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ABSTRACT

Basic random structure models (random sets and random function models) are introduced for the simulation
of images and of microstructures. Their implementation requires the use of image analysis tools defined in
mathematical morphology. They can be used for solving problems of physics of random media.
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INTRODUCTION

Many physical phenomena which occur in
materials, geological and biological structures present
heterogeneous properties at various scales, which
can be accounted for by a probabilistic approach.
Various types of models are available for describing
and simulating heterogeneous structure. The principal
types of models in the field of random images can
be commonly classified as follows: i) stochastic point
processes, to reproduce dispersions of small particles
in a matrix; ii) random tessellations of space to
generate granular structures, such as polycrystals; iii)
random sets (binary), or multicomponent random sets,
to represent porous media or mineralogical textures;
iv) random functions (scalar or multivariate random
functions), useful for grey level or color images, rough
surfaces, and for chemical concentration mappings;
v) random graphs to describe data on a network
connecting vertices (roads, porous media, crack
networks), and random trees for arborescent data (as
seen in organs like lung, kidney (Fricout et al., 2002).
After a recall of basic properties and characterization
of random structures, we introduce some models of
random sets and of random functions, and we shortly
discuss their use to predict the physical behavior of
random media.

BASIC PROPERTIES OF RANDOM
MEDIA

Morphological criteria

The main morphological types of data to
quantitatively describe random structures can
be classified according to the main following
morphological criteria (Matheron, 1967; Serra, 1982;
Stoyan et al., 1987; Jeulin, 1998b; 2000a; 2001):
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Basic  measures (volume fraction, surface
area, integral of mean curvature, ) are
global quantitative measurements with suitable
stereological properties (they can be estimated for
three-dimensional objects from lower dimensional
sections (1D or 2D such as images).

Sizing of objects in a microstructure can be
obtained as a size distribution (with some
restrictions on the shape, such as a limitation
to spheres, concerning estimation from 1D or
2D to 3D); sizing of media of any shape
(including connected networks) can be performed
by the opening (erosion followed by a dilation)
or closing (dilation followed by an erosion)
morphological operations by convex structuring
elements (Matheron, 1975; Serra, 1982).

Distribution in space is very important to account
for the presence of scales:

Clustering of objects may be studied by the
probability distribution of distances r from
a random point x outside of the objetcs to
their boundary, F,(r) (estimated from volume
fraction measurements after dilations with
increasing sizes)

Scales and their superposition can be quantified
from second order statistics, based on the
covariance, from which nested structures such
as clusters, clusters of clusters, repulsion
effects, as well as periodicity in images are
easily detected; the integral range is a standard
measure of the size of a representative volume
element of the microstructure described by a
stationary and ergodic random structure: in
the space, a volume V is made of n = V /A,
volume elements, inside which the average



values of a RF Z(x) are uncorrelated random
variables, and therefore the integral range A5 is
a good measure of the notion of scale. It is a
convenient measurement of the size of a RVE
(representative volume element) of a stationary
and ergodic random structure.

Anisotropy is assessed from directional
measurements, such as the variation of the
covariance or of the chord size distribution with
their orientation.

— Connectivity has a major incidence on the physical
properties of composites made of phases with a
high contrast, like microcracks or voids.

The principle of morphological measurements in
two steps was proposed by Serra (1982):

— amorphological transformation @ is applied to the
structure (using image analysis);

— some measurement is
transformed object.

performed on the

The choice of measures and of transformations is
made according to morphological criteria, as detailed
in references.

Characterization of random structures

When deciding to use a probabilistic approach,
it is important to be able to characterize a random
medium by appropriate tools. A generalization of
the notion of random variable was developed by G.
Matheron for random closed sets RACS, through the
Choquet capacity T(K), defined on the compact sets K
(Matheron, 1969; 1975). If A is a random closed set,
then

T(K)=P{KNA#0}=1—P{K C A°}
=1-0(K). (1)

In practice, geometrical figures (finite sets of points,
segments, discs, spheres ... ) are used for the compact
set K, in order to test various morphological properties
of a heterogeneous structure. When operating in the
euclidean space, the Choquet capacity is connected
to the basic operations of mathematical morphology,
namely the dilation and the erosion (related to the
Minkowski addition €& and substraction &), and we
have for a compact set K translated in x, where K =
{—x.xeK}:

T(K,) = P{K,NA#0} =P{xc AGK},
O(K,) = P{K, CA°} = P{xc A°SK} .
When K = {x,,x,,...,x,}, we obtain the spatial
law of A:
T(K)=1—-P{x, € A%x, € A°,... ,x, €A}
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The spatial law cannot completely characterize the
RACS A, since in that case we have T(K) = 0 for
any stationary point process, and therefore we have
to use for instance as compact set K the closed ball
with radius r, B(r), involving an undenumberable
set of points. However, the spatial law can be
used to estimate bounds of the effective physical
properties of random media (Jeulin, 1998b; 2001).
Random closed sets have been extended to upper semi
continuous random functions (usc RF) (Matheron,
1969; Norberg, 1986; Verwaat, 1988). For a usc RF
Z(x), a generalization of the Choquet capacity, T(g),
can be defined (Jeulin, 1991) on the lower semi
continuous functions (Isc) g with compact support K:

T(g) = P{x € Dy(g)} 2)

where

D,(g) = {x:Z(y) <g(y —x),Vye K} .

D,(g)° is the set of points x where the function Z(y)
remains below the test function g, when its support K
is translated in x. A particular and common case is the
spatial law defined for a finite number of points:

F(x1:x2:"' s XnsZy5805 - :Zn) =
P{Z(x)) < 21.Z(x,) < 2p;--- . Z(x4) < 2a}. (3)

The spatial law is deduced from Eq. 2 as 1 — T(g)
when g(x;) = z; and elsewhere g(x) = +eo. Other cases
include the random functions

Zy(K) = VxeK{Z(x)}§ Zn(K) = /\xeK{Z(x)} 4

which are generated by changing the support via
the supremum (V) and infimum (A). This is used in
applications to Fracture Statistics Models based on
the weakest link assumption, and to the statistics of
extremes. We have to stress the fact that the functional
T(K), (or T(g)), connects theory and experiments; it
is used to estimate the parameters of a model and
to test its validity. The functional T is obtained by
theoretical calculation, or by estimation on simulations
of the random structure, or on samples of the real
structures. The estimation of the functional 7(K)
is easily performed from the implementation of the
basic operations of mathematical morphology, namely
erosions or dilations. The morphological content of
the Choquet capacity, depending on the choice of the
compact set K, is detailed in (Serra, 1982; Jeulin, 1991;
2000; 2001).
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RANDOM SETS MODELS

Point processes

Point processes are probably the simplest kind of
random structure that we could imagine (Stoyan et al.,
1987). They can be the first step in the construction
of more general models, that are called grain models.
Some of these models are presented in (Jeulin, 1997).
The most popular random point process model is
the Poisson process. The non homogeneous Poisson
point process in R" with a regionalized intensity
0(x) (x € R";0 > 0) is such that the numbers N(K,)
are independent random variables for any family of
disjoint compact sets K;.

N(K) is a Poisson random variable with parameter
0(K):

- /K 6 (dx) )

p(k) = PV (K) =ny = B ok o)

Starting from a point process, more general
models, called grain models, can be generated:

— The Boolean model
— The dead leaves model

— Random function models

The Boolean model

The Boolean model (Matheron, 1967; 1975; Serra,
1982; Stoyan et al., 1987) in the Euclidean space R”
with the Lebesgue measure U, (i.e; the volume in
R? or the area in R?), is obtained by implantation
of random compact primary grains A’ (with possible
overlaps) on Poisson points x, with the intensity 6,
giving the random set: A = kaAjck (this construction is
illustrated in Fig. 1, where a material microstructure
(left) is compared to a realization of a section of a
Boolean model of spheres (right)). By construction,
the morphologies of the two phases A and A of this
medium are asymmetric: A is representing a collection
of random aggregates, embedded in a matrix A¢. For
this model, we have in the stationary case, with ¢ =
P{xe A}

T(K)=1-Q(K)=1—exp(— Gun(A’eaK))

—1-g¢ L@ (7

where g = exp(—01,(A’)) and [, is the expected
value of u, over the realizations of the primary grain
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A’. This expression results from the fact that the
number of primary grains hit by K follows a Poisson
distribution with mean 011, (A’ © K). A particular case
of Eq. 7 gives the covariance Q(h)

O(h)=P{x€ A x+he A}
= ¢ exp (6K (h)) =

with the geometrical covariogram

q27r(h) (8)

K(h)

= ,(A'NAL,) and r(h)

— K(W/K(0). ()

Fe (black) Ag ( grey) alloy

Boolean spheres V.= 0.5

Fig. 1. Example of material simulated by a Boolean
model of spheres (Bretheau and Jeulin, 1989).

The Boolean model is a good candidate to
simulate interconnected media since overlaps between
grains are obtained with an increasing intensity
0, as the result of the locations of the Poisson



points. For instance, it mimicks quite well a sintered
microstructure (compare a real and a simulated
morphology in Fig. 1). The model is identified in
practice from Eq. 7 connecting the average properties
of the images of the texture A to the average properties
of the primary grain A’. It enables us to estimate the
parameters of the model, namely the intensity 6, and
the probabilistic properties of the primary grain A’
(such as the distribution function of its diameter for
spheres) from the experimental measurement of 7'(K).

When the grain and the set K are convex, the
expression I, (A’ @ K) is a polynomial of degree &,
for K with dimension k (it is easy to check this point
from experimental data for T(K)), with coefficients
proportional to average properties of A’ (volume,
surface area, integral of mean curvature). It is in
general not possible to derive the full probabilistic
properties of the primary grains from the information
obtained by convex sets K. For instance, using a
segment /, we have (K'(h) being the derivative of the
covariogram with respect to /)

O(l) = exp(— 61, (A" ®1))

= exp(—0(K(0) — IK'(0)) = '™, (10)

which is commonly used to test the validity of the
assumption “Boolean model with convex grains”.
One must anyway be careful with this test, since
other models, such as the Poisson mosaic, produce
exponential functions for Q(l) (Aubert and Jeulin,
2000).

Using non connected sets (such as two or three
points), more complete information on the random
grain A’ is obtained, since in that case I, (A’ © K) is
derived from Eq. 7. Using two points, we can estimate
the average geometrical covariogram of the primary
grain through Eq. 8. For instance, the distribution
function f(a) of the diameters of random spheres is
theoretically available from Eqgs. 8 and 9. In the general
case, it involves the numerical calculation of second
order derivatives, which is an unstable procedure.
Therefore it is wise to use prior parametric distribution
functions f(a) and to estimate their parameters from
r(h) using a procedure such as least squares, as was
done for spheres (Bretheau and Jeulin, 1989) and for
ellipsoids (Charollais et al., 1997).
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Fig. 3. Simulation of a carbon black nanocomposite
by intersection of 3 scales Boolean models of spheres
(identification from thick sections) (Savary et al,
1999).

Other examples of Boolean models are of interest:
when A’ is a point process with a compact support,
the resulting Boolean model is the Neyman-Scott
point process, which reproduces clusters; replacing
the Poisson points by Poisson varieties (Matheron,
1975), i.e. affine subspaces such as lines or planes
in R® which can be considered as Poisson point
processes in appropriate parametric spaces, enables
us to generate random set models with fiber or strata
textures (Jeulin, 1991; 2001), which percolate for any
volume fraction (Fig. 2). Note that these simulations
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can also be considered as 2D projections of Poisson
cylinder fibers in the 3D space, as used for the
morphology of wood composites (Delisée et al., 2001).
In (Savary et al., 1999), combinations of Boolean
models of spheres involving multiple scales, were used
for the simulation of carbon black composites; the
identification of the parameters of the model was made
from the covariance of thick sections of specimens
from electron microscope images (Fig. 3).

The color dead leaves model

The dead leaves model (Jeulin, 1987; 1989; 1991;
1997) is obtained sequentially by implantation of
random primary grains A’(z) with different colors (two
in the binary case) on a Poisson point process. Two
constructions have been proposed: to every point x
is assigned a color which is (i) the first or (ii) the
last color occurring during the sequence. In this way,
asymmetric random sets are eventually obtained if two
different families of primary grains are used for A and
for A° (in the case of a primary grain A! independent
of the time ¢, and implanted with a constant intensity
0., the space R" becomes totally covered as t — +o0).
The shape of the resulting cell is non convex, due to
the overlaps occurring during the construction of the
model.

Random primary grains of various colors, Al(r),
produce multi component random sets, useful to
simulate random media with crystals of different
phases. They are symmetric when the same grains
are used for every color, as for the case of Fig. 4a,
b. Probabilistic properties (mainly covariances and
three points moments) are expressed as a function
of the time of observation ¢ of the process (Jeulin,
1987; 1989; 1991; 1997). Considering the “intact”
grains (uncovered by other grains when the sequence
is stopped), a model of non overlapping particles is
generated. The size distribution of the non overlapping
particles, as well as their volume fraction can be
estimated (Jeulin, 1993; 1998b).

In the case of a single type of convex symmetrical
grain (for instance a sphere with a constant radius,
or a cube with a fixed orientation), the resulting
area fraction in R?> and volume fraction in R® are
given for the homogeneous model by 0.25 and 0.125,
respectively. For discs in R?> (as in Fig. 5) or for
spheres in R, the centres generate a standard hard core
point process (Stoyan et al., 1987). Their covariance
presents typical oscillations, which can never be the
case for a Boolean model. Their theoretical expression
is given in (Gille, 2002) for spheres.
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(b)

Fig. 4. Dead leaves models of discs (a) (P, = 0.5) and
of Poisson polyhedra (b) (P, = 0.5).

Fig. 5. Non overlapping discs built from the dead
leaves model.



RANDOM FUNCTION MODELS

The previous random set models have their
continuous versions, as random functions (RF): the
Boolean RF (Jeulin and Jeulin, 1981; Serra, 1988;
Jeulin, 1991) considers the random implantation of
primary random functions on points of a Poisson point
process. In that case the U operation for overlapping
grains is replaced by the supremum (V) or by the
infimum (A). This type of model is very useful
for applications to fracture statistics (Jeulin, 1991;
1994; 1998b; 2001), and to simulate rough surfaces.
Examples of simulations are given in Fig. 6a, b.

(b)

Fig. 6. Boolean RF with cone primary grains (a) and
Boolean Variety RF (b).

Starting from a sequence of primary RF’s Z/,
implanted according to the supremum with the
intensity 6(¢) we have

JEULIN D: Modelling random media

1-T(g)=0(g) =
e (- [0 ) 0@ . an

As for the Boolean random set, the properties of
the RF Z are deduced from average properties of the
primary function Z/, through the set D t,(g) and the
intensity 6(dr). Again, the model can be identified by
means of the experimental 7'(g) and of its theoretical
expression given in Eq. 11. As particular cases, are
obtained the spatial law and the change of support by
the supremum. If g(x;) = z; in points x; (i = 1,2,... ,n),
else g(x) = +oo, we get the spatial law:

1-T(g) = P{Z(x)) <zy;---, Z(x,) < 20}

:

—exp ( /R B, (Ag (), U UA(20)s,) e(m)) .
(12)

If Zy(K) = V,ex{Z(x)} and if A, (z) = {x, Z{(x) > z}
we have

PIZK) <) =exp (- [[ 1,4, @R) 0(ar) ).
(13)

Similarly, the dead leaves random sets models have
their counterpart as random functions. The dead
leaves RF is used to reproduce scanning electron
micrographs, and provides algorithms to estimate the
morphological properties of powders (Jeulin, 1993)
(Fig. 7). Explicit expressions are available for bivariate
distributions and for the change of support by infimum
(Jeulin, 1989).

Fig. 7. Dead leaves RF with cone primary grains.
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(b)

Fig. 8. Rough surface obtained by electroerosion (EDT

texture) (a), and its simulation (b). (IRSID) 1.28x1.28
2

mm-.

These models and their parents such as Sequential
Alternate RF (reproducing depositions and abrasions)
are commonly used for the simulation of random
surfaces (Jeulin, 1998a). Such models are useful for
plate users (in steel and in car industry) and for
mechanical parts users (to study the tribological or
friction behavior of rough surfaces (Decenciere and
Jeulin, 2001)). In Fig. 8 is presented a rough surface
obtained by electroerosion, and its simulation (Jeulin
and Laurenge, 1996a). In a companion study (Jeulin
and Laurenge, 1996b), the transfer of roughness to
the plate during the skin-pass process was predicted
by simulation of the indentation. Multivariate versions
of models of random functions are used for color
images, vector or tensor random fields (Jeulin, 1991).
Concerning simulations, interesting developments are
given in (Lantuéjoul, 2002), where in particular is
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detailed the generation of realizations of models
satisfying experimental constraints, such as for
instance given values at some data points.

Finally, Reaction-Diffusion random functions
models are obtained as solutions of stochastic non
linear parabolic partial differential equations. They
model the competition between chemical interaction
between species and their transport by diffusion. In the
presence of N chemical species i, the concentrations
Z,(x,t) are solutions of a set of non linear partial
differential equations, D; being the coefficient of
diffusion of species i:

9Z,(x,t)
ot

= DAZ(x,1) + F(Z,,Zy,...,2Zy) -
(14)

In (Decker and Jeulin, 1999; Decker, 1999),
they are used to simulate spatial-time random
structures, starting from a white noise as initial
conditions, and using periodic boundary conditions.
They produce sequences of images, generating
complex morphologies which are well suited to natural
textures. As opposite to previous models, which were
based on the Poisson point process and on the use
of primary grains, almost no results are available
concerning their probabilistic properties, which is a
major drawback for their practical use in applications.
However, when sequences of images are available,
the partial derivatives with time ¢ and with space
coordinates x can be estimated directly on images.
In that case, the coefficients of diffusions D; and
the coefficients of polynomial functions F; can be
estimated by regression from the data available on
pixels or voxels, using Eq. 14. An example of
simulation is given for the complex time-dependent
Ginzburg-Landau equation. It is a two species model
(Z, and Z,) driven by the following equation:

zZ
?% =DNAZ + AZ—-B|ZFZ, (15)
with
Z=7Z,+iZz,,
A=a +ivy,
B=B +io.

This equation admits spiral wave solutions,
with oscillating and rotating behaviors. From 3D
simulations, one can clearly notice the presence of
a population of spiral structures, as illustrated in
Fig. 9a, b, c. Their interaction can be displayed by
animations reproducing the evolution with time of the
solution of Eq. 15 (compare images at two times ¢ in
Fig. 9b, ¢).



Fig. 9. Reaction Diffusion model built from the
simulation of Ginzburg-Landau equations; component
Z, (a); binary images obtained by thresholding
(Z,(x,t) > 0.9) after 2000 (b) and 10000 (c) iterations
(Decker and Jeulin, 1999; Decker, 1999).
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PHYSICS OF RANDOM MEDIA

Models of random media can be efficiently applied
to the prediction of the macroscopic behaviour of
a physical system from its microscopic behaviour.
Firstly, they are used to estimate the effective
properties (namely the overall properties of an
equivalent homogeneous medium, which is the
solution of a homogenization problem) of random
heterogeneous media from their microstructure
(Matheron, 1967). A first approach, using variational
principles, provides bounds of the effective properties
for linear constitutive equations. For instance, third
order bounds (from third order central correlation
functions) are derived for some random sets models
(Jeulin and Le Coént, 1996; Jeulin and Savary,
1997; Jeulin, 1998b; 2001). This was used to predict
the effective elastic modulus of plaster, using a
morphological description by a Boolean model (Jeulin
et al., 2001). We could also show that a multiscale
superposition of Boolean strata, as illustrated by Fig. 2
for one scale, generates two-phase random media with
optimal effective properties (Jeulin 2001).

A second approach to estimate the effective
behaviour is based on numerical simulations
techniques like finite elements (FE) applied to
realizations of random media (Decker and Jeulin,
2000). In (Barbe et al., 2001), this is worked out
for the plastic behaviour of polycrystals from 3D
simulations of random Voronoi tessellations. The
main advantage of this technique is to provide to
the computer 3D microstructures depending from
controlled parameters, which would be difficult to
obtain from experimental data. Similarly, transport
properties (permeability, coefficient of macroscopic
diffusion) of heterogeneous media (e.g. porous media)
can be estimated by random walks or by geodesic
propagations on 3D specimens (Decker et al., 1998).
A promising technique concerns the use of numerical
solutions of the field in random media by Fast Fourier
Transforms, as originally proposed for the elastic
properties of composites (Moulinec and Suquet, 1994),
and more recently developed for the estimation of the
dielectric properties of random structures (Eyre and
Milton, 1999; Delarue, 2001). When using Monte
carlo simulations, the statistical representativity of
the results must be ensured. This point is illustrated
in a study of fluctuations of effective properties in
finite domains, as a function of the scale and of the
contratst of thermal and of elastic properties of two-
phase random media based on a Voronoi mosaic (Kanit
et al., submitted).

Another class of problems of interest concerns
fracture statistics models (Jeulin, 1991; 1994; 1998b;
2001). The main purpose of this approach is to
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estimate the probability of fracture of a specimen
under a given solicitation. Differently from the case
of effective properties, there is in fracture a great
sengitivity to local defects (with a large effect of
tails of the distributions on the macroscopic fracture
behaviour). One of the main points of fracture statistics
approaches deals with size effects. For this, it is
necessary to use models reproducing, at a point scale,
the variations of a fracture criterion. For various
fracture criteria, the probability of fracture is worked
out analytically, as a function of the loading conditions
and of the parameters of the random structure models.
They can be tested at different scales (including
the microscopic scale, by use of image analysis).
The diversity of the obtained theoretical distributions
for fracture statistics offers new possibilities for the
microstructure based interpretation and modelling of
mechanical data obtained on materials. For damaging
materials at different scales, like fiber composites or
metals under a ductile fracture, models of random
damage were proposed, based on the statistics of point
defects, the Boolean model, and an assumption of
uniform load sharing during the progression of damage
(Jeulin, 2000b). For damaging materials, the fracture
process can also be studied by means of numerical
simulations, combining FE calculations and Monte
Carlo simulations of microstructures.

CONCLUSION

Random models of structures may be of interest to
simulate complex images, such as the microstructures
of materials or of biological specimens. The proposed
approach, based on measurements obtained by
image analysis and using basic transformations
of mathematical morphology such as dilations or
erosions, makes it possible to test and select
appropriate models, to estimate their parameters, and
to produce simulations. Beyond this descriptive power,
they are used for the prediction of the overall physical
behaviour or of the fracture statistics of random media,
such as encountered in materials science. Another use
of these models concerns the synthesis of textures for
any more general purposes.
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