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ABSTRACT

Formulas are derived for the spherical contact distribution of a planar germ-grain model Z with circular grains
where the germs form either a ‘segment cluster’ process or a ‘line-based’ Poisson point process. They are used
in order to estimate the intensity λ of the germ process by means of the spherical contact distribution function.
As an application the number of dislocations on a silicon wafer is estimated.
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INTRODUCTION

This paper describes methods for estimating the
intensity λ of a germ-grain model (Stoyan et al.,
1995) with deterministic circular grains. While the aim
is estimating the intensity of a point process X , the
observable is a random set, the union Z of overlapping
discs with fixed radius R, Z � X � b � o � R � , where� denotes Minkowski-addition and o is the origin.
Because of overlappings, intensity estimation in this
setting is a complicated problem.

In the classical case of a Boolean model
(X is a stationary Poisson process) one of the
successful statistical methods uses the spherical
contact distribution function, see Serra (1988) and
Stoyan et al. (1995). This approach is used also
in the cases considered here, where X is modelled
as a segment cluster process, i.e. a Poisson cluster
process where the cluster points are scattered on
segments, or a ‘line-based’ Poisson point process,
where the points are scattered randomly on the lines of
a Poisson line process. As an application, the number
of dislocations on a silicon wafer is estimated. Here
the point pattern X of centers of dislocations shows
a high degree of clustering and the observable is a
system of overlapping etch pits, which grow around the
centers of dislocations with circular shape after etching
process.

FUNDAMENTALS

SPHERICAL CONTACT DISTRIBUTION
FUNCTION
In the description and statistical analysis of a

stationary point process X in the plane the spherical

contact distribution function HX
s � r � plays an important

role. It is defined as

HX
s � r � � P � X � b � o � r ���� /0 � for r � 0 � (1)

where b � o � r � is the disc with radius r centered at the
origin o.

By definition 1 	 HX
s � r � is the probability that in

the disc b � o � r � there is no point of the point process.
Thus HX

s � r � is the distribution function of the distance
from the origin to the point of the point process closest
to o.

The spherical contact distribution function of a
stationary random closed set Z is defined as

HZ
s � r � � P � Z � b � o � r ���� /0 
 o �� Z �� 1 	 P � Z � b � o � r � � /0 �

1 	 p
for r � 0 � (2)

where p �� 1 � is the probability of covering the origin
by Z or the area fraction of Z,

p � P � o � Z ���
For the particular case of a germ-grain model with
circular grains, Z � X � b � o � R � , the spherical contact
distribution of Z can be easily expressed in terms of
that of the germ process X :

HZ
s � r � � 1 	 1 	 P � o � Z � b � o � r ���

1 	 p� 1 	 1 	 P � o � X � b � o � r � R ���
1 	 p

for r � 0

where

p � P � o � Z � � P � o � X � b � o � R �����
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Consequently,

HZ
s � r � � 1 	 1 	 HX

s � r � R �
1 	 HX

s � R � for r � 0 � (3)

If X is a Poisson point process with intensity κ then its
spherical contact distribution function is

HX
s � r � � 1 	 e � κπr2

for r � 0 � (4)

see Stoyan et al. (1995).

POINT PROCESS MODELS

POISSON CLUSTER PROCESSES

The basic ingredient of a Poisson cluster process is
a stationary Poisson process of intensity λp; its points
are called ‘parent points’. Independent identically
distributed clusters of daughter points are scattered
around the parent points and the union of all daughter
points forms the Poisson cluster process, see Stoyan et
al. (1995).

The spherical contact distribution of a Poisson
cluster processes can be obtained theoretically, by
means of the formulas for the Boolean model, where
the ‘germs’ are the parent points and the ‘grains’ the
clusters. Of course, here the grains are not convex and
the general methods for Boolean models with non-
convex grains developed in Hug et al. (2002) and
Last and Holtmann (1999) can be applied. A direct
approach starts from the formula

HX
s � r � � 1 	 exp ��	 λpEA � C � b � o � r �����

for r � 0 � (5)

Here A ����� denotes the area and C denotes the random
set consisting of the points of a typical cluster centered
at o.

The difficulty of calculating HX
s � r � in formula (5)

is determining EA � C � b � o � r ��� because the discs may
overlap. Various Poisson cluster processes differing
in the arrangement of points forming the cluster and
their spherical contact distribution functions have been
considered in Saxl (1993) and Saxl and Rataj (1996).

SEGMENT CLUSTER PROCESS

The segment cluster process is a special Poisson
cluster process in which the typical cluster C is a set
of points that are distributed on a segment of fixed
length l and uniform random orientation according to
a homogeneous one-dimensional Poisson process with

intensity λl . The parent points are located in the centers
of the segments.

The intensity λ of this model is given by

λ � λp � λl � l �
The aim of the following is to derive a formula for
the term EA � C � b � o � r ��� , the mean area of C � b � o � r � ,
which appears in formula (5). Fig. 1 shows the set the
area of which has to be determined, the dilation of the
typical cluster by b � o � r � .
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Fig. 1. A typical dilated cluster of a segment cluster
process, which is divided in two parts S1 and S2.

The problem of calculating the exact area is
not easy, since the discs may overlap. A possible
approximation is as follows.

The set C � b � o � r � is divided in two parts, namely
S1 and S2. The part of this set which lies inside the
segment � r� l 	 r � is called S1 and the rest outside the
segment � r� l 	 r � is called S2. The mean area of S1 can
be calculated exactly using the Cavalieri principle and
the theory of the Boolean model, while the area of S2
is calculated approximately using simulation results.

For the set S1, the Cavalieri principle yields

EA � S1 � ��� r� r
El � t � dt �

where l � t � denotes the sum of lengths of the chords
produced by intersection of S1 with the segment� � x � y � : r  x  !� l 	 r �"� y � t # with t � �$	 r� r � .

In order to calculate El � t � , a one-dimensional
stationary Boolean model is considered with intensity
λl and a typical grain which is a segment of
deterministic length 2 % r2 	 t2 (this is the length of the
chord obtained by intersection of b � o � r � and the line
y � t). The length fraction LL � t � (the proportional of
line occupied with discs) of this model satisfies

LL � t � � El � t �
l 	 2r

for 	 r  t  r �
The known formulas for the Boolean model yield

LL � t � � 1 	 e � 2λl & r2 � t2
for 	 r  t  r �
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Therefore,

EA � S1 � � � l 	 2r � � r� r
� 1 	 e � 2λl & r2 � t2 � dt� r � l 	 2r � � 1� 1
� 1 	 e � 2λlr & 1 � t2 � dt �

With

f � µ � �'� 1� 1
� 1 	 e � 2µ & 1 � t2 � dt (6)

one obtains

EA � S1 � � r � l 	 2r � f � λlr ��� (7)

Because there is no analytical solution for the
integral in (6), it was numerically calculated for
different values of µ . By a least square technique an
exponential function was fitted to the results, yielding
the approximation

f̂ � µ �)( 2 	 2e � 1 * 5µ � (8)

and

EA � S1 �+( 2r � l 	 2r �,� 1 	 e � 1 * 5λlr � for r  l
2
� (9)

In order to calculate EA � S2 � a one-dimensional
homogeneous Poisson process on the segment � 0 � 2r �
with intensity λl is considered. Let C0 denotes the set
of points of the process which are distributed on this
segment. Define

a � λl � r � � EA � C0
� b � o � r �-�.���$	 r� r �0/1�$	 r� r �2���3� (10)

Then clearly,

EA � S2 � � 2a � λl � r ���
Moreover,

a � λl � r � � r2a � λlr� 1 ��� (11)

which is a consequence of the definition of a � λl � r � in
Eq. (10).

The values of a � λl � 1 � were calculated by
simulation for different λl , what yielded by numerical
investigations the following approximation for
a � λl � 1 � :

â � λl � 1 � � 0 � 92
e � λl

λl
	 2 � 50 e � λl 	 0 � 92

λl
� 3 � 41

for λl 4 0 � (12)

see for more details Ghorbani (2003).

The formulas � 11 � and � 12 � yield

â � λl � r � � 0 � 92
r
λl

e � λlr 	 2 � 50 r2e � λlr

	 0 � 92
r
λl
� 3 � 41 r2 for λl 4 0 �

Consequently,

ÊA � S2 � � 1 � 84
r
λl

e � λlr 	 5r2e � λlr 	 1 � 84
r
λl
� 6 � 82r2

for λl 4 0 � (13)

Finally, substituting the summation of Eqs. (9) and
(13) in (5) yield

	 log � 1 	 HX
s � r ���5( λp 6 � 4r2 	 2rl � e � 1 * 5λlr

�87 1 � 84r
λl

	 5r2 9 e � λlr � 2 � 82r2 � 2rl 	 1 � 84r
λl :

for r  l
2
� (14)

LINE-BASED POISSON PROCESS
Consider a randomly distributed system of lines

which are distributed as a stationary-symmetric
Poisson line process Φ with intensity LA, see Stoyan
et al. (1995). On each line, points are distributed
according to a homogeneous one-dimensional Poisson
process of intensity λl . The point process obtained by
the union of all points is called line-based Poisson
process. This process is a special case of Cox process.

The intensity λ of the line-based Poisson process
is given by

λ � LA � λl �
where LA is the mean length of lines per area unit.

The number of lines of Φ hitting b � o � r � has a
Poisson distribution of mean 2rLA. Consequently, the
spherical contact distribution function of Φ is

HΦ
s � r � � P � o � Φ � b � o � r ��� � 1 	 e � 2rLA for r � 0 �

An approximation for the spherical contact distribution
function of a line-based Poisson process X can be
obtained by taking the limit of the spherical contact
distribution function of the segment cluster process in
(14) for l ; ∞ and λp ; 0 with λp � l ; LA. This yields

HX
s � r �+( 1 	 e � 2rLA < 1 � e = 1 > 5rλl ? for r � 0 � (15)

If small values of r are of interest, the
approximation (15) should give good results also for
points scattered on random curves.
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SUPERPOSITION

In order to come to more realistic models
superposition is a useful operation. Let X1 and X2 be
two independent stationary point processes. Consider
the union

X � X1 @ X2 �
With probability one the sets X1 and X2 do not overlap,
i.e. never points of X1 and X2 coincide. The spherical
contact distribution function of the union point process
X , HX

s ����� , can be easily obtained in terms of HX1
s ����� and

HX2
s ����� as follows.

Clearly, for any set K

P A�� X1 @ X2 �-� K � /0 B� P � X1 � K � /0 and X2 � K � /0 �� P � X1 � K � /0 �C� P � X2 � K � /0 �D�
This yields for K � b � o � r �

HX
s � r � � 1 	EA 1 	 HX1

s � r ��BFA 1 	 HX2
s � r ��B
for r � 0 � (16)

If the point process X is a superposition of a segment
cluster process X1 and a stationary Poisson process X2
with intensity κ then its intensity λ is given by

λ � λp � λl � l � κ �
and the formulas � 1 � , � 14 � and � 16 � yield the spherical
contact distribution function

	 log � 1 	 HX
s � r ���5( λp 6 � 4r2 	 2rl � e � 1 * 5λlr

�87 1 � 84 r
λl

	 5r2 9 e � λlr � 2 � 82 r2 � 2rl 	 1 � 84 r
λl :� κπr2 for r  l

2
� (17)

If the point process X is a superposition of a line-
based Poisson process X1 and a Poisson process X2
with intensity κ then its intensity λ is given by

λ � LA � λl � κ �
and the formulas � 1 � , � 15 � and � 16 � yield the spherical
contact distribution function

	 log � 1 	 HX
s � r ���5( 2rLA � 1 	 e � 1 * 5rλl �-� κπr2

for r � 0 � (18)

APPLICATION

Multicrystalline silicon (mc-Si) is a cost-effective,
solar graded raw material for industrial solar cell
production. The mc-Si materials contain a high density
of extended crystal defects such as dislocations, grain
boundaries and micropercipitate. These defects largely
control the electrical properties of the material and
often impact the solar cell characteristics adversely.
In this paper only dislocations are considered.
Dislocations are line defects in crystal, which either
begin and end on the crystal surface or form a closed
curve inside the crystal. A volume of 1 mm3 may
contain dislocations of total length of 1 km.

An important problem is estimating the number of
dislocations which appear on silicon wafers, which are
planar sections trough the original crystal.

This problem has been investigated by Rinio
(2003). After a one minute etching process,
microscopic images are made from etched samples.
These pits grow around of dislocation objects and
have a circular shape. Fig. 2 shows a typical etched
dislocation pattern which consists of single etch pits
and groups of overlappings etch pits. For such patterns
Rinio (2003) estimates the number of dislocations as

number of dislocations � number of single etch pits� total area of overlapping etch pits
mean area of a single etch pit

� (19)

Because of heavy overlappings of etch pits this
estimator is suspected to underestimate the number of
dislocations.

For improving the method of estimating the
number of dislocations the etched dislocation pattern
Z is considered as a germ-grain model. There the germ
point pattern X is the system of etch pits centers or
dislocation line points and the grains are discs with
fixed radius R. Therefore,

Z � X � b � o � R ��� (20)

Experimental observations show that R � 1µm is
reasonable. The following models for the point process
X are considered;

1. Poisson process,

2. segment cluster process,

3. line-based Poisson process,

4. superposition of a segment cluster process and a
Poisson process,

5. superposition of a line-based Poisson process and
a Poisson process.
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By help of the ImageC software of Imtronic the
empirical spherical contact distribution function ĤZ

s �����
of a typical dislocation pattern, which is shown in
Fig. 2, was estimated.

The theoretical spherical contact distributions of
the germ-grain models Z in (20) for the point process
models X mentioned above were derived by means
of formula (3). The corresponding parameters were
estimated using non-linear regression. Finally, the
number of dislocations was estimated by

n̂ � A � W �C� λ̂ �
where A � W � is the area of the window of observation
and λ is the intensity of the fitted model. The results
are shown in Tab. 1. Figs. 3 and 4 show the empirical
spherical contact distribution functions and the fitted
curves for the Poisson process and the superposition
of a line-based Poisson process and Poisson process.

Obviously, the Poisson process is by no means
a suitable model; it was considered only to show
the reader that a more general model is needed for
describing the dislocation pattern. Moreover, none of
the other models is a realistic model for dislocation
patterns. A possible criterion for comparison between
the models would be the error mean square MSE which
is defined as

MSE
� 1

m 	 k � 1

m

∑
i G 1 H HZ

s � ri �C	 Ĥs
Z � ri ��I 2 �

in which m is the number of empirical observations
and k is the number of estimated parameters. The
values of MSE for different models are given in Tab.
1. These values suggest that the empirical spherical
contact distribution function are very well fitted by the
spherical contact distribution functions of the models
2, 4 and 5. While all these models are geometrically
unrealistic, they fit the empirical contact distribution

function well and the corresponding estimates of n are
similar and larger than the Rinio estimate.

500 mm

Fig. 2. A typical sample of dislocation pattern on mc-
Si wafer. The darker regions indicate a higher degree
of dislocation clusters. By courtesy of Markus Rinio.
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Fig. 3. The empirical spherical contact distribution
function �KJL� for the dislocation pattern of Fig. 2 and
the fitted theoretical function for a Poisson process
(—).

Table 1. Estimated parameters of different models for the dislocation pattern in Fig. 2. The estimate n by Rinio’s
method is 5 � 7 / 104. The models are 1: Poisson process, 2: Segment cluster process, 3: Line-based Poisson
process, 4: Superposition of a segment cluster process and a Poisson process, 5: Superposition of a line-based
Poisson process and a Poisson process.

Model λ̂p λ̂l l̂ L̂A κ̂ n̂ M MSE
[µm � 2] � µm � 1 � � µm � � µm � 1 � � µm � 2 � � 104 �

1 - - - - 0.0007 1.9 0.0500
2 0.0003 0.161 69.055 - - 7.7 0.0045
3 - 0.048 - 0.032 - 4.1 0.0140
4 0.0003 0.161 66.055 - 0.00 7.7 0.0045
5 - 0.152 - 0.016 0.0002 7.1 0.0050
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Fig. 4. The empirical spherical contact distribution
function �NJL� for the dislocation pattern of Fig. 2 and
the fitted theoretical function for a superposition of a
line-base Poisson process and a Poisson process (—).
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