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ABSTRACT 

The Fourier transform is well suited to the study of stationary functions. Yet, it is superseded by the Wavelet 
transform for the powerful characterizations of function features such as singularities. On the other hand, the 
LIP (Logarithmic Image Processing) model is a mathematical framework developed by Jourlin and Pinoli, 
dedicated to the representation and processing of gray tones images called hereafter logarithmic images. 
This mathematically well defined model, comprising a Fourier Transform “of its own”, provides an effective 
tool for the representation of images obtained by transmitted light, such as microscope images. This paper 
presents a Wavelet transform within the LIP framework, with preservation of the classical Wavelet 
Transform properties. We show that the fast computation algorithm due to Mallat can be easily used. An 
application is given for the detection of crests. 

Keywords: logarithmic image processing, logarithmic wavelet transform, wavelet transform. 

INTRODUCTION 

Jourlin and Pinoli (1984) introduced a new 
mathematical approach called Logarithmic Image 
Processing (LIP), providing a framework for 
representation and processing of gray tone functions i.e., 
logarithmic images with gray levels in a bounded range. 

In the first published paper on the LIP model 
(Jourlin and Pinoli, 1988), a new algebraic structure 
has been presented for image processing. The authors 
represent an image by a light filter through which the 
light passes to form an image. The absorption of the 
light filter is called the gray tone function. Moreover, 
Jourlin and Pinoli (1996) show that the LIP model is 
consistent with the non linear logarithmic human 
visual system. The link between human visual images 
and transmitted light images appears accordingly in a 
natural way (Jourlin and Pinoli, 1996). 

Pinoli (1992) proposed then a consistent 
mathematical theory wherein the main operations are: 
addition �, subtraction �, multiplication by a scalar �, 
multiplication of gray tone functions � differentiation, 
complemented by two operations of great interest for 
this paper: integration and convolution. The LIP 
model gives to a set of transmitted light images the 
status of a vector space structure, denoted G, with an 
additive law � and a multiplicative law � (Jourlin 
and Pinoli, 1988; 1996): 
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where f and g (bold type) functions are gray tone 
functions defined on the bounded spatial support 
[0,M[ (0: no absorption, M: totally opaque image). 
The functions f and g are usual gray tone functions 
(i.e. when the logarithmic function is used with 
ordinary operations such as +). α is a positive scalar. 
M is the maximum gray tone. 

There is a one to one relation, noted �, between 
space G and the space of the usual functions defined 
on the spatial support D (Pinoli, 1992). � is expressed 
as: 
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Ψ is an isomorphism of vector structures between 
space G and the usual functions with complex values 
in the spatial support D. This isomorphic transform Ψ 
is a powerful tool for developing the LIP model. As a 
matter of fact, the isomorphism Ψ allows to build 
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operations on gray tones such as dot product between 
gray tone images, LIP model integration, LIP model 
Fourier transform (Jourlin and Pinoli, 1996). This 
powerful approach has been applied with a large 
success in different fields. 

LOGARITHMIC WAVELET 
TRANSFORM IN THE G SPACE 

Multi-resolution analysis, till now, has not been 
explored with the aid of the LIP model. In this paper, 
we show how the Wavelet transform can be defined 
in the LIP space. Then, we give some numerical 
applications. After a brief recall about the classical 
Wavelet Transform (WT), the Logarithmic Wavelet 
Transform (LWT) is addressed with special care given 
to the admissibility properties (Torrésani, 1995). 

Classical wavelet and wavelet transform 
definitions 

Consider the function ℘(x), called mother 

wavelet, where x∈�²; b∈� and a∈ *
+� : 
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℘(a,b) is dilated by a scale ‘a’,  and translated by a ‘b’ 
delay. 

One defines the Wavelet Transform of a function 
f belonging to L²(�) by: 
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where ℘* is the conjugate expression of ℘, 

i.e., ( ) 2(a,b) L (C)
W(a,b)(f ) f (x) | (x)= ℘ , (5) 

where a is a scale factor, b is a position parameter and 
℘(a,b) is the analyzing wavelet (Torrésani, 1995; 
Mallat, 1999). 

Logarithmic wavelet definition 

In the LIP context, the logarithmic wavelet ℘∆ 
associated to ℘, is defined by the function ℘∆ =Ψ-1(℘) 
in the complex case. In a developed form, it comes: 

 1
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Admissibility conditions impose a zero average to 
the wavelet. One can show that the LIP wavelet 
associated to a zero average wavelet has itself a zero 
average: 

 

( )

1

D D

1

D D

(x)dx 0 (x)dx 0

(x)dx 0 (x)dx 0 .

−

−
∆

 
℘ = ⇒ Ψ ℘ = ⇒ 

 
Ψ ℘ = ⇒ =

∫ ∫

∫ ∫℘
 

Logarithmic wavelet transform definition 

As an extension of the classical Wavelet Transform, 
the Logarithmic Wavelet Transform of a function f is 
defined by: 
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The isomorphism Ψ preserves the wavelet 
transform, i.e.: 

( )( ) ( )2L , W(a,b) (a, b)( )∆∀ ∈ Ψ = Ψf f W f , (8) 

where W(a, b) is the classical wavelet transform. 
When f is a logarithmic image : 

 ( ) ( ) ( )( )1(a,b) W (a,b)−
∆ = Ψ ΨW f f . (9) 

This demonstrates that the Logarithmic Wavelet 
Transform of f can be calculated directly from the 
classical Wavelet Transform of Ψ(f) (Trunde et al., 
2001). 

Discrete wavelet transform applied to 
image analysis 

In our application, a Mallat’s horizontal and 
vertical analysis is performed (Mallat, 1999). This 
two-dimensional algorithm is based on the separation of 
variables leading to a prioritization of the horizontal 
and vertical directions. The wavelet transform can be 
interpreted as a frequency decomposition where each 
set has a particular orientation. Fig. 1 illustrates the 
different steps of the corresponding analysis 
(decomposition) and of the synthesis (reconstruction). 
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Fig. 1. Steps of the Logarithmic Wavelet Transform. 

APPLICATION 

An example is considered below to illustrate the 
Logarithmic Wavelet Transform computation. One 
uses here the Daubechies's wavelet which forms an 
orthonormal basis (Mallat, 1999). The original image 
(Fig. 2) is an aerial view where we want to pick up 
the main crest. 

In order to highlight the specific effects of the 
Logarithmic Wavelet Transform, in comparison to 
results obtained with the Classical Wavelet Transform, 
our example is first treated in one dimension. Then, 
the analysis is extended to the two-dimensional case 
in order to confirm the effects illustrated in the 1D case. 

1D CASE : EXAMPLE OF 
DECOMPOSITION 

The 1D Wavelet Transform of the selected cut is 
computed with a Daubechies’mother wavelet 
(Daubechies, 1988). The decomposition is performed 
through 4 scales [a : a0 to a3]. The wavelet coefficients 
(Fig. 3) i.e., the output of the wavelet transform 
computation at each scale, can be interpreted in term 
of a frequency analysis where a0 corresponds to a low 
frequency component and a3 to a high frequency 
component of the considered signal. Fig. 3 shows the 
decomposition by a classical WT (Fig. 3, left) and by 
the LWT (Fig. 3, right). 

  

Fig. 2. Original image (left) and 1D signal (signal) corresponding to the cut on the left image (magnitude 
(vertical axis) versus dimensionless unit of length (horizontal axis). 

Decomposition 

Synthesis 
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The LIP decomposition on four scales (Fig. 3) of 
the signal in Fig. 2 (right), gives an almost optimal 
visualization of the dynamic range of the wavelets 
coefficients. Some of the characteristics of the signal 
are accordingly underlined more efficiently.  

In order to appreciate which of the signal 
elements are stressed by the LWT, some frequencies 
are eliminated. Then, the characteristics of the 
reconstructed signal are examined. 

The signal (Fig. 2, right) is now decomposed on 

six scales (a0 to a5). Fig. 4 (left) shows the WT case 
and Fig. 5 (left) shows the LWT case.  

The low frequency coefficients of the 
decomposition are then set to zero. After synthesis 
(Inverse Wavelet Transform), the high frequency 
components are found (Figs. 4 and 5, right). The net 
result is that particular elements in the signal are 
strongly enhanced (Fig. 5, right). In our example, 
these particular elements correspond to strong signal 
transitions i.e., crest in the higher range of the signal 
(values near M). 

 
a0 a1 a2 a3 

 

Fig. 3. 1D case: Classical decomposition by WT and LIP decomposition by LWT (Wavelet coefficient (vertical 
axis) magnitude versus scales (horizontal axis) 

WT case: 

 
Fig. 4. WT coefficients of the signal with low frequency components inhibition (left) and Reconstruction: 
Magnitude versus dimensionless unit of length (right). 

LWT case : 

 
Fig. 5. LWT coefficients of the signal with low frequency components inhibition (left) – Reconstruction: 
Magnitude versus dimensionless unit (right). 
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Fig. 6. Original image (left), WT (middle) versus LWT (right). 

 

2D CASE 

We now consider the whole image (Fig. 2 or 6, 
left). The 2D wavelet transform is computed (the 
parameters constraining the decomposition and the 
synthesis are identical to the 1D case). 

Fig. 6 (middle) gives the final result in the 
classical WT configuration and Fig. 6 (right) the final 
result in the LWT configuration. One can see on the 
Fig. 6 (right) that the mountain crest of the original 
image has been enhanced as opposed to the rest of the 
image where the gray levels have been leveled. 

CONCLUSION 
This paper has introduced the Logarithmic Wavelet 

Transform and shows that it can be computed by 
means of the classical Wavelet Transform and the 
isomorphic transform Ψ(f). Our application gives a 
first idea of the type of process that can be performed 
in order to point out particular details in an image 
such as lines of crest. The LIP model associated to 
the Wavelet Transform emphasizes certain features 
such as transitions in a specific range of gray level 
that are not enhanced using classical Wavelet 
Transform. The LWT concept brings new perspectives, 
and represents a whole field for future developments 
in image processing. 
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