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ABSTRACT

This paper presents remote sensing sensors: SPOT and LANDSAT systems are the most important providers
of data in the 10-30 m spatial resolution range; NOAA (AVHRR radiometer) and SPOT4-5 (VEGETATION
radiometer) provide coarse spatial resolution (~1 km) but high frequency data. Microwave sensors are more
recently available (radar on board of ERS1, ERS2, and RADARSAT). The principal methods of data
cooperation to get benefits of these new technologies are described. Many combinations in the field of data
fusion will contribute to enhance the perception of the terrestrial surfaces. A tentative review of this domain
is proposed after a recall of a general definition. Finally, the present trends in image analysis for remote
sensing coming from the evolution of the orbital sensors are developed.
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INTRODUCTION

The paper deals with the evolution of satellite
technology and relevant data processing methods for
remote sensing of terrestrial surfaces. The first part
presents the current situation: SPOT and LANDSAT
systems are the most important providers of data in
the 10-30 m range; NOAA (AVHRR radiometer) and
SPOT4-5 (VEGETATION radiometer) provide coarse
spatial resolution (~1 km) but high frequency data.
Microwave sensors are more recently available (radar
on board of ERS1, ERS2, and RADARSAT).

Then, the expected payloads for the next years are
described with emphasis on sensors dedicated to the
measurement and the knowledge of land use and
terrestrial surfaces dynamics. The second part describes
the principal methods of data cooperation to get
benefits of these new technologies currently - or
about to be - operational in space. Many combinations
in the field of data fusion will contribute to enhance
the perception of the terrestrial surfaces. A tentative
review of this domain is proposed after a recall of a
general definition. The third part deals with the present
trends in the processing of remotely sensed images
coming from the evolution of the orbital sensors. The
current use of these data sets consists, first, in data
classification yielding to land use maps, and secondly,
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in computing linear combination of reflectances at
different wavelengths for environmental survey.

PRESENT AND NEXT PAYLOADS

The study of the “Earth System” from space
corresponds to a major interest in the scientific,
economic and political domains. The extreme
complexity of this system as well as the diversity of
the relationship between its compartments (atmosphere,
oceans, and continents), justify the launch on orbit of
different sensors dedicated to various applications.
These observations, and the Earth monitoring, are done
at several spatial and temporal scales and during long
periods. Several kinds of Earth Observations programs
exist. Some are dedicated to the study of the atmosphere
and the oceans, others to the study of continents. In this
paper, we focus on the latter and the main satellite and
sensors onboard are described in Table 1.

Since the launch of the first Earth Observation
satellite in the Sixties (i.e.TIROS), space data have
been largely used to study of the continents and the
littoral environment. These data are delivered by
LEO (Low Earth Orbit - orbit lower than 1000 km)
satellites. Satellites are used in the civil field for
scientific research, agriculture, regional planning or
major risks. This work is carried out at various scales:
global, regional, national or local.
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Table 1. Land use and terrestrial surface dynamics operational sensors.

SATELLITE SOURCE LAUNCH SENSOR MODES No. of RESOLUTION
NAME Channels (meter)
Landsat-5 us 1984 MSS Multispectral 4 82
™ Multispectral 6 30
Multispectral 1 120
SPOT-2 France 1990 HRV Multispectral 3 20
Panchromatic 1 10
IRS-1B India 1991 LISS-I Multispectral 4 72.5
LISS-II Multispectral 4 36,25
ERS-1 ESA 1991 AMI Radar 1 26
ATSR Multispectral 4 1000
RESURS-0O1-3 Russia 1994 MSU-SK Multispectral 4 170
Panchromatic 1 600
NOAA-14 US 1994 AVHRR Multispectral 5 1100
IRS-1C India 1995 WiFS Multispectral 2 188
LISS-III Multispectral 3 23
1 70
Pan Panchromatic 1 5,8
ERS-2 ESA 1995 AMI Radar 1 26
ATSR Multispectral 4 1000
RADARSAT Canada 1995 SAR Radar 1 9-100
ORBVIEW-2 US/Orbimage 1997 SeaWiFS Multispectral 8 1,30
(SeaStar)
IRS-1D India 1997 WiFS Multispectral 2 188
LISS-III Multispectral 3 23
1 70
Pan Panchromatic 1 5,8
SPOT-4 France 1998 Végétation-1 Multispectral 4 1150
HRVIR Panchromatic 1 10
Multispectral 4 20
NOAA-15 Us 1998 AVHRR Multispectral 5 1100
(NOAA-K)
Landsat-7 UsS 1999 ETM+ Multispectral 6 30
1 60
Panchromatic 1 15
IRS-P4 India 1999 OCM Multispectral 8 360
(Oceansat)
IKONOS Space Imaging 1999 IKONOS Multispectral 4 4
Panchromatic 1 1
CBERS-1 China/Brazil 1999 CCD Multispectral 5 20
IRMSS Multispectral 3 80
1 160
WFI Multispectral 2 260
TERRA us 1999 ASTER Multispectral 14 15-30-90
(EOS AM-1) MISR Multispectral 4 275
MODIS Multispectral 36 250-500-1000
NOAA-L UsS 2000 AVHRR Multispectral 5 1100
EO-1 UsS 1999 Hyperion Hyperspectral 220 30
ALI Panchromatic 1 10
Multispectral 9 30
LAC Hyperspectral 256 250
EROS-Al ImageSat Int. 2000 EROS-Al Panchromatic 1 1,5
Quickbird DigitalGlobe 2001 Quickbird Multispectral 4 2.44
Panchromatic 1 0,61
PROBA ESA 2001 CHRIS Hyperspectral 62 50
AQUA US 2002 MODIS Hyperspectral 36 250-1000
(EOS PM-1)
SPOT-5 France 2002 Végétation-2 Multispectral 4 1150
HRG Panchromatic 1 2,5
1 5
Multispectral 4 10
HRS Panchromatic 1/stereo 5x10
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Between 1972 and 1999, in the optical domain,
two kind of complementary sensors are available.
They both have a reduced number of spectral bands
(maximum 10) comprised between about 0.5 and 1.8
um and having a 0.2 um width:

— LS (Large Swath) instruments as AVHRR or
VEGETATION (Fig. 1) are multispectral imaging
devices and provide daily data about the biomass for
example, with a spatial resolution of approximately
1 km and a swath (width of the acquired image)
of more than 1000 km.

— MS (Middle Swath) instruments as LANDSAT,
SPOT or IRS are also multispectral imaging
devices but are mainly used for cartography. They
have an increasingly fine spatial resolution, for
example 30 m from LANDSAT-TM to 20 m for
SPOT 4 and 10 m for SPOT 5 (Fig. 2) combined
with a swath of roughly 100 km. Contrary to LS
sensors, they have a coarse temporal frequency.
They also have a panchromatic imaging device
providing data at 15 m for LANDSAT-TM, 10 m
for SPOT 4 and 2.5 m for SPOT 5.

Fig. 1. Image from VEGETATION sensor on board
SPOTS covering the South West part of France.

1:: Em.:'qu. B

Fig. 2. Comparison of Spot 4 and Spot 5 images of
Toulouse, France (panchromatic image at 2.5 m and
5.5 m for Spot 5 and 10 m for Spot 4).

S89

Thus, all the available sensors provide several kinds
of images:

1. First of all, for technical reasons, the more the
spectral band is narrow, the coarser the spatial
resolution is. So, some images have a large
spectral band covering the entire visible band and
sometimes part of the infrared one, and a high
spatial resolution; they are called panchromatic
images. Others have a mid spectral band and a
mid resolution: one image corresponds to one
colour. In this case, each sensor can acquire
several images in few spectral bands and provides
multi-spectral images, often in the red, the green,
and the near-infra red range. MS and LS sensors
provide these two kinds of image.

2. Secondly, a large swath is combined with a good
temporal frequency of acquisition.

3. Finally, because of the limited size of a CDD
camera, a good swath implies a poor spatial
resolution.

Practically, MS sensors provide multi-spectral data
with a spatial resolution comprised between 30 m and
2.44 m depending on the technology employed and
panchromatic data with a spatial resolution of 2 to 4
times less. Then, the swath varies between about 100
km and 10 km, respectively. Finally, their temporal
frequency is at best one month. On the contrary, LS
sensors provide multi-spectral data with a spatial
resolution of 1 km, a daily temporal frequency and a
swath of about 1000 km. In the future, the two
principal classes of LS and MS sensors will continue
to be programmed, at least until 2007. At the same
time, a diversification of the payloads is noticed. It
moves toward the three following directions (Fig. 3):

- LS sensors tend towards an improvement of their
spatial resolution in a ratio 2 or 4, with, in
parallel, an increase in the number of spectral
bands that become narrow (AA =1 to 10 nm, i.e.
Hyperspectral LS type). For examples, MODIS
(1999) and LAC (1999) are characterized by an
improvement of their spatial resolution (1 km -
>300 m) and spectral (more than 30 bands).
These new imaging devices are more particularly
dedicated to the study of the environment and
significantly improve the knowledge of the color
of the oceans (phytoplancton, sedimentation, and
pollution).

- The MS sensors move toward two different
directions: the high spectral resolution or the high
spatial resolution.
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- Indeed, for sensors with a high spectral
resolution (i.e. Hyperspectral MS type), the
narrowness of the spectral bands does not
allow yet the simultaneous improvement of
the resolution. One of the main technological
difficulties is the storage and the transmission
of a significant amount of data. HYPERION
(2000) and CHRIS (2001) combine a spatial
resolution of about 30 m with an important
number of spectral bands (between 30 and
250). They are used for the study of
agriculture, environment and the littoral.

- The sensors with High Resolution (i.e. HR type)
represent a prioritary tendency. The gain in
resolution is done to the detriment of the swath.
Currently, one of the principal axes of R & T
consists in increasing the swath without loss of
spatial resolution. IKONOS (1999), EROS
(2000), QUICKBIRD (2001) are examples of a
new generation of sensors characterized by
metric and submetric resolutions (Fig. 4).

PLEIADES — HR will be launch in 2006 with a
resolution of 0.8 m. These very accurate data
are dedicated to regional planning or urban
environment cartography.

Moreover, in all cases, improving the temporal
frequency is performed via two kinds of innovations.
On the one hand, the improvement of the platform
agility will enable the system to acquire images of an
area of interest, even if this area is not exactly
beneath. Secondly, the use of constellations is a
powerful means to improve the access time to the
zones of interest (the system SPOT with 3 phased
satellites allows a daily observation of all the Earth).
Thus, the space systems of the 21* century meet
major needs requested by the users: a fine resolution
in order to approach the aerial observation, a greater
number of narrow spectral bands to improve the
recognition, a strong repetitivity in order to be able to
ensure the monitoring of certain events. Nevertheless,
it is not currently feasible, to combine these various
performances on a single sensor.

Spectral resolution (nm)

© - High Resolution sensors * i.e. HR type” (Swath ~10 km /Résolution < Im)

@ - Hyperspectral sensors (A A< 10 nm)
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Fig. 3. Evolution of the main payloads (only in optic domain). (*) Large Swath sensors i.e. LS type) (> 1000km
/ Resolution ~1 km), (**) Middle Swath sensors i.e. MS type (~100km / Resolution : 10-30m).
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Fig. 4. Images of Washington D.C. at 0.60 m and 1.2
m resolution (IKONOS satellite).

Then, innovative concepts enable the creation of a
DTM (Digital Terrain Model) providing 3D maps.
The SRTM instrument (Shuttle Radar Mapping
Ground) provides a DTM with a vertical accuracy of
30 m over the whole planet; HRS (High Resolution
Stereoscopy) on SPOTS5 (Fig. 5) carries out also in a
systematic way an accurate DTM (vertical accuracy
3-5m); satellites such as IKONOS, EROS and
QUICKBIRD get, but at request, a DTM more precise
than the meter.

area using both HRG and HRS sensors on board
SPOTS.

Finally, one of the most promising solutions
could be a high-resolution geostationary observation.
Indeed, this would authorize a quasi-permanent
observation of the entire hemisphere located under
the platform. A geostationnary MS sensor is already
technically possible; it could carry out the monitoring
of the hemisphere at a resolution of 10 or 30 m with a
swath of several hundred kilometers. This type of
instruments enables a high spectral resolution because it
can adapt the time of integration of the acquisition,
thus improving the level of brightness measured.
Currently, our research axis is focused on the
improvement of the spatial resolution of geostationary
sensors in order to approach the meter. This cannot be
done without a major technological jump that may
consist in putting into orbit around the Earth a system
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composed of several large controlled telescopes (3 or
4). This technology, called Optical Opening Synthesis
System, is already used on the ground in the field of
astronomy. The final high-resolution image (2 m
approximately) is performed by the synthesis of the
images acquired by the various telescopes.

In conclusion, we can note that the beginning of
decade 2000 is characterized by a very great diversity
of satellites placed, either in geostationary orbit, or in
LEO orbit. They collect data of varied resolutions
(from 25 km to 0.6 m), in various spectral bands
(mono, multi, and hyperspectral).

MIXING THE DATA

So, all the data acquired have complementary
properties. For several applications, a good spatial
resolution, a good spectral resolution (several images
having narrow bands) and a good temporal frequency
are necessary. Consequently, the only acquisition of
images is not enough and further processing such as
fusion are needed. When the spatial and spectral
resolutions are important, we usually combine
panchromatic and multi-spectral data. It is the most
common fusion in remote sensing. When the
temporal frequency and the spatial resolution are
necessary, we combine MS multi-spectral with LS
multi-spectral data. Of course, mixing every kind of
images has a great interest, but the current techniques
of image analysis often do not product good enough
results. A lot of fusion methods exist. Herecafter, we
focus on those methods dedicated to multi-resolution
images. Such methods can be separated in three
classes based on different theories: statistics,
colorimetry and signal processing, respectively.

Three main processes are derived from statistics.
First, the unmixing of heterogeneous pixels is
performed as follow:

- A high-resolution image, for example coming
from a MS sensor, is used to determine the
location of objects in a studied area.

- Coarse resolution images coming from LS sensors
are considered to be composed of heterogeneous
pixels, mixing several themes underneath. Using
the composition of the area determined on the
high-resolution image, it is then possible to express
the reflectance of a coarse pixel according to the
unknown reflectance of each theme weighted by
its surfaces.

- Having a temporal series of coarse resolution
images enables the calculation, by linear regression,
of the unknown reflectances of the various themes
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mixed in a coarse pixel. The result is not a
temporal series of HR images: this method does
not provide the geometrical repartition of the
themes contained in coarse pixels, but only the set
of reflectances at each date and for each pixel.

This method is often used to merge LS and MS
images (Quarmby et al., 1992; Puyou-Lascassies et
al., 1994; Faivre and Fisher, 1997; Zhukov et al.,
1999; Cherchali et al., 2000; Minghelli ef al. 2001).

The second method is to perform a PCA on all
the data available. The principal components keep
most of the information, especially the information
about small elements, visible only on the high-
resolution image(s). This method is very simple, but
this kind of mixing looses all the spectral information
of the different images (Yesou et al., 1993; 1994;
Chavez and Kwarteng, 1989).

The third method merges one panchromatic and
one band of the multi-spectral data. The high-resolution
image is degraded to the coarse resolution. Then one
image is expressed according to the other one thanks
to a linear regression. The coefficient of the regression
is used at the high resolution and enables the calculation
of a merged image showing high spatial and spectral
resolutions (Tom, 1986; Price, 1987; Pavel and Sharma,
1996; Sharma and Pavel, 1996; Diemer and Hill 2000).

The colorimetric approach concerns essentially
the fusion of a panchromatic and 3 MS multi-spectral
images. The multi-spectral data are sampled to the
size of the high-resolution image and coded from the
RGB (Red-Green-Blue) to the THS space (Lefevre-
Fonollosa and Cruchant, 1985; 1986; 1987; Cruchant
and Lefevre-Fonollosa, 1990). Then, the resulting
intensity image (I) is replaced by the panchromatic
image. Finally, the inverse transform panchromatic
image HS space to RGB space is performed. The
three resulting images are considered as the merged
product (Welch and Ehlers, 1987; Harris ef al., 1990;
Dwivedi et al. 2001). This method is very simple,
but, as PCA, it raises the problem of the conservation
of the spectral content of the merged images. Thus,
many improvements have been proposed (Carper et
al., 1990; De Bethune ef al., 1997; 1998; Paradella et
al., 1997; Shetselaar, 2001).

The different data can also be merged thanks to
arithmetic combination. This is the easiest method,
but the quality of the result greatly depends on the
input data. A preliminary operation is to sample the
coarse resolution image(s) to the size of the high-
resolution image(s). The images can then be mixed
by addition (Chavez, 1986; Chavez and Bowell 1988),

and / or subtraction and / or product (Filiberti et al.,
1994; Zhang, 1999; Liu and Moore, 1998; Liu, 2000).
Some authors (Cliche et al., 1985; Pradines, 1986;
Price, 1987) improved this kind of method.

Finally, three types of methods are derived from
the signal processing theory. Many developments rely
on the approach of Marr (1982) and correspond to a
complete characterization of transitions. In this
framework, the first kind of method is based on high-
pass filtering. The method consists in filtering a high-
resolution image using a high-pass filter and then to
inject the extracted high frequencies in a coarse
resolution image. Schowengert (1980) first developed
this method. To take into account the spectral
characteristics of the coarse resolution image, Chavez
and Bowell (1988) proposed to limit the amount of
high frequencies injected.

The second type of method is based on the
wavelet transform (Mallat, 1989). A wavelet transform
is carried out on the high spatial resolution image.
The coarse resolution image resulting from the
transform is then replaced by the coarse resolution
sensor image. Finally, the inverse wavelet transform
is applied. In fact, to avoid the problem posed by the
spectral differences between images, this technique
has been further refined. The principal groups working
on wavelet data fusion in remote sensing are Ranchin
and Wald (Ranchin, 1998; Ranchin and Wald, 2000),
Nunez et al. (1998a; 1998b; 1999a; 1999b) and Yocky
(1996). Yet, other works exist (Proenca and Flouzat,
1991; Proenca, 1992; Garguet-Duport et al., 1996;
Zhou et al., 1998; Scheunders and De Backer, 2001).

The last kind of method is based on pyramid
algorithms and provides a lot of different processes.
They have been studied by both Burt and Adelson
(1983) and Crowley and Stern (1984), who developed
the representation of images through Laplacian
pyramids. As far as fusion is concerned, a high-
resolution image is decomposed by a pyramid
algorithm to decrease its spatial resolution. During the
process, several images are created, some representing
the small elements of the images, others being a
coarser resolution version of the initial image. Then,
the inverse transform is performed with the coarse
resolution sensor image and the necessary small
elements. This kind of process can be used to merge
every kind of multi-resolution images, either
panchromatic and MS multispectral (Aiazzi et al.,
1998; 1999) or MS multispectral and LS multispectral
(Laporterie et al, 2000; 2001; Laporterie and Flouzat,
2002; Flouzat et al. 2001).
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To conclude, the main problems of remote sensing
data fusion are:

- on the one hand, the difference in spectral content
of the high and coarse spatial resolution images,
especially during the fusion of MS panchromatic
and MS multi-spectral images;

- on the other hand the huge resolution ratio, about
50, during the fusion between multispectral MS
and LS images.

The easiest methods, such as those based on high-
pass filtering, IHS transform, PCA and arithmetic
combinations provide a poor respect of the spectral
content of the coarse resolution image(s). The other
methods are more complicated to implement and use.
Consequently, the choice of a fusion process greatly
depends on the use of the merged product as well as
on the types of observed surfaces.

TRENDS IN THE PROCESSING OF
REMOTELY SENSED IMAGES

The apparition of HR MS sensor together with
the improvement of the temporal frequency of
acquisition and the growing use of fusion lead to an
increase of the amount of data to be processed.
Furthermore, the improvement of the spatial
resolution requires a renew of the traditionally used
image processing methods. Methods, currently applied
on decametric data, are based on classification and on
the calculation of indices to model landscapes.
Unfortunately, this kind of characterization is not
suitable when metric resolutions are concerned.

Current data use: classification, indices,
modelisation and forcing

Firstly, the classification process consists in
splitting an image into several classes of pixels.
Every pixel of one class is closer (according to some
criterion) to all other pixels of the same class than to
the pixels in any other class. Thus, it is to calculate
the best partition in the spectral band space (Ej). Let

C be the set of classes: C = {cl,...,ci}. The partition

is searched in the E) space having k dimension, each
corresponding to a spectral band. A metric is defined
(i.e., a distance in FE;. for example the Euclidean
distance). Then a training enables the calculation of
the i centers of the i classes. Classification methods
are the most frequently used in remote sensing to
produce land use maps. Examples can be found in
Irons et al., 1985; Lillesand and Kiefer, 1987;
Benediktsson and Swain, 1992; Bischof et al., 1992;
Heermann and Khazenie, 1992; Foody ef al., 1995.
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When the point is to focus on specific properties
of terrestrial surfaces, indices are used in remote
sensing (Perry and Lautenschlager, 1984; Huete, 1988;
Mougin et al., 1995; Verstraete and Pinty, 1996). For
example, the NDVI (Normalized Difference Vegetation
Index), defined as NDVI = (pNIR - pRED) / (pNIR + pRED)
(where pnir and prep are respectively the reflectance
in the Near InfraRed and Red domains) is the mostly
used index describing the chlorophylian behavior of
the vegetation. However, two situations happen:

- with MS decametric spatial resolution data, a
pixel represents a single kind of vegetation
characterized by the NDVI. However, a few
images are acquired during the year, and an
accurate study of the vegetation is not possible.

- with LS high temporal frequency data, the
number of observations per year is sufficient to
characterize the evolution of the vegetation all the
year long. However, the kilometric resolution
results in mixed pixels, each carrying information
about several types of vegetation.

That is why competitive fusion processes are
crucial.

Another typical approach is the integration of
remotely sensed data in the modeling of biosphere
processes (Goward and Dye, 1997; Cihlar et al.,
1997). In a first approach, images are considered as a
set of physical measurements and are the input data
for models. They enable the spatial extension of
models. Another common approach is this one: models
provide some characteristics such as reflectance and
temperature that can be also measured from space.
Remotely sensed images can be compared with the
output of the models, and the deviation is used as a
feedback engine to improve the model parameters.

Most important trends

However, the arrival of very high spatial
resolution images enables the perception of a new
range of objects. For example, in Fig. 4, a lot of low-
size objects are visible: vehicles, tree stems, marks on
the roads. Furthermore, the 0.60 m resolution shows a
vision improvement of these objects when compared
to the 1.20 m resolution case. This kind of perception
highlights the surface characteristics, morphologies
and objects organization. In front of this situation, the
current methods explained in the last paragraph are
no longer efficient; news methods begin to be
developed but very few results are already available.
Trends of the new processes are described hereafter.

1. Objects characterization and interaction with



FLOUZAT G ET AL: Present trends in earth terrestrial surfaces observation from space

geographical information systems (GIS).

New objects are now accessible from space and
can be integrated into GIS and used to improve
the modeling of spatial processes. Consequently,
the description of terrestrial surfaces and their
evolution should be improved. However, as
shown in Fig. 4, the increase of the spatial
resolution complicates segmentation processes that
should be improved by self-adapting prototypes and
interaction with GIS. Finally, coupling geographical
information interpretation and segmented structure
may leads to a better comprehension of images.

2. Researches coupling high spatial resolution and
high temporal frequency data.
As seen in section IV, data fusion hardly never
combines high spatial resolution and high
temporal frequency data. For example, Fig. 1
shows an area that can be observed every day
with large field sensors (in clear sky conditions).
Using both unmixing processes and multi-
resolution decompositions to combine temporal
series of LS images with few MS images should
provide MS temporal series and should be a good
compromise for spatio temporal approach. Another
important coupling to develop is the synergy
between optical and radar sensors, within and
outside the scope of data fusion.

3. Volume  description  and
characterization of surfaces.
Some of the new satellites, such as SPOTS5, own
two HR sensors designed to provide accurate 3D
images. This offers new opportunities for the
characterization of the vegetation morphology and
texture and enables the improvement of biophysics
description. Consequently, on the one hand
classifications may use height characteristics, and
on the other hand the use of 3D will become an
important  tool to  estimate  landscape
transformations.

morphological

Then, the domain of water resources is very
important, and 3D can provide information on
existing interactions between geometry and flow. Fig.
5 is a 3D reconstruction that uses SPOTS images to
represent this principle of description: at every points,
the geometry (slope, azimuth, ...) and the radiometry
(reflected part of the incident radiation) are available.

Finally, the geometry and the morphology of the
spatial distribution of the vegetation layers are
determining factors for hydrological processes. The
statistical characterization and the identification of
land use are insufficient and a specific quantification is
required. This is fundamental because the hydrological

processes depend on exchanges between the ground
and the atmosphere as well as on the processes of
spatial distribution of water flows in the watershed.
This quantification is the only way to improve the
description of these interactions in hydrological models.

CONCLUSION

In the next decade, the Earth Observation
technology is facing many challenges: sensor
technology improvement, data fusion and data
processing and precision surveying. Remote sensing
applications are complex, requiring data at global,
regional and local scales, and at several temporal
frequencies. In this framework, an important goal is
to continue the improvement of the sensor technology
in order to meet efficiently the users’ needs. Indeed,
despite the variety of satellites in orbit, there are still
lacks: processing methods must be adapted to the
payload diversity to provide high-quality "end
products" in two ways. The first one concerns data
fusion enhancement, and the second one is the idea of
feedback processes between high-resolution image
analysis and geographic information. Furthermore,
mixing high resolution and high temporal frequency
data can overcome, in some cases, the spatio
temporal limits of satellites. This way, we underline
the potential interest of high resolution (temporal and
spatial) surveys for environmental monitoring. This
leads to the concept of precision surveying adapted to
spatial dynamics assessment at local scale needed in
the cases where populations are concerned. This
concept has its place in the frame of global change
research due to its spatio temporal zooming capabilities
at every point of the Earth.
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