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ABSTRACT

The problem addressed in this paper is the detection of defects on atomic structures. The procedure proposed
is in two steps. At first a tessellation is built starting from the atoms. It consists of a partition of the space
into cells, and is used to define the neighbourhood relationships between the atoms. Then, the local
contribution to a topological parameter, namely the Euler-Poincaré characteristic, is defined and measured
for each cell. Within a regular tessellation, made of identical cells, this local contribution is equal to zero.
Any local deviation from regularity corresponds to a tessellation containing cells with non-zero contributions.
This allows us to locate the defects from a topological criterion and opens the way to a fully automatic
detection of interfaces at atomic scale. The procedure is applied in 2D space for the detection of edge
dislocations, grain boundaries and twins from HREM models and images. A 3D example is also given to

illustrate its generality.
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INTRODUCTION

In materials science, it has long been recognised
that topology offers a basic quantitative description of
microstructures. Several examples of such a topological
analysis can be found in the literature for sintering
processes (Rhines, 1967; De Hoff et al., 1972), grain
growth (Smith, 1964; Rivier, 1986), multiphase grain
structures (Cahn, 1966) or in relation with flow through
porous media (Macdonald et al., 1986; Jouannot et
al., 1995).

Topological descriptions have also been proposed
for cellular structures: polycristalline materials,
biological cells, foams, etc (Smith, 1952; Aboav, 1980;
Rivier, 1985). The relations are mainly expressed as a
function of the mean number of sides per cell and
based on Euler’s equation and the local equilibrium
of cells under surface tension. They are verified only
when the rules governing this local equilibrium are
fulfilled i.e. not on random tessellations of the space
or on periodic structures (except for regular stackings
of hexagons or tetrakaidecahedra).

We propose here a description of the spatial cell’s
organisation valid for any kind of cellular structure. It
is based on the measurement of a new parameter: the
contribution of each cell to the Euler-Poincaré
characteristic of the space. This approach is general
because no prerequisite (local equilibrium of cells,
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geometrical unit, etc.) is needed. As far as grain
boundaries between metal crystals are concerned,
they have already been described as packings of
polyhedral units (Ashby et al., 1978). The present
analysis complements, from a topological point of
view, this geometrical description.

In this article, the contributions of the cells to the
Euler-Poincaré characteristic of the space are used to
locate the defects occurring on a regular tessellation.
Then, on an atomic structure, the atoms belonging to
a defect can be automatically selected using this
topological criterion. To illustrate the method, edge
dislocations or grain boundaries have been extracted
from HREM images.

DEFINITIONS
Euler-Poincaré characteristic

In order to simplify the presentation, we limit
ourselves to the 2D case. As will be seen in the last
section, the extension to 3D space presents no major
difficulties.

Consider a polygon; it is well known that it has
the same number of vertices, V, and edges, E:

V=E. @)
This equation is nothing but Euler’s equation:
V-E+P=1, ?2)



where P, the number of faces, is equal to 1.

Consider now an aggregate of polygons. Their
union satisfies the more general equation:

V-E+P=N, 3)

where V, E and P stand respectively for the number
of vertices, edges and faces of the aggregate (see Fig.
1). N is called the Euler-Poincaré characteristic
(EPC) or connectivity number (Serra, 1982). It can be
topologically interpreted as the number of connected
components minus the number of their holes.

N=4-4+1=1

th

-23+8=0

e -

N=3-3+1=1

Fig. 1. Euler-Poincaré characteristic of isolated or
aggregated polygons.

Planar tessellations

A planar tessellation is defined as a family of
compact and convex subsets (Z;) indexed by i € I and
satisfying the following conditions:

i) the union of all the Z; is equal to R* .

ii) each interior of Z; is non-empty.

ii1) the interiors of Z; are pairwise disjoint.

iv) the number of Z; intersecting a bounded domain
of R? is finite.

The elements Z; are the cells of the tessellation.
Due to these conditions, any planar tessellation is made
up of a countably infinite number of polygonal cells.

A facet F of the tessellation is defined as an
intersection between cells. Its dimension, dimF, is
equal to 0 for a point, 1 for a segment and 2 for a
polygon; its order, ordF, is the total number of cells
to which it belongs.

Local contribution of a cell to the EPC

Let X be a compact subset of R* which has been
intersected by a tessellation (Z; , i € I). Under some
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mild assumptions on the shape of X, it has been
proved (Jernot et al., 2001a) that the EPC of X can be
written as:

N(X) = Z (D)2 N(X AF), (4
Fe ¥

where F is the set of facets of the tessellation. The

number 2 in the exponent is not fortuitous: it is
simply the workspace dimension.

The local contribution of one cell to N(X) is
defined by sharing the term N(XNF) uniformly
between all the cells containing the facet F. Therefore
the local contribution to the EPC of X with respect to
the cell Z; (Jernot et al., 2001b) can be defined as:

X)) = > pem N(XAF), )
! ordF
Fe F(Z,)

where F(Z;) is the family of all facets contained in Z;.

The term ‘local contribution’ is justified by the
fact that the EPC of X is the sum of all the
contributions C;(X) associated with each cell Z;:

NX) =D C(X)- (6)
iel

In the case where X = Z;, the Eq. 5 simplifies and
gives:

Czp= > =™ (7
o ordF
Fe F(Z;)
which can be expanded as:
1
C(Z) = -
Fe q:o(zi) ordF
1

Fe q:l(zi) ordF

1

8
Fe Tz(zi) ordF ( )

where F4(Z;) denotes the set of facets of dimension d
contained in Z;.

F»(Z;) has a unique element: the cell Z; itself.
Facets of dimension 1 and 0 of Z; may not coincide
with the edges and the vertices of the cell Z; as can be
seen in Fig. 2.
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{ e TZy {AC} ¢ F(Zy)

Fig. 2. The elements of F»(Z;) result from intersections
between Z; and its neighbouring cells. (AC) is an
edge of the cell Z;, but is not a facet of the
tessellation. B is not a vertex of the cell Z; but is a
facet of the tessellation.

In all examples given in this paper, the facets of
dimension 1 and 0 coincide respectively with the
edges and the vertices of the cells. Moreover, we
always have ordF = 1 for facets of dimension 2 and
ordF = 2 for facets of dimension 1. Then, the
previous equation can be simplified as:

1 1
C.AZ.)= _ 21 )
(20 Z ordV EeZZ 2 *
i

Ve Zi

This equation is illustrated in Fig. 3. One can see
at once that the local contributions obtained depend
on the cells surrounding Z; in the tessellation and
bring a topological information that cannot be
obtained from the mere number of edges of a cell.
This point appears clearly in Fig. 8.

C(Z)=2/4+2/3-42+1=1/6 C(Z)=4M4-42+1=0

C(Z)=3/3-32+1=12 C(Z)=3/6-32+1=0

Fig. 3. Local contributions of one cell, Z;, to the EPC
of several tessellations of the 2D space.

For a regular tessellation, made of identical cells,
the contribution of each cell to the EPC of the space
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is equal to 0 (if not, the EPC of R* would be infinite
instead of 1). This is not true if the tessellation is
complex (e.g. Voronoi partition or Penrose tilings). In
that case, only the mean value of the cell contributions
is equal to 0. For cellular structures in equilibrium under
surface tension (Smith, 1952; Rivier, 1985), assuming

ordV =3 in Eq. 9 leads to C;(Z;) = 0 if the number
of vertices (or edges) of the cell is equal to 6.

If a deviation from regularity is ancountered in
some cells of a regular tesselation, then their
contributions are not zero. This difference is now used
for detecting defects on crystallographic structures.

DETECTION OF DEFECTS ON
CRYSTALLOGRAPHIC STRUCTURES

The structures of interest are directly related to
HREM images. First, the procedure is explained on
theoretical structures. Then, model structures derived
from HREM images are studied. Finally, an example
is given for an HREM image. In all cases, the projected
atomic columns (white or black spots according to the
experimental conditions) are referred to as ‘atoms’.

[llustration of the method on theoretical
structures

Consider the images of Fig. 4a which represent
partially incoherent and coherent interfaces according
to Smith (1952). Two zones where atoms are regularly
arranged are observed on each image. The purpose of
this exercise is to detect the transition between both
zones.

The first step is to build a tessellation starting
from the set of atoms. It must be pointed out that
several tessellations can be designed from the same
set. In a standard one, we can consider the Voronoi
cell associated with each atom. Others are based on
graphs: the cells are limited by edges between
adjacent atoms, an adjacency relationship defining
the graph. If the atoms are represented by spots, the
cells can be defined as the zone of influence of each
spot (Lantuéjoul, 1978).

In the present case, we have used the Gabriel
graph (Gabriel and Sokal, 1969): two atoms a, and a,
are said to be adjacent if the disk with diameter (a;a,)
does not contain any other atom. This tessellation has
turned out to be more stable than the Voronof partition.

The cells of Fig. 4b have been obtained using the
Gabriel graph. Observe that only the cells located
within the transition zone may have non-zero
contributions. Then, the interface is localised from
the set of atoms contained in cells with non-zero



contributions (Fig. 4c) but these cells depend on the
tessellation design.

Edge dislocations

The analysis of the core structure of edge
dislocations is usually carried out in three steps: 1)
observation of the sample along an appropriate zone
axis ii) generation of atomic models using anisotropic
elasticity, and iii) image simulation, followed by a
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comparison between simulated and experimental
images. An atomic model corresponding to the
projection of an edge dislocation in GaN layers
grown on (0001) sapphire and observed along the
[0001] axis is shown in Fig. 5.

The local contribution of the cells is zero (6/3 - 6/2
+ 1) except for the 5 and 7 sided ones whose values
are respectively 1/6 and -1/6. These cells correspond
to the core of the dislocation.
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Fig. 4. Two schematic examples of interfaces between crystals. (a) atom locations, (b) tessellation associated
with atom locations (Gabriel graph): the contributions of the white, light grey and dark grey cells are
respectively zero, negative and positive, (c) the atoms that belong to cells with nonzero contributions are

represented in black.
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Fig. 5. Example of edge threading dislocation in GaN (adapted from Potin et al., 2000). For the dislocation
core, the sum of the contributions of the cells to the EPC of the space is zero.

Grain boundaries

This procedure can also be applied to grain
boundaries which are based on periodic arrays of
dislocations. A first example is given in Fig. 6: for
25, rotation of 36.87° around a <001> axis, the grain
boundary built of one type of dislocation is perfectly
planar. The set of cells with non-zero contributions is
easily detected and defines the grain boundary plane.

In a second example (Fig. 7), the boundary plane
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is slightly rough. It corresponds to X11 which is
described by a rotation of 50.48° around a <11> axis.
Two variants A and B have been identified in silicon
and germanium under different experimental conditions
(Bourret and Bacmann, 1987; Putaux and Thibault-
Desseaux, 1990). Again, a modification of the local
contribution to the EPC allows us to accurately locate
the grain boundary plane: the two configurations 211,
and X11y are clearly differentiated and, as in the
preceding example, the contribution of each period is
Zero.

Fig. 6. 25 tilt grain boundary in Cu (adapted from Grigoriadis et al., 1999). The disks and the circles
correspond respectively to atoms at heights z = 0 and z = 1/2.
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Fig. 7. Two examples of grain boundaries in silicon and germanium (adapted from Chen et al., 1999). {5 atom
cell} and {7 atom cell} whose contributions are respectively +1/ 6 and —1/ 6 are grouped to form structural
units with zero contribution.

Twins the orientation of the cells without any change in their

. . . topology, so this approach is not appropriate. For the
The measurement can also be carried out in twins POO8Y PP pprop

if a local modification of the cell contribution is (1012} twinin thg hexagonal system the gituation is
observed. For instance, in the {111} twin of the face- ~ ™MOT® favourable Sinee the locgl topology is changed
centred cubic system there is only a modification of at the level of the twin plane (Fig. 8).

Fig. 8. Core defect inside a twin boundary from deformed o-Ti (adapted from Braisaz et al., 1996). On the
bottom left figure, two different elementary features are clearly delineated. one for the grain boundary and one
for the step.
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Contrary to the preceding examples, the number
of the edges of the cells is constant even in the defect
zone. Nevertheless, the twin plane is still localised
from the contributions of the elementary triangular
cells of the tessellation. Their values are equal to zero
everywhere (3/6) - (3/2) + 1 except in the twin plane
for which a structural unit is detected. This structural
unit is made up of 10 cells whose contributions are
-5/210 (5 cells), +2/210 (2 cells) and +7/210 (3 cells).
The total contribution of the structural unit is then
zero. Inside the twin plane, a step corresponding to the
total contribution 8(-5/210) + 6(2/210) +4(7/210) =0
is observed. Then, even small atomic steps such as
the step by, associated with the twinning dislocation
(Braisaz et al., 1996) are localised.

EXTENSION TO 3D SPACE

The procedure developed may be applied in 3D
space provided that 3D images are available. In 3D
space, the local contribution to the EPC of X with
respect to the cell Z; is defined as:

X =

Fe F(Z,)

(_1) 3—dimF

ordF

N(XnF)- )

In the case where X = Z; , this equation simplifies
and gives:

1 1
C.(Z.) =— —
1( 1) VEZZ ordV E EZ:Z ordE
H ' , (9
— + 1
PEZ, 2

since ordF = 1 for facets of dimension 3 and ordF = 2
for facets of dimension 2.

As in 2D space, a regular 3D stacking of identical
cells leads to a contribution equal to zero for each
cell. For instance, the contribution of each cell is
-(8/8) +(12/4) -(6/2) + 1 in the case of a simple cubic
stacking and -(24/4) + (36/3) - (14/2) + 1 for a compact
stacking of tetrakaidecahedra. Any local topological
modification of the tessellation will induce non-zero
contributions in the vicinity of the defect.

A simple 3D interface can be given as an
illustration: two crystals with simple cubic structures
are translated 1/2, 1/2, 1/2 one from the other, so as to
create tetrahedra and square-based pyramids in the
interface zone. Then, the non-zero local contributions
correspond to:

-(4/13 +4/8) + (8/4 + 4/5) - (6/2) + 1 =-1/130
for the cubes sharing a face with the pyramids,
-(5/13) + (4/4 +4/5) - (5/2) + 1=-11/130 and
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-(4/13) + (4/4 + 2/5) - (4/2) + 1=+12/130 respectively
for the pyramids and for the tetrahedra. The association
of these three cells generates the elementary topological
unit of the interface.

CONCLUSIONS

In this article, a method has been proposed for
detecting the interfaces of an atomic structure provided
that the associated tessellation departs from a regular
one. It is based on a new topological criterion and has
been illustrated on several examples with a particular
reference to HREM images.

Associated with an automatic extraction of atomic
positions (Chaix, 1998), this opens the way to a fully
automatic detection of interfaces at atomic scale but
requires images with a good contrast and a sufficient
magnification.
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