to separate
information related to the colour from information
linked to the relief. Then we will be able to
characterise textured surfaces in terms of local relief.
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