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ABSTRACT

The goal of this article is to present specific capabilities and limitations of the use of color digital images in a
characterization process. The whole process is investigated, from the acquisition of digital color images to
the analysis of the information relevant to various applications in the field of material characterization. A
digital color image can be considered as a matrix of pixels with values expressed in a vector-space
(commonly 3 dimensional space) whose specificity, compared to grey-scale images, is to ensure a coding
and a representation of the output image (visualisation, printing) that fits the human visual reality. In a
characterization process, it is interesting to regard color image attributes as a set of visual aspect
measurements on a material surface. Color measurement systems (spectrocolorimeters, colorimeters and
radiometers) and cameras use the same type of light detectors: most of them use Charge Coupled Devices
sensors. The difference between the two types of color data acquisition systems is that color measurement
systems provide a global information of the observed surface (average aspect of the surface): the color
texture is not taken into account. Thus, it seems interesting to use imaging systems as measuring instruments
for the quantitative characterization of the color texture.

Keywords: color, color image, color texture, colorimetry, material, wood.

INTRODUCTION

Color image analysis is a field of growing
importance that concerns a wide range of applications.
Indeed, important technical progress in terms of color
sensors and computational capabilities allow a
significant decrease in the cost of color imaging
systems. Color images play an important role in the
field of simulation (representation of realistic visual
aspects of materials in some prototyping process, and
more generally in virtual reality scenes), and in the
field of material characterization at the microscopic
and macroscopic scales. A new field of investigation
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(a) color as a result of
acid etching

is currently being developed that concerns psychovisual
properties of materials, considered as «use properties»
in the industrial context.

In a characterization process, color, just as any
other attributes such as shape and size, can be taken
as a marker for distinguishing an object, or more
generally a phase. In this case, color will be involved
in the pre-processing and segmentation steps. Color
can also be regarded as a psychovisual property to be
quantified. In this case, multi-component images will
be analysed in terms of statistic and spatial
distributions of color vectors (Fig. 1).

(b) color is directly
linked to crystal system

(c) Color is the studied
“spatial” property (color
texture of a marble)

Fig 1. Digital imaging and color - color as a marker (a, b); color as a property (c).
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Color is a complex property of importance in such
scientific fields as physics, chemistry, physiology,
psychology, ... At present, no set of parameters exist
that can quantify all the color properties. For
instance, it is not possible to study perceptual color
differences by using a RGB (Red, Green, Blue) color
coding. Depending on his goal, a color-user has to
choose among several different color approaches; a
very important point is to identify, and describe, the
specific color property relevant to a particular
characterization process (specificity can be related to
physico chemical properties of the material; it can
also be related to a specific observation context). A
crucial point in color image analysis is to choose the
appropriate acquisition system and to express color in
the correct color coding system.

In this paper, we present color as a material
property resulting from complex interactions. We
approach the problem of color characterization through
two point of views: a psycho physiological approach,
and a colorimetric approach. Then, we give an
overview of the specific constraints relating to color
imaging systems, color image processing and analysis.
The selected example is used to emphasize the very
important influence of existing correlations between
color attributes on color analysis and understanding.

SOME GENERALITIES ABOUT COLOR

A good comprehension of what color is, constitutes
an essential prerequisite to color control in digital
imaging. Color is only defined as long as a light
stimulus (electromagnetic wave with wavelength
falling between 380 and 780 nm) excites the human
eye photoreceptors. Color exists only through the
interaction between a luminous radiation and a vision
system. A vision system must be able to receive
information and translate it in terms of sensation
involved in the perception of the environment (Fig. 2).

The incident stimulus results from the interaction
between the object surface and the light emitted from
a given source. A stimulus S(A) is defined as the
result of a convolution product between a spectral
power distribution of light source I(A) and the object
spectral reflectance R()L):

S(A) = I(A)- R(A) with 1 = wavelenght .

Optical phenomena involved in light / material
interaction are transmission, absorption and reflexion
(Seve, 1996). Material properties influencing these
phenomena are of crystallographic and chemical
nature (Wyszeski and Stiles, 1982).
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Fig. 2. Color Vision - Object-light-sensor triplet.

Roughness of the surface plays also a significant role
as well as the patterns of the different components of
the superficial layer:

- The same object will have different spectral
reflectances depending on its roughness (Fig. 3).
If one wishes to use color in chemical and/or
crystallographic identification, it is very significant
to ensure that the surface state of different
samples of the same product remains unchanged
during color image acquisition.

- Color of a pulverulent material is a complex
property depending on individual properties of
particles and on collective properties of the entire
population (Bozec-Garay, 2000). Particle shape
and size, particle spatial distribution in the
superficial layer play a very important role in the
aspect of the pulverulent material.

Eq. 1 highlights the influence of illumination in
color perception. The example of Fig. 4 illustrates the
importance of taking into account the spectral
characteristics of the light source in the formation of
the color image. A spectrum variation can lead to a
noticeable change in the object aspect. Thus, two
images acquired under different lighting conditions
will not be easily comparable if the image context is
the only available information. On the one hand, this
can constitute a significant handicap when developing
an automated segmentation protocol. On the other
hand, it is possible to optimize object illumination in
order to highlight some interesting color or spectral
characteristics, or hide some irrelevant color
information.
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Polished surface

Rough surface

Fig. 3. Influence of the surface finish of a material on its visual aspect (same marble, same surface

illumination, but different roughness).

Polished section - Sunny day

Polished section - Cloudy weather

Fig. 4. lllumination influence on the human perception of color (coal under microscope).

TWO DIFFERENT APPROACHES TO
COLOR QUANTIFICATION

Color can be described as a spectral power
distribution in the visible part of the electromagnetic
spectrum. This description is not directly linked to the
human description of color sensation. Depending on
the (color) application, it can be useful to speak about
physical color, psycho physical color, perceived
color, or cognitive aspects of color.

In this section, we will present two different
approaches to color characterization: the first one is
based on a psycho physiological approach; the second
one corresponds to an industrial problematic concerning
the measurement and the prediction of colors.

Psycho physiological aspect of color

The human eye does not analyze the inpiging
color stimulus according to a uniform sampling
process of the spectrum: the spectral power
distribution of the stimulus S() is not sampled by the
eye with a constant step. It is significant to examine
the working process of the human eye; this constitutes a
useful prerequisite in the design of color spaces
related to psycho physiological and cognitive aspects
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of color; furthermore this makes the evaluation of a
frame grabbing system potentialities possible in terms
of color information quantification.

The color stimulus excites different types of
photoreceptors located in the superficial part of the
retina (Seve, 1996). These specialized nerve cells
contain photosensitive pigments that are able to
transform light energy in an electrical (nervous)
signal. There are two types of photoreceptors that
have a non-uniform spatial distribution at the surface
of the retina (Roorda and Williams, 1999):

- Rods are reserved for the perception of light
intensity. Their spectral sensitivity vary with the
wavelength. The sensitivity curve is a bell-shaped
curve with a maximum at 498 nm in the case of
photopic vision. At low light level (scotopic vision)
only rods are active with a higher maximum
luminous efficiency (555 nm). The light sensitive
pigment in rods is called rhodopsin.

- Cones are less sensitive to light intensity; they are
reserved for color perception and are only
efficient for diurnal vision. These cells are
concentrated in the central part of the retina
called fovea. There are three different types of



cones: L. cones have a peak sensitivity at 564
nanometres; M cones have a peak sensitivity at
533 nm; S cones have peak sensitivity at 437 nm)
(Bowmaker and Dartnall, 1980). Each type has a
particular visual pigment (erythrolabe for L
cones, chlorolabe for M cones and cyanolabe for
S cones) but there is a noticeable overlap between
cone sensitivities.

Fig. 5 presents the estimated spectral sensitivities
of photoreceptors. As it can be seen in Fig. 5, there is
a marked overlap between L and M cones: thus L and
M responses to a stimulus will be highly correlated.
The S sensitivity is definitively lower than the M and
L sensitivities (low S density in the fovea). Thus, the
spatial resolution is much lower for blue and violet
than for other colors.
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Fig. 5. Estimated spectral sensitivity of the

photoreceptors of the human eye: I(1), m(1), s(4) and
r(4).

Cone responses to a stimulus S(A) are
obtained by integration according to Eq. 2:

A max
1= 1) S00.dA

m= [ m(1).S00).d @)

s= [0S

A good understanding of the behavior of the L, M
and S cones is helpful in the design and the
calibration of a color image sensor.

Cone responses are transmitted to the cerebral
cortex via a complex process that involves
interactions between the different signals. There is no
direct relation between cone activity and sensation.
Transmitted nervous signals are transformation of the
cones initial responses. These transformations consist
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in weighting, combining and multiplexing the
different signals (De Valois, 1965).

The final combination in the brain seems to
generate an opponent color system (three channels:
an achromatic black/white channel and two chromatic
red/green and blue/yellow channels) (Faugeras, 1979;
Bedat, 1998). This corresponds to the Herring's
Opponent Theory (1878). Then, a neural image of an
object is formed in the cerebral cortex by conscious
reasoning (through explicit knowledge). A person
will describe the color appearance of a plain surface
according to three attributes that are not connected in
a simple way to the stimulus spectral power distribution,
the hue, the luminance and the saturation. Thus, the
operation of the human visual system leads to a non-
uniform perception of luminance and chromatic
attributes of color. In addition, two stimuli with very
different spectral power distributions (metameric
color stimuli) will induce the same color feeling
because of spectral power distribution of light, or
because of the objects spectral reflectance. Human
visual system does not process the color stimulus
linearly.

The human visual system generally deals with
complex scenes. Perception processes involve an
integration of the global characteristics of the scene.
The perceived colors cannot be expressed simply
through a local approach. The apparent color of an
area is influenced by its neighborhood (Barnes et al.,
1999; Longere et al., 2000). Furthermore, the human
visual system is able to recognize colors independently
of lighting conditions; it can also balance transparency
effects (D'Zmura et al., 2000).

Actually, there does not exist any color
quantification system taking into account all these
phenomena.

Colorimetry

A basic hypothesis in colorimetry is that color
stimulus can be measured and quantified. Colorimetry
concerns industrial problems: how to compare the
color of different plain samples? How to formulate a
color (Judd and Wyszecki, 1975)?. Colorimetry
considers only plain samples and it is a restrictive
approach; it does not take into account the complex
interactions discussed above.

Measurement and imaging devices work on the
basis of the trichromatic properties of the human
visual system (Séve, 1996). The trichromatic theory
of color vision was proposed in 1801 by Thomas
Young, and rediscovered by Hermann Von Helmholtz
around 1852. This theory is based on the color
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matching experiments performed by Maxwell. The
Young-Helmholtz theory and the Herring's opponent-
process theory complement each other. In the
trichromatic approach, most of the color stimuli S(%)
can be reproduced by the mixture (superposition of
light, i.e. addition) of three independent monochromatic
lights called primaries. It is possible to perform color-
matching experiments using monochromatic test light
for each wavelength (Fig. 6). For a given set of
primaries, a set of three curves can be obtained.
These  color-matching  functions are called

;(ﬂ),g(ﬂ),l_?(ﬂ). They correspond to the amount of

each primary that would be required to match a
defined amount of monochromatic light (test light)
for a «normal» observer. Of course, color matching
functions derived for different primary triplets would
differ.

Fig. 6 shows the color matching functions
corresponding to a set of red, green and blue
primaries. The red color matching function shows a
negative zone. Some monochromatic lights cannot be
matched by any addition of these three primaries; in
order to achieve a match, it is necessary to add a red
light to the monochromatic test light. This problem
arises for any set of physically realisable primaries.

Tristimuli values are equal to the amount of each
primary needed to match a color.

Colorimetry is a color specification system
developed by the Commission Internationnale de
I'Eclairage (CIE) (Wyszeski and Stiles, 1982).
Colorimetry aims at describing the interaction
between color physical aspects and physiological
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characteristics of the human visual system. Its main
goal is to determine if two stimuli will visually match
when they are viewed under controlled lighting and
viewing conditions. It is based on the following
prerequisites:

- The set of primaries adopted in 1931, by the CIE,
corresponds to three monochromatic lights with
wavelengths of 700 nm, 546.1 nm and 435.8 nm,
respectively. It defines the behavior of the
Standard Colorimetric Observer.

- Specific viewing conditions have been used to
define the standard set of color-matching
functions. They define very precisely how an
object has to be measured. As said previously,
lighting conditions play an important role in color
perception. The CIE defines several illuminants
which are specified in terms of the relative energy
tabulated for each wavelength (all illuminants
cannot be physically realized as a light source).
The colorimetric values are not appearance
descriptors. They much rather provide a tool for
evaluating differences between two stimuli (only
in case they are close).

- The (R, G, B) tristimuli values are obtained by
summing over the visible spectrum the product of
these three functions with S(A):

R = """ F(2)S0.).dn

N J.kmin r( ) ( )

G=["" g0 S 3)

B= [ "0 S0

Color matching functions 1

I =
Wavelength,nm

Fig. 6. Color matching functions obtained by color matching experiment (at a given wavelength, the values of

the three functions r(/l),g(ﬂ),b(/l) give the respective amounts of R, G and B primaries required to

reproduce the perceived test color.)
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Color matching functions
( solid line : 2° observer -dashed line : 10° observer)

LAFON D ET AL: Color images

/-;.- L i

CIE 1931 (x, y) Chromaticity diagram
(projection of the (color space on the X+Y+Z=1 plane)

Wavelength, nm

N

X

Fig. 7. ;(/1),;(/1),;(/1) CIE standard color matching function: the three matching functions are positive - the

area under the three matching functions is the same - The y(1) function corresponds exactly to the luminous

efficiency function of the eye.

As previously said, (A1) shows negative values.
This is why the CIE has mathematically defined
positive observer matching functions x(A), y(1),z(A)
(Fig. 7). The corresponding X, Y, Z tristimuli values
are always positive. Color matching functions depend
on the viewing angle. The CIE defined accordingly
two different standard observers corresponding to a
maximum viewing angle of 2° and of 10°, respectively.

The CIE X, Y, Z matching functions do not

correspond to physical primaries. The (X, Y, Z)
tristimuli values are obtained from Eq. 4:

X = j;“f“g(x).sm).dx

Y- jf::’?(x).S(x).dx @)

Z= j:;:xé(x).smdx

The (X, Y,Z) values can be obtained from CIE
standard (R, G, B) trislimuli values from Eq. 5:

X 2.7690 1.7518 1.1300| |R
Y |=]1.0000 4.5907 0.0601|e¢| G %)
Z 0.0000 0.0565 5.5943| | B

CIE RGB and XYZ color spaces remain linearly
related to the spectral distribution of color stimuli. (R,
G, B) and (X, Y, Z) color spaces are not psychometric
(i.e. non-uniform): when just noticeable visual
differences are produced, the two corresponding
points in (R, G, B) or (X, Y, Z) color spaces are not
equi-spaced throughout the color space. In 1976, the
CIE proposed two pseudo uniform color spaces called
CIEL*a*b* (Fig. 8) and CIELuv. They have been
mathematically designed in accordance to matching
experiments on close colors. Some experimental
work has been performed in very precise viewing
conditions so that the results cannot be generalized to
any other viewing contexts. Values are calculated
from the (X, Y, Z) color space in a non-linecar way
(Fig. 8). In these color spaces, the just noticeable
difference is almost constant throughout the entire color
space: an Euclidean distance corresponds to a color
difference measurement (quantitative representation of
the perceived color difference between a pair of
colored samples); an equal distance corresponds
approximativaly to an equal color difference. This color
difference measurement is relevant when applied to
close colors (what would be the meaning of a color
difference between a green and a blue?): thus it is
supposed to be perceptually consistent, from a
perception point of view.

S66



Image Anal Stereol 2002:21(Suppl 1):S61-S74

| White

Fig. 8. CIEL*a*b* pseudo uniform color space.

As said above, the CIELab color space has been
experimentally designed to measure the color
difference of plain samples in a set of standard
conditions. It separates the achromatic brightness
information and the color information. In this color
space, the hue is quantitatively defined as arctan
(b/a) (angle between the color vector and the +a

axis) and the chroma corresponds to +a®+b?
(distance between the color locus and the midpoint).
The brightness is represented vertically by L, with
values ranging from 0 (black) to 100 (white).

COLOR IMAGE GRABBING

There exist a wide range of imaging devices
(see the example in Fig. 9) whose functions are
image acquisition, image processing and image
analysis. They are initially designed to quantify and
display color images and not to measure color: in
order to measure a color it remains to define a
device independent color space. It is essential to

CCD camera

a*—soo[‘f[%N]_f[%Nﬂ
e 200[,/‘[ %Nj‘f [%NH

1
aé,a >0.008856

a)=
{7.787& + 1%16,otherwise

with (XN N Yn V4 0 )tristimulus values of a white stimulus under a given

standard illuminant

take a system approach to digital color imaging in order
to allow the rational use of color in a material
characterization process; if color is considered as a
measurable property, the acquisition system must be
considered as a measuring apparatus and the user must
control all the electronic settings.

Image capture

Image acquisition concerns the processing of
electronic  information from different sources
(photoreceptors) that are not standardized (Giordanni and
Madden, 1997; Laflaquiére et al, 1998; Hardeberg,
1999). Most of image sensors in videocameras,
scanners or digital photocameras are CCD-sensor
(Charge Coupled Device). A CCD sensor is color blind:
in order that it produced a color image, it is necessary to
filter the incoming light. Different sources capture color
stimuli in a different way. The spectral responsitivity of
sensors differs among systems; of course none of them
corresponds to CIE standard observer color-matching
functions (Fig. 7).

Analog signal :
Image Capture

b

-
Stimulus ﬂ

Sample =

- -
o I pe

Fig. 9. Color imaging system.

~— 1A

Frame grabber

Analogic/digital conversion :

Image Coding

-
”!.’

Digital image
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In order to permit the color management of an
acquisition system, it is necessary to study output
signals from the three video channels (Red, Green
and Blue output signals). Depending on the goal of
the performed study, it is more or less necessary to
control the working of the acquisition system: when
visual information is displayed for human
observation, the acquisition and display device
must be adjusted so that the image is realistic. In
order to measure with a camera the color
characteristics of a heterogeneous sample, both
accuracy and invariability of the color capture must
be studied. In a characterization process, if the
studied element has a special spectral behavior in
the visible range (color signature), the acquisition
system must distinguish this specific signature.

So it is significant to analyse:

- The noise that corrupts signals: Dark current
can be statistically estimated through the
acquisition of a set of black images. The non
uniform spatial response of a sensor can be
compensated by using of an average image
obtained from a white surface viewed under
diffuse lighting conditions.

- Camera and digitizer board settings (gamma
correction, white balance, profit, offset...)
(Sangwine and Horne, 1998; Berns, 2000).

- The signal sampling and quantification.

- The sensor spectral responsitivity. It is important
to analyse trichromatic capture of the original
color stimulus through Charge Coupled Device
sensors. The linearity of the sensor responses
has to be analyzed.

A point of importance is that cameras can
capture the color through physically realisable
primaries (the R color matching function shows a
negative part that cannot be reproduced by a
sensor; a sensor is not able to give a negative
response). Their spectral responsivities will never
be shaped like CIE R, G, B color matching
functions. The R, G and B color filters used in
CCD cameras are not standardized; they differ
slightly with the filters required for color
measurements (colorimeters). In others words, each
acquisition system has a specific color gamut
(range of colors that can be generated by mixing
the chosen primary colors). Therefore, the color of
two objects can be metameric with respect to
camera sensors and non-metameric with respect to
a human observer. When the acquisition process
aims at obtaining a device-independent image, it is

LAFON D ET AL: Color images

necessary to calibrate it in order to obtain device-
independent color values. When the color is considered
as the property to be measured on the image, it is
necessary to calibrate colorimetrically the acquisition
system: in order to determine how an image acquisition
system actually sees color, it is required to compare
sensors values and colorimetric values obtained on
plain surfaces. This operation requires the capture of a
color target (GretagMacbeth ColorChecker, Kodak Q-
60R1 target, IT8.7 Agfa target, ...) where all the values
are measured with color instruments such as a
spectrophotometer.

Color coding

The efficiency of a digital color imaging system
depends partially on the coding of the processed color.

A color system or color space is altogether a means
to systematically organize the set of all possible
perceived colors. Many device-dependent and device
independent color systems are proposed to the user. An
universal color system does not exist. Generally color
systems are three-dimensional spaces portraying the
trichromatic properties of the human visual system.
Each color space is designed to manage some specific
properties of color. It is related to a color model
generally based on specific primaries and specific
viewing conditions: a color CRT monitor does not work
with the same R, G and B primaries than a color video
camera.

Color spaces can be classified in four categories:

- physiologically inspired systems based on
primaries: (R, G, B), (Cyan, Magenta, Yellow color
system used for printing), (CIEX, Y, Z used for
color measurement and formulation), ...

- systems based on Luminance-Chrominance
dissociation: (H, S, V Hue, Saturation, and Value
color space used to select color from a color palette),
(Y, I, Q space used by U.S. Commercial Color
Television Broadcasting), (A, C1, C2) opponent
model based on opponent primaries (yellow-blue and
red-green for the chromatic information - black/white
for the achromatic information)(Faugeras, 1979), ...

- uniform systems (for visual perception): (CIEL*a*b*
color space designed for determining perceptual
color differences in some specific viewing
conditions), Munsell color order system (Value,
Chroma, Hue) (Munsell, 1969), ...

- color systems with independent axes specifically
proposed for image processing (non correlated color
components): (I1, 12, I3) (Ohta et al., 1980), ...
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Of course, each color space has its own
advantages and drawbacks. For instance, color
systems such as the L*a*b* are obtained through a
non-linear transform in order to achieve perceptual
uniformity. They lead to real number coding and
non-uniform sampling of color space; some
numerical instabilities may be encountered.

Effectiveness of color coding depends on how
it is interpreted by the user. A color space must be
selected in agreement with the concerned
application (the relevant color information must be
captured, and coded). As previously said, each
imaging system has a specific color gamut. The
corresponding color components are defined in a
device-dependent way, and the device dependent
color space is restricted to the numerical sampling
of only a part of the natural color gamut (range of
all possible colors).

IMAGE PROCESSING AND
ANALYSIS

Once a numerical color image is captured and
coded, the operator has to transform it in order to
identify the relevant and the non-relevant information.
An image may be viewed as a set of objects where
each object presents a certain "visual homogeneity".
This homogeneity is partly related to the
radiometric attributes of the pixels and also partly
related to some spatial considerations (Fig. 10).

Fig. 10. Influence of radiometric attributes and
spatial considerations on visual "homogeneity":
observers will see four squares even if the two
textured ones have a very important radiometric
inhomogeneity.

FILTERING AND SEGMENTING OF
COLOR IMAGES

Here, our intention is to draw the reader's
attention on some general points of importance in
filtering and segmenting color images (Lambert and

Macaire, 2000). A preliminary step of image processing
consists in defining exactly what homogeneity is (in
relation to the problem of characterization to be
solved). In other words, it is necessary to define some
geometric and color attributes that characterize the
areas of interest in the image.

Filtering a color image aims at removing all non-

relevant color information while preserving the relevant
color information that will be used in the segmentation.

The pre-processing step consists in filtering noise.

The various filtering strategies applied to color images
will not be detailed. Color images have specific
characteristics compared to grey level images:

Color images are multicomponent images. There is
a correlation between the color components.

It is possible to change the working color space
according to the applied filters. As previously seen,
each color space has some specific properties that
may be used in a filtering process.

It is significant to ensure the color integrity of the
image and to avoid the appearance of false colors
during the filtering step. This is all the more true
when color is considered as a psychovisual
property. Nevertheless, the false color syndrome is
not as serious as it seems, a few false pixels within
a multitude being not easily distinguishable.

Scalar image filtering is based on ordering relations.
To extend scalar methods to the color case, it is
necessary to sort the color vectors corresponding to
the color coordinates of every pixel.

Two approaches are possible in color image

filtering (Chanussot, 1998):

A marginal approach that considers each component
independently. This approach ignores totally the
correlation between color components.

A vectorial approach where the image is globally
processed (use of a partial or total ordering relation
in a multidimensional space) (Goutsias, 1992;
Chamussot and Lambert, 1998). The goal is to
establish an ordering relation that respects the
meaningful perceptual attributes of the image. At
preent, there is no general answer to the false color
problem. The first step in a filtering process consists
in establishing a quantitative criteria (distance) to
define and detect false colors of a filtered image in
an appropriate color space. False colors must be
defined with respect to the application.

The segmentation step consists in partitioning

images in order to extract the meaningful information.
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The final result is a binary, or a labelled image.
Two dual approaches are possible for segmenting a
color image:

The extraction of discontinuities. The color
edge detection is based on gradient operators
either in a monodimensional space or in a
multidimensional space.

The detection of homogenecous areas.
Neighborhood-based segmentation analyses
simultaneously spatial and color information in
order to split an image in several regions.
Segmentation can be based on an a priori
knowledge of the color properties of the objects
in the image. A very helpful preliminary step to
image segmenting may consist in a change of
the color space leading to a numerically more
tractable representation of the relevant

LAFON D ET AL: Color images

information (color coding in accordance with
perceived color differences or with color contrasts).
Again, the definition of homogeneous regions does
not systematically correspond to close areas in the
selected color space. Objects presenting a color-
textured surface are rather difficult to extract.

Fig. 11 shows the results obtained with a segmentation
process using the color attributes of the different
mineral phases. In order to ease the segmentation and to
guarantee the reproducibility of the characterization
process, a change of color space has been first
performed. The Lab color space has been chosen
because it is a device independent color space. The
different mineral phases have been colorimetrically
characterized. For the considered material, the Lab
space allows a segmentation by using successive
threshold operations in the different color planes.

Initiale image
RGB color space

Plan b

blue phase

Fig. 11. Characterization of a mineral mixture - microscopic image - four phases (a blue one, a brown one, a
grey one and a dark one).
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Color image analysis

Several industrial applications involving color
image analysis already exist (Colot et al., 1998;
Raffy et al., 1999; Hanbury and Gardieux, 2001). The
quantitative analysis presented herein aims at
characterizing color textures in terms of psychovisual
impact on the end-user. In fact, sensorial analyses
are now performed on plain colors, and do not
describe random texture color variability in terms
of perceived visual difference. It is necessary to
define a system allowing the correspondence
between perception and measurements on textured
surfaces. Along that line, we perform a statistical
and spatial analyses of the color attributes of the
object under study. It is a necessary condition in
order to manage correctly the color characteristics of
the product. This study is a preliminary experiment
allowing a) to define control protocols based on a
sensorial approach, b) an automated monitoring of
manufactured products with a color texture that is
commercially used. Furthermore, it provides a basis
for a virtual formulation of aspect related to a
realistic image representation of the prototyped
product (in a computer aided design process).

Fig. 12 presents two images of wood boards:
(a) a massive wood board and (b) a MDF (medium
density fibre) board. Of course, without any
specification about illuminant, the specification of
the object color by any tristimuli values is

meaningless. The Acquisition has been performed
under the same lighting conditions. The acquisition
system has been calibrated in order to prevent any
lighting drift: the color has been coded in the (X, Y, Z)
color system (device independent) (De Valois, 1965).
The objective of the analysis is to determine which
relevant parameters can be obtained from images in the
sense of a psychovisual color texture description. This
is why color is ultimately expressed in the Lab system
(Fig. 8) by introducing physical information concerning
lighting conditions in the coding system (a non-uniform
spatial response of the sensors measurement of Xn, Yn,
Zn). The observed variability in the a plane is partly
due to a defective red channel acquisition in our
acquisition system: the upper part of images shows
systematically a reddish zone (Fig. 12). We did not
correct this defect. The a plane, very sensitive to this
artefact, is accordingly not studied.

The statistical analysis of the pixel color attributes
in the two images shows that the mean values and
standard deviations are very close, both for the L and b
planes. However, their visual appearances differ.
Massive wood board image highlights an alternation of
clear stripes vs. dark ones due to the color of final wood
(winter wood) and initial wood (spring wood) fibres.
For the MDF, fibres are mixed and a plain appearance
is perceived. Thus, relying on the sole statistics for
texture color characterisation is here insufficient. This
is why we consider below the analysis of the spatial
distribution of color image attributes.

L a b
Mean Std deviation Mean Std deviation Mean Std deviation
Massive wood 78,66 3,54 7.86 386 281 4,898
MDF 7778 133 6,28 368 24,03 421
(e}

Fig. 12. Wood images: (a) massive wood board (b) MDF board (c) Statistics for L, a b values obtained through

the calibration process
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The spatial analysis of the color information can
be performed separately for every component of the
color space (marginal approach): it consists in
analyzing the variogram of every component. The
variogram of an intrinsic random function is given by
Eq. 6 (Matheron 1967; Armstrong and Carignan,
1997).

y(h) = %Var[Z(x +h)—Z(x)] (6)

For a fixed angle, it indicates how different the
values become as the distance between sample points
increases.

The marginal approach does not give complete
information on the color texture because the observer
does not distinguish in its analysis information on L,
independently from a or b. In the Lab color space, the
Euclidean distance corresponds to perceived color
differences. It is the ACD (average color difference)
that informs about the color structure recognized as a
non-random texture by the observer. Spatial analysis
can then be performed from a more global point of
view. That consists in studying average color
differences as a function of the distance between
pixels along one direction (Eq. 7). It indicates the
variation of the colorimetric difference when the
distance between sample points increases.

0 5 10 15 20 25 30 35 40
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ACD(h) = lzn:AE(i,i +h)

n i

with AE(i,i+ h) = (7
\/(Li —L, )+ —a.,)’+0 -b,,)

The analysis of the variogram of the L and b
components (Figs. 13a-b), along a direction
perpendicular to the wood fibres, highlights
differences in the spatial repartition of L and b. The
calculated ACDs (Fig. 13c) express aspect
differences between the two images. As the
variograms of L and b, the ACD function for the
massive wood board shows periodic undulations
(with a period of about 5 mm) expressing alternance
of dark colored final wood and light colored initial
wood. Here again (Fig. 13c), the average width of the
stripes is 5 mm. Note that for the MDF, the
variogram presents a nugget effect (Matheron, 1967)
and is consistent with a purely random model with no
correlation between sample points, whatever the lag
is. The nugget effect may be caused either by
measurement errors or by the microstructure i.e., a
color component of the image whose range is smaller
than the smallest discrete lag at which the variogram
is computed. In our example, the use of the ACD
function, lower than 8 for MDF, is obviously relevant
in a quantitative approach to perception of color texture.

30

. W
€154

ACD

—— Massive wood
—— MDF

mm

40

(©

Fig. 13. Semi-variogram along the vertical direction (a) on L values (b) on b values (c) average color

difference.
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In image simulation, the L, a and b values must
be chosen one by one. Then, it becomes interesting to
evaluate the impact on visual perception of each
component of the color space. To define which of L
or b carries the most relevant information in terms of
visual perception, we have created a texture model
obtained from the interpretation of the experimental
variogram on the massive wood board. Then, we
varied separately the values of L and b, first in the
light strata and then, in the dark strata of the model
(Fig. 14). At last, we have compared the original
image and the modified ones.

a)

1 L change in v Hght tones r3

taiekal made |

) £ change in the dark venes 4

& change n dhe Hghs sonen s

fitiad medel
uu..-n-uus] [

Fig. 14. Evaluation of L and b changes — for each
zone L and b values are successively and separately
increased and decreased — a) corresponds to L
changes - b) corresponds to b changes.

-
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Fig. 14 shows that the observer is more sensible
to a variation of L than b in the color texture.

CONCLUSION

The use of color images in the characterization of
materials is an important challenge for scientific and
industrial applications. A pluri disciplinary approach
of the problem is necessary in order to correctly
manage color information. Going from grey scale
images to color images emphasizes the fact that
image acquisition systems play a central role in the
success of such an undertaking. Another very
important point concerns the sample preparation and
the applied viewing conditions. It is very convenient
to work with an a priori knowledge of the
physicochemical properties of the objects under
study. The characterization of visual properties of
materials is a new and interesting field of
investigation. It leads to a general thinking about
perception quantification: in an hedonist approach of
materials, it is very interesting to wonder and predict
how one material will «live» in its own
environment. The formulation of visual aspect in
material industry is a promissing way.
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