Image Anal Stereol 2002;21(Suppl 1):S23-S29
Original Research Paper

STEREOLOGICAL ANALYSIS OF SHAPE
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ABSTRACT

This paper concerns the problem of making stereological inference about the shape variability in a population
of spatial particles. Under rotational invariance the shape variability can be estimated from central planar
sections through the particles. A simple, but flexible, parametric model for rotation invariant spatial particles
is suggested. It is shown how the parameters of the model can be estimated from observations on central
sections. The corresponding model for planar particles is also discussed in some detail.
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INTRODUCTION

The main practical purpose of stereology is to
extract quantitative information from microscope
images. The traditional parameters estimated from
such images relate to number, length, surface area
and volume. Most of the stereological techniques
for estimating these traditional parameters are
valid without specific assumptions about the spatial
structure under study. This is the strength of stereology.

In some fields of application, for instance in
cancer diagnostics, it is however important to obtain
information on additional parameters relating to the
organisation of the spatial structure, including location
of particles (inhomogeneity), orientation of particles
(directional information) and shape variability. In such
cases, it seems necessary to adopt a more classical
statistical approach and consider specific stochastic
modelling of the spatial structure. The present paper
is one attempt in this direction. The focus is on
parametric shape modelling of a population of spatial
particles.

The literature on statistical shape analysis is widely
scattered, but books and review papers are available
(Bookstein, 1991; Grenander, 1993; Stoyan and
Stoyan, 1994; Dryden and Mardia, 1998; Loncaric,
1998; Lele and Richtsmeier, 2000). One of the most
important ideas is to represent a random shape as
a stochastic deformation of a template shape. Two
seminal papers on deformable template models are
Grenander et al. (1991) and Grenander and Miller
(1994). The specific shape model considered in the
present paper is a deformable template model. It
is assumed that any particle from the population
is bounded and star-shaped relative to a specified
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reference point belonging to the particle. (The key
example concerns cells which are star-shaped relative
to their nucleus or nucleolus.) Otherwise, the particles
are featureless. Each particle is represented by its
so-called radius-vector function, which gives in each
spatial direction the distance from the reference point
to the boundary of the particle.

The spatial model is a simple, but flexible,
three parameter Gaussian model for the radius-
vector function, based on a Fourier-Legendre series
expansion. One of the model parameters relates to
the smoothness of the boundary of a random particle,
while the remaining two parameters describe the
local and global shape of the particle. Under this
model, the distribution of a random particle from the
population is invariant under rotation of the particle.
The model can be regarded as an extension to three-
dimensional space of a more well-known Gaussian
model for planar particles, based on a traditional
Fourier expansion of the planar radius-vector function
(Stoyan and Stoyan, 1994; Hobolth er al., 2000).
Indeed, Fourier descriptors are commonly used in
biological shape analysis (Lestrel, 1997). A version of
the spatial model considered in the present paper has
originally been described in Miller et al. (1994), and a
detailed analysis of the model can be found in Hobolth
(2002).

It is possible to develop a stereological analysis
of the spatial model where the shape parameters
are estimated from central sections through each of
a sample of particles. (A central section through a
particle is a section through the reference point of
the particle.) Such central sections can be sampled in
biological cells if physical sections can be replaced
by optical microscopic sections. This observation



technique is well-known in local stereology where
methods of estimating more traditional parameters like
number, length, surface area and volume from central
sections have been developed (Jensen, 1998).

The remaining part of the paper is organized
as follows. In Section 2, shape modelling of planar
particles is discussed in some detail. This section is
meant as an introduction to the concepts involved
in the spatial model, presented in Section 3. The
stereological analysis of the spatial model is described
in Section 4. Section 5 contains an extension of the
spatial model to a space-time dynamic model, capable
of describing phenomena such as growth.

SHAPE MODELLING OF PLANAR
PARTICLES

Let us consider a planar particle X which is
star-shaped relative to a specified reference point,
belonging to X. The boundary of X can thus be
seen in any direction from this point. Without loss of
generality, the reference point will be taken to be the
origin O. The radius-vector function d(0) gives the
distance from O to the boundary of X along a ray
starting at O and with angle 6 € [0,27) relative to a
fixed axis. Because X is star-shaped we can actually
reconstruct X from d. In particular, it is possible to
express the area and, under regularity conditions, also
the boundary length of X in terms of d.

Size-invariance is obtained by analysing the
normalized radius-vector function

()

r(0) =

) L [;7d(6)de

0 € [0.2m). If the particle X is translated, rotated
and scaled, then the normalized radius-vector function
of the transformed particle with respect to the
transformed reference point is the same as the
normalized radius-vector function of the original
particle X (up to a shift in 6, caused by the rotation).
Thus, if we use the more detailed notation ry(6;O) for
the normalized radius-vector function of the particle X
with respect to the reference point O, then

X)(G;f(O)):rX((G—GO) mod 27;0) , (D

0 € [0,27), where f is a composition of a rotation
around O with angle 6, € [0,27), a translation and a
scaling. Below, we will concentrate on the normalized
radius-vector function.

We will assume that the particle X is featureless
such that its boundary does not contain particular
landmarks (like the finger tips of a hand). For shape
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modelling of featureless objects, it is useful to consider
a Fourier series expansion of the normalized radius-
vector function

r(0) = \/—_+m§_] be

cos(m0)

Wl\/_
+ z by, —= sm(me) 2)

m=1

0 € [0,27). The Fourier coefficients are

2 1
bO:./O (0) 7=do
b = / 7 1(0) - cos(m0)d6
=) Oz =
027: 1
b, = / r(9)ﬁsin(m9)d9, m>1. (3)
40

The first term by/+/27 in the Fourier expansion
(Eq. 2) is equal to 1 because of the normalization.
Furthermore, it can be seen that 5{ and b] are
asymmetry parameters (Hobolth et al., 2000). They
are influenced by the position of the reference point
O. In particular, if X is symmetric with respect to O,
then b{ = b} = 0. Furthermore, if the particle X is a
small deformation of a circular disk centered at O, then
~0and b} = 0.

For m > 2, the geometric interpretation of the
Fourier coefficients, b, and b}, is most easily
understood by considering a particle for which all
coefficients are zero except for b;, and b;,. Such a
particle has a normalized radius-vector function of the
form

m>1,

r(0) =14 b;,—=cos(mO) + b;,—

ﬁ o

0 € [0,2x), and exhibits an m—fold symmetry in the

sense that
2 —1
e — r(G_'_jT(n/l)) ;
m

r(0) :r(9+2n> =

m
0 € [0,2r/m). Note that 2-fold symmetry is the
ordinary type of symmetry where the distances from
the reference point to the boundary in any pair of
opposite directions are the same. We can rewrite Eq. 4

as

sin(mb), (4)

r(0) = 1+\/—m%cos(m(9—9m)) , (5)

where ¢,, > 0 and 6,, € [0,27r/m) are determined by

b;,, = ccos(mb,,) |
by, = cymsin(m6,,) . (6)
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The coefficient c,, is the so-called mth phase amplitude
while 6,, is the mth phase angle. From Eq. 5 it
follows that a particle with normalized radius-vector
function of the form (Eq. 4) will typically look like
a smoothed regular polygon with m vertices. If ¢, is
small then we will have a circular appearance while
for ¢,, large a more distinct shape with m smooth
corners is obtained. The interpretation of (c,,, 6,,) is
shown in Fig. 1 for m = 3. A general particle can
be regarded as a superposition of such particles and
therefore the Fourier coefficients for small m are global
shape parameters, while the Fourier coefficients for
large m are local shape parameters. Note that because
of Eq. 1 and Eq. 5 the phase amplitudes c,, are invariant
under a rotation of the particle.
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Fig. 1. Interpretation of (c5, 6;).

In Fig. 2, the decomposition of a particle
into m—fold symmetric particles is illustrated. The
upper row of Fig. 2 shows the m—fold symmetric
particles (Eq. 4), m = 2,...,6, associated with the
particle shown in the lower row. In the lower row of
Fig. 2, the original particle is shown together with its

reconstruction, using all m—fold symmetric particles
with m < MM = 2....,6. The normalized radius-
vector function of the particle is thereby approximated
by the first M terms in the Fourier expansion (Eq. 2).
A similar discussion of the geometric interpretation
of the Fourier expansion of the tangent-angle function
may be found in Zahn and Roskies (1972).

Modelling the shape of a random planar particle
from a given population involves specifying the
distribution of the Fourier coefficients. Since b{ and b}
have a special interpretation as asymmetry parameters
they are not easily modelled. Indeed, the best thing to
do is perhaps to consider the parameters separately,
but in this paper we desist from such analysis. It is
natural to assume that the remaining part of the Fourier
expansion

oo

1 d 1
b;,—=cos(m@)+ » b, —=sin(m0),
L T ) mz:'z VT )

m=

0 € [0,27), constitutes a stationary Gaussian process
on [0,27). Then it can be shown that b5, b, m > 2,
are all mutually independent and

bE, ~ b5~ N(0, Kp), m> 2.

The variances k, > 0 determine the covariance
function of the normalized radius-vector function

cov(r(6), 1(0)) = % i K, cos(m0) |

0 € [0,27). It is possible to generalize this model to
the non-Gaussian case (Hobolth ef al., 2000).
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Fig. 2. Decomposition (upper row) of a planar particle in m—fold symmetric particles, m =2,... ,6, and the

corresponding superposition (lower row).
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The variability in particle shape induced by this
model is determined by the variances &k, m > 2.
As supported by the discussion of m—fold symmetric
particles above, k, will for small m govern the
distribution of the global shape and for large m
the local shape. In the shape literature, simple
parametric regression models for the variances have
been suggested

Kin = Km(‘l/) ;

where Y is a regression parameter. In particular, the
model

1
¥ + v, (2mm)?

has attracted much attention (Kent et al., 2000). In this
case, ¥ = (Y, y,) is a 2-dimensional vector. In order
to ensure that x,, > 0, m > 2, the parameters must
satisfy

Kin =

v, >0,y > —167y, .

The statistical analysis of such a regression model
is straight-forward but should be done with some
care because of digitization effects. The regression
parameter can be estimated, using the density of the
observed Fourier coefficients. Considered as a function
of vy, this density is called the likelihood function.
Using the first M terms of the Fourier expansion (Eq.
2), the likelihood function for a single particle becomes

(!//,{b“ by tm—) =

- Hz[m:cm(w)}‘lexp (‘%)
- Hz[zfrlcm(ll/)}_lexl’ (_ﬁlzw) 7

For a sample of particles the individual likelihood
functions are multiplied. The parameter estimates
maximizes L and are found by standard numerical
methods. Note that L only depends on the rotation
invariant Fourier coefficients c,,,2 <m < M.

Usually, the normalized radius-vector function
of a particle is only known at a discrete set of
angles 6 = 0, 27t/k.... 2n(k —1)/k and b, and b,
are approximated using discretized versmns of the
integrals (Eq. 3) with a large value of k. The choice
of the cut-off value M is important. If M is too small
we loose important shape information whereas if M is
too large the results will be influenced by digitization
effects because we only know the boundary of
the particle with a precision corresponding to the
resolution of the digital image.
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SHAPE MODELLING OF SPATIAL
PARTICLES

In this section, we show how the methods of the
previous section can be generalized to shape modelling
of spatial particles. A full and detailed account can be
found in Hobolth (2002).

Let us consider a spatial particle X which is star-
shaped relative to O. The spatial radius-vector function
of X relative to O is given by

d(0,9), 6 €10,2m), ¢ €[0, 7],

where d(0, ¢) is the distance from O to the boundary
of X in the direction

(D(Q:(P):

Note that d is expressed as a function of the polar
coordinates. To remove size-effects we consider the
normalized radius-vector function

d(6.9)
fo d(o, )s1n¢d¢d9

(cosOsing,sinOsing,cosd) .

r(9,¢) =

0 €1[0,2m), ¢ € [O,n}.

Note that r is periodic in 6, but not in ¢.
Accordingly, the Fourier series expansion in the plane
should be replaced by a Fourier-Legendre series
expansion

H=1+3 Y @er6.0),  ®
n=1m=-n

where
{o)':n=1,2,...;m=-—n,...,n}

are spherical harmonics (Miiller, 1966). The first term
in Eq. 8 equals 1 because of the normalization.
Each function ¢ involves trigonometric functions and
Legendre functions. Thus,

0, (0,9)=

o — 2n+1(n—m)!
8 2 (n+m)!
are known constants, P)" are the associated Legendre

functions of the first kind (Abramowitz and Stegun,
1965), and

k"B, (cos $)0n(6) .

where

cosmb m=-n.....—1
Qm(e): 1/\/§ m=20
sinm@ m=1,....n
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As in the planar case, the first coefficients
a;',a},a} in the expansion (Eq. 8) play a special role.
If O is the centroid of X and X is a small deformation
of a sphere, then these coefficients are approximately
zero. In general, these coefficients carry information
about the position of O in X and will not be subject to
modelling in this paper. The geometrical interpretation

of the remaining coefficients

is similar to the planar case.

In analogy with the planar case, we suggest that the
remaining coefficients are modelled by independent
Gaussian variables

ay~NO,A,), n>2, m=—n,...,n. )
It can be shown that the assumption that the variance of
a does not depend on m ensures that the distribution

of the random particle is invariant under rotations
(Hobolth, 2002).

Inspired by the physical laws of pressure fields
acting on thin membranes, parametric models for the
variances A, have been suggested (Miller et al., 1994,
Joshi et al., 1997; Grenander and Miller, 1998). In
Hobolth (2002), a simplified version of these models
is proposed where

A l=a+B(n"—27), n>2, (10)
p > 2,8 >0,a > 0. The parameter o determines
the variances A,, for small n» which in turn influence
the global shape of the random particles produced
by the model. The smaller ¢, the larger deviations
from spherical shape. The parameter B is a local
shape parameter since it controls A, for large n. A
small value of B implies irregular particle boundaries
on a local scale. Finally, the parameter p determines
the smoothness of the boundary of the particle.
Simulations of random central sections under the
model is shown in Fig. 3 and they support the above
mentioned interpretation of the parameters.

2.0

0.5

0.0

Fig. 3. Central sections through simulated spatial
particles under the model (Egs. 9-10) with p = 4 and
the indicated values of the parameters o and 3.

To understand the shape variability for fixed values
of (a, B, p) we also simulated random spatial particles
from the spatial model, cf. Fig. 4.

STEREOLOGICAL ANALYSIS OF
THE SPATIAL MODEL

The key question is now to develop statistical
inference for the model, using measurements on
a central section, i.e. a section through O. The
normalization factor of the spatial radius-vector
function

1 2n pm
H/0 /Od(e,q))sind)dq)de

cannot be determined from sectional observations but
can be estimated using the sectional average.

Under the model (Eqgs. 9-10), the distribution of
the random particle is invariant under rotations around
0. Without loss of generality, we can therefore assume
that the section is horizontal. The information available
is then

{(r6.7/2): 6 €[0,27)} .

@Q00Q

Fig. 4. Random spatial particles with (logo,log B, p) = (4,1,4).
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Note that if we fix ¢ = /2, then Eq. 8 is a Fourier
expansion of the form (Eq. 2) with

by =V Y @, "KIEN0).

by, =Vr Y, aykyB(0), (11)
n=m

m=1,2,.... Under the model (Eq.9), b}, b;,, m > 2,

are all mutually independent and

b;, ~b,, ~N(0,%,) .

where

o

Kn=7 3 (K'P"(0))A, .

n=m

If A, follows the regression model (Eq. 10) for n > 2,
then K, = K,,(a, B, p) for m > 2 where

Nn(0B,p) = 1 3 PO o+ B~ 27

The regression parameters Y = (¢, 3, p) are estimated
by maximizing the likelihood (Eq. 7).

This analysis has been carried out in Hobolth
(2002) on a small sample of neurons from the human
hippocampus.

DISCUSSION

Shape modelling of a particle population based
on the radius-vector function requires that a reference
point belonging to each particle can be selected in
some unified way. If particles are cells, then a natural
choice of reference point is the nucleus or nucleolus.
Instead, the centroid may be used. It should be
emphasized that the result of the shape analysis is
influenced by this choice of reference point, which
may be regarded as a weakness. Also modelling based
on an expansion of the radius-vector function (planar
or spatial) should be performed with some care since
higher order coefficients in the expansions are not
determined accurately due to limited resolution.

Alternatives to shape modelling of spatial particle
populations by means of the radius-vector function
exist (Joshi et al., 1997), but these models do not
lend themselves so easily to stereological analysis.
If complete spatial observation of the particles is
possible, then a generalisation of the pixel-based Gibbs
models, described for planar particles in Anastassiou
and Sakrison (1981) and Stoyan et al. (2002), is
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a promising alternative to modelling based on the
radius-vector function. Still another approach is shape
modelling using elastic deformations, as discussed in a
series of papers (Glasbey and Mardia, 1998; 2001).

In the present paper, shape models have been
used for describing shape variability in spatial particle
populations. Shape models are also useful for model-
based variance estimation (Gual-Arnau and Cruz-
Orive, 2000; Hobolth and Jensen, 2002) and as priors
in object recognition (Rue and Syversveen, 1998; Rue
and Hurn, 1999).

One of the strengths of the shape modelling
approach, taken in the present paper, is that a
generalisation to a dynamic set-up is quite easy so
that growing particles or particles changing shape
over time may be modelled. For a spatial particle, a
dynamic set-up can be obtained by letting the random
coefficients @/ in the Fourier-Legendre expansion (Eq.
8) depend on time. In order to ensure smooth changes
in shape, the coefficients a)'(¢,), al(t,) observed at two
time points ¢, ,, respectively, should be correlated.
For instance, {a)'(t) : t > 0} could be modelled as a
stationary Gaussian process. Earlier work on dynamic
shape models can be found in Cressie and Hulting
(1992), Kervrann and Heitz (1999) and Hansen et al.
(2002).
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