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ABSTRACT

Image Classifier, the software package integrated with the MicroGOP2000/S system (Sweden), is applied to
quantitatively analyse fracture surfaces. After training the system in automatic recognition of different
fracture morphologies, measurements of apparent porosity in three sintered steel specimens are performed.
The results are related to the bending fatigue limits. Automatic recognition is also used to measure the
coarseness of fracture surfaces related to the so-called Jernkontoret Fracture Standard Set Number.
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INTRODUCTION

Human capability for pattern recognition is so
advanced that it is difficult to design a system that
can replace an operator in his work. However, it is
possible to use a system that can be trained by a
human to automatically recognise patterns. The
system, called Image Classifier (IC), is integrated as
software  with the image analysis system
MicroGOP2000/S  (ContextVision, 2000). The
training procedure simply involves marking a small
part of an image area, and assigning it to a given class
of object. Various phases in the metallographic
structure can be marked as different classes. Up to
sixteen classes of different morphologies can be
treated at a time. An important part of this
preliminary work is that a human operator has first to
correctly recognise and mark regions of different
object classes. Only one image is used for the training
procedure. Then, the system is capable of statistically
analysing the marked regions to obtain classification
criteria for each class. These criteria are valid for all
analysed images from the specimen. Both the training
image and the images to be analysed have to be
captured with the same image resolution,
magnification and illumination. Every original image
is completed with at least one additional image of the
same field of view, but carrying a different
information: for example, the frequency or the local
orientation of every pixel. This allows the system to
build a statistical information that is unique for every
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class. The proper design of the so-called feature
images is the important part of the job that the human
operator has to do before the system can work
automatically. In a case of complex microstructure, it
may be necessary to use four, or more, feature images.
The Image Classifier (IC) has been used to analyse
complex microstructures of sintered steel and a
nickel-based alloy (Komenda, 2001). In the present
work, the IC system is applied to the analysis of
sintered steel fracture surfaces and low-alloyed steel
samples.

FRACTURE SURFACES OF SINTERED
STEEL

In this first example, fatigue fracture surfaces of
three sintered steels are analysed using the IC system
in order to automatically identify and measure the
fraction of not-sintered (porous) surface.

Scanning electron microscope images were
recorded in a secondary electron mode at 400x
magnification with a size of 1332x1000 pixels (1
pixel = 0.2 um). Secondary electrons create an image
of topographic type with sharp details as long they
are within a depth of focus range. From the image
analysis point of view, secondary electron images are
viewed as the projection on a flat surface of
topographic details falling within an admissible focus
depth range. Thirty-five images were acquired for
each specimen, representing statistically the entire
fracture surface.



Each original image is further processed to create
three feature images for the IC system. A Wallis
operation (kernel size 5x5) is used to create feature
image No. 1. Feature image No. 2 is generated by
applying the morphological gradient function (filter
size 3x3) to feature image No. 1. Feature image No. 3
is created by applying a median filter (size 3x3) to
the feature image No. 2.

The Wallis operation (ContextVision AB, 1987)
enhances the original image providing sharper edges
(Fig. 1b). By locally modifying grey level intensity
values so that the local mean and standard deviation
match the user-defined target values, the Wallis filter
produces a local and adaptive contrast enhancement
throughout the whole image, i.e., a local feature
enhancement.

c) Fr imge No. 2
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The morphological gradient is calculated as the
difference between the digital dilation and the digital
erosion of the Wallis-enhanced grey scale image (Serra
1982; Gonzalez and Woods, 1993). As illustrated in
Fig. 1lc, this transformation, performed with a
structuring element of size 3x3, highlights the edges.

The median filter sorts grey level values in a local
neighbourhood and then assigns the median of the
sorted values to the central pixel (Gonzalez and
Woods, 1993). The median filter (size 3x3) is applied
here to the image in Fig. 1c (transformed with the
morphological gradient operation). As shown in Fig.
1d, a median transformation smoothes areas with a
low density of features, i.e., non-sintered parts, while
still preserving edges in the remaining regions.

= D

d) Feture mage No. 3

Fig. 1. Typical fracture surface image for one of the sintered steels, Astaloy Mo7.1. a) Original, scanning
electron microscope image (secondary electrons, 400x magnification) used as input image for creating feature

images b), ¢) and d).
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Prior to automatic image classification, some training
areas are interactively selected. Fig. 2 is an example
training-image where some areas representative of the
two classes of objects of interest, i.e., non-sintered and
sintered zones, are coloured red and yellow,
respectively. For every class the training areas are
statistically expressed as an n-dimensional histogram,
where n is the number of feature images (n = 3, in the
current example). The n-dimensional histogram can
then be represented as a multivariate Gaussian
distribution whose mean and nxn covariance matrix
constrain the automatic classification of the whole set
of images (Sxbo et al., 1985). Our approach to
classification is of contextual type, which is most
useful when applied to a topographic type of image or
images with a variation of textures (Komenda, 2001).
A pixel is assigned to a given class of object based on
the pixel own n-dimensional feature vector value as
well as on the values of its neighbour pixels. This
contextual method, referred to as the Oven, Hjort &
Mohn method (OHM) with linear discrimination and
default probabilities (Sebe et al., 1985), is applied
hereafter to the classification of fractured surfaces.
To avoid extensive calculations, a four pixel cross-
shaped neighbourhood is considered.

Fig. 2. Training image (can be any of the images
recorded from the same specimen) with marked
regions: non-sintered (red) and sintered (yellow).

The OHM method assumes that the most
probable case is when all pixels within the cross-
shaped neighbourhood belong to the same class of
objects. In some cases (less probable), two classes
may appear within the cross. The probability of
occurrence of three or more classes is assumed to be
zero. As illustrated in Fig. 3, when classifying a
current pixel, the pixels of its cross-shaped
neighbourhood to be accounted, are those of one of
nine candidate geometrical configurations selected
according to some predefined (default) probabilities.
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Fig. 4 shows the result of the automatic detection
of apparent porosity (porous and non-sintered parts of
the fracture) displayed in green. Figure 5 shows
cumulative  distributions of apparent porosity
fractions for the three sintered steel samples (Distaloy
AE7.4, Astaloy Mo7.4 and Astaloy Mo7.1). In Fig. 6,
the bending fatigue limit is plotted against the
samples apparent porosity. As reported elsewhere
(Hoganés, 1997), an increase of porosity is associated
to a decrease of the bending fatigue limit.

a b C

Fig. 3. The nine different configurations in a cross-
shaped neighbourhood that may appear within the
OHM model. (a) All pixels belong to the same class
(default probability p = 0.8). (b) Four “T-shaped”
pixels belong to the same class. Four different “T’s”
are possible (default probability: ¢ > 0.1). (c¢) Three
“L-shaped” pixels belong to the same class. Four
different possible “L’s”. Default probability r < 0.1 .

Fig. 4. Example of Astaloy Mo7.1 fracture surface (a
and b). Automatically recognised non-sintered parts
are coloured green for visualisation (36.8% of area
fraction).
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Fig. 5. Cumulative distributions of apparent pore
fraction A on the investigated fracture surfaces.
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Fig. 6. Bending fatigue limit vs. the average apparent
porosity fraction. Specimen markers are the same as
in Fig. 5.

JERNKONTORET FRACTURE
STANDARD SET

In this second example, ten steel fracture
specimens with gradually varying surface-coarseness
represent the so-called Jernkontoret Fracture Standard
Set. Their coarseness is related to the austenite grain
size obtained during heat treatment of low alloy tool
steels, followed by quenching (e.g. Krauss, 1990).
Quenching preserves the austenite grain structure.
Hence, grains can be revealed, and measured, at room
temperature, using time-consuming etching techniques
(Krauss, 1990). Each fractured specimen is then
assigned a unique number G (between 1 and 10)
representing a grain size in the sense of the ASTM-
standard (ASTM E112-96, 1996). G is calculated
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from equation (1), where n is the number of grains
per square inch, in a microstructure examined at 100x
magnification. Hence the G-number is quantitatively
related to an austenite grain size and represents also
the fracture surface coarseness. G = 1 denotes the
biggest grain size (250 pm diameter, coarse fracture
surface) whereas G = 10 represents the finest grain
size (11 pm diameter, fine fracture surface). By
visually comparing two fracture surfaces, one can
determine the G-number, hence the former austenite
grain size in quenched, low alloy tool steel
specimens. A recognition of the coarseness of the
fracture surface can also be applied to measure the
so-called effective grain size in hot rolled high
strength steel plates (Hoglund, 1994).

n=2" (1)

Since the Image Classifier can be trained to
identify a range of surface morphologies, we aim here
at preparing a program for automatic recognition of
surface coarseness using the Jernkontoret Fracture
Standard Set. An image of the fracture surface of
every Standard Set specimen was first captured at
10x magnification using a macrostand and a digital
camera. A set of ten images was then assembled into
one new image presented in Fig. 7 where each
specimen name is written on top of each part: JK 1,
JK 2, ..., JK 10. JK stands for Jernkontoret and
numbers: 1, 2 ...10 are grain size number G. The new
image, including all the fracture surface morphologies
of the Fracture Standard Set, is used here as the
training image.

To train the IC system, it is enough to mark by
hand a part of each area in Fig. 7, assigning it to a
corresponding class: JK1, JK2......JK10. Three types
of feature-image are chosen to support the system in
building the statistical information. Fig. 8a is an
example of an original image after Wallis enhancement
using a kernel of size 5 - this is the feature image
No. 1. The Wallis operation produces an image with
stronger local grey level gradients. Fig.8b shows a
feature image No. 2, which is the feature image No. 1
after frequency image processing; the calculated
frequency components of the image are coded in
colours. The grey level feature image No. 3 shown in
Fig. 8c is simply created by detecting the bright peaks
in image No. 1 and assigning grey value of 163 to the
corresponding pixels (a black-and-white image is not
accepted as a feature image).

The frequency filtering operation (ContextVision
AB, 2000) is always applied to a grey-level image.
Three kernel sets are used in this operation, each
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covering a different frequency range. A kernel set
consists of three pairs of complex quadratic filters,
each having different frequency weighting optimised
to a lognormal frequency function. This operation
associates to every pixel an output vector whose angle
is the estimated dominant frequency of the structure
within a sliding filtered neighborhood. The magnitude
value (vector length) indicates the certainty for the
frequency estimate (a low magnitude value denotes an
uncertain dominant frequency estimate, i.e., the
existence of mutiple frequency components instead of
a dominant one). In Fig. 8b, low, medium and high
frequencies are coded orange, green and blue,
respectively.

I mm

Fig. 7. Only one training image is prepared for the
Image Classifier. The image is composed of all types
of the Jernkontoret standard fracture surfaces,
representing ten different surface classes: from JK 1
to JK 10.

a) b) )
Fig. 8. Feature images.: a) No. 1 is the original image
processed with the Wallis operation, b) No. 2 is the
result of the frequency operation performed on
feature image No. I, ¢) No. 3 is a grey-level image
highlighting the bright peaks in feature image No. 1.
The peaks are coded with grey value 163.

211

Here, the contextual Oven, Hjort and Mohn
method (OHM) with linear discrimination and default
OHM probabilities is again chosen as the rule for
classification. As a test, the nominal JK-number is
plotted in Fig. 9 vs. the JK-number produced by the
automatic IC system for every JK-standard entire
fracture surface. The achieved strong relationship in
Fig. 9 (correlation coefficient R = 0.996) demonstrates
that the system works correctly (for homogeneous
structures such as JK1... JK10, the result does not
depend on how large the training region is).

In the case of hot rolled high strength steel,
showing a range of coarseness within a same fracture
image, our automatic classification yields a distribution
of the Jernkontoret fracture standard number.

= experiment
regression line y=1.07x-0.398

91 proportional y=x /

Nominal JK Standard Number
on

0 T T T T T T T T T 1
2 3 4 5 6 7 8 9 10
Measured JK Standard Number

Fig. 9. Nominal JK number vs. JK number measured
on ten JK standard fracture specimens. The
correlation coefficient R = 0.996.

Fig. 10 illustrates the IC classification of the
pixels of the fracture image of the Jernkontoret
standard JK 5. Fig. 11 shows the results obtained for
the hot rolled high strength steel specimen C. To
every pixel a value is assigned that corresponds to a
JK standard number. As expected for JK 5, the
prevailing value is 5. The visual inspection of the
fracture surface C indicates a standard number
between JK5 and JK6. Automatic IC classification
gives an average value of 5.23. Fig. 12 shows an
example of JK value distribution obtained for a
mixed type fracture specimen (marked 11).
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Fig. 10. IC classification of pixels performed on the standard specimen JK 5. a) Average JK value of pixels:
4.92, b) A part of the JK 5 standard fracture surface.

specimen C
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Fig. 11. IC classification of pixels performed on the hot rolled high strength steel specimen C. a) Average JK
value of pixels: 5.23, b) A part of the specimen C fracture surface.

specimen 11
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Fig. 12. IC classification of pixels performed on specimen 11 reveals the range of recognised JK values.
a) Prevailing JK values of pixels are JK 2, JK 3 and JK 5, b) A part of the specimen 11 fracture surface.
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CONCLUSIONS

After a training procedure, the Image Classifier
allows the automatic recognition and measurement of
complex microstructures. Here, it has been applied to
the automatic detection and measurement of apparent
porosity on fracture surfaces of sintered steels. A
higher fraction of porous and non-sintered parts of
the material is associated to the deterioration of the
fatigue properties as expressed by the bending fatigue
limit. Of course, this relation may also be determined
by the varying amounts of the different phases that
may be present in sintered materials. All these phases
can be recognised and measured by using the Image
Classifier (Komenda, 2001).

As an illustration of the ability of the system to
process complex images, the fracture surface
coarseness has been automatically processed to
recognise the grain size number corresponding to the
Jernkontoret Fracture Standard Set. In addition, it is
shown that heterogeneous fracture surfaces can be
automatically characterised by a distribution of JK-
numbers. The achieved distributions are directly related
to grain size distributions given by the corresponding
JK-numbers.

The methods discussed in this paper highlight the
ability of modern image analysis systems to treat
complex applications.

ACKNOWLEDGEMENTS

This work is a part of a project financed by the
General Research Programme at the Swedish Institute
for Metals Research (SIMR) and the financial support
is gratefully acknowledged. Authors thank Prof. Bevis

213

Hutchinson (SIMR) and Dr. Yannick Anguy
(Laboratoire Energetique et Phenomenes de Transfert,
Esplanade des Arts et Metiers, Talence, France), for
comments and suggestions.

REFERENCES

ASTM E 112-96 (1996) Standard Test Methods for
Determining Average Grain Size.

ContextVision AB (2000). User’s Guide, MicroGOP2000/S
Software v. 3.1, Storgatan 24, SE-582 23 Link6ping,
Sweden.

ContextVision AB (1987). Image Operations Reference
Manual, Order Number 104708, Storgatan 24, SE-582
23 Link6ping, Sweden.

Gonzalez RC, Woods RE (1993). Digital image processing.
Addison-Wesley Publ. Comp. Reading, Massachusetts.

Hogands AB (1997). Hogands Handbook for Sintered
Components. Hogands, Sweden.

Hoglund L (1994). An attempt to assess the grain size in
hot rolled high strength steel plate structure by using
Jernkontoret Fracture Standard Set. SSAB Tunnplat
report N2.7LH.94.048 (in Swedish). S-781 84
Borldnge, Sweden.

Komenda J (2001). Automatic recognition of complex
microstructures using Image Classifier. Mater Charact
46:87-92.

Krauss G (1990). Steels: Heat Treatment and Processing
Principles. ASM International, Materials Park, Ohio.

Serra J (1982). Image Analysis and Mathematical
Morphology. London: Academic Press.

Sabe HV, Briten K, Hjort NL, Llewellyn B, Mohn E
(1985). Contextual classification of remotely sensed
data: Statistical methods and development of a system.
Technical report 768, Norwegian Computing Center.



