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ABSTRACT

A procedure has been developed for the automatic clustering of plant cells observed by confocal microscopy.
The contribution of cell morphological features to reveal histological regions has been investigated. Several
adjacent images were acquired to visualise a representative region of the sample and a mosaic image was
built. The cell size and shape and the cell wall thickness were quantified. The extracted features were used to
automatically classify the cells into morphological groups. The technique made it possible to split the cell
population into 8 groups mainly corresponding to histological regions of beet root.
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INTRODUCTION

Different cell types are found in plants, each one
assuming a particular function for plant physiology:
carbohydrate or lipid storage, sap conduction, plant
support. Cell types are generally observed from sections
at the microscopic scale and identified from the
individual cell morphology, namely size and shape, cell
wall thickness, as well as from cell arrangement (Esau,
1977). In addition to such histological description, the
microscopic structure is largely paid some attention to
study the relationships between the spatial organisation
and macroscopic properties (Jackman and Stanley,
1995; Travis et al., 1996; De Smedt et al., 1998;
Guines et al., 2003). Such an approach has been
developed for wood characterisation in relation to
drying properties (Perré, 1997). In the food domain,
there is also an increasing demand to determine the
contribution of the physical structure to the end-use
texture or sensory properties (Gao et al., 1999; Zghal et
al., 2002). Plant histology is generally observed by
microscopic techniques. Plant cells, especially storage
cells, can be very large, and only a few cells are visible
on a single image (Gray et al., 1999; Konstankiewicz et
al., 2002). The quantification of histology is not
straightforward and few techniques have been reported
(Travis et al., 1996; Guines et al., 2003).

The objective of the present work was to identify
histological regions in plant material by the automatic
clustering of cells from individual morphological

features measured in microscopic images. In a first
step, we focused on 2D quantification. Confocal
microscopy was chosen in order to minimise sample
preparation and to obtain thin optical sections from
thick specimens. Several adjacent images were
acquired and a mosaic image was reconstructed to
observe a representative area of the sample. Cell
morphology was quantified by considering both cell
and cell walls. A clustering procedure has been
developed to automatically classify cells into groups
on the basis of their morphological features. Labelling
the cells according to their groups made it possible to
localize the groups in the mosaic image. The
relevance of the clustering was assessed by expert
interpretation of the groups in regard with the known
histology of the sample.

Sugar beet root has been studied as an example of
plant of industrial interest. Sugar beet root is the
storage organ of sugar within which several kinds of
tissues are found : storage parenchyma where sugar is
stored, xylem and phloem that form the food conducting
tissue, cambium where cellular divisions occur.

MATERIAL AND METHODS

SAMPLES
INRA Estrées-Mons (80, France) provided roots

from the variety Roberta. Hand-cut sections were
collected in the medium region of the fresh root and
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halfway between the central core and the external
epidermis. Hand cut sectioning was carried out in
order to preserve cell morphology, to minimise sample
preparation and to obtain sufficiently large samples to
observe the different cell types. Samples were about
1 cm large and 300 µm thick and were stained using
acridin orange (0.02% in 0.1M phosphate buffer, pH 7)
in order to make cell walls fluorescent.

Image acquisition
Images were acquired using a confocal laser

scanning microscope (Zeiss, LSM 410). Though the
present work focused on 2D information, 3D images
were acquired for further 3D image processing. The
excitation wavelength was 488 nm and the light
emitted over 515 nm was collected using a long pass
filter. The ×40 lens was used to observe together small
and large cells. Under these conditions, the 512×512
pixel image was 319.4 µm large and the axial resolution
was 0.8 µm. As such an area was not sufficient to
observe the different cell types and their relative
arrangement on the same view, several adjacent images
were acquired. The principle of image acquisition is
given in Fig. 1. Successive lateral scans were achieved
in the x-y directions so that adjacent images partly
overlapped (Fig. 1a). From 25 to 30 2D images were
scanned by step of 1 µm for each 3D sequence (Fig.
1b). The number of 2D images in one 3D sequence
depended on the fluorescence decreasing according to
the depth of the optical plane. The shape of the sample
in contact with the slide was not perfectly planar mainly
due to hand cutting (Fig. 1b). In order to avoid acquiring
completely black images, the starting of the axial z
scan was adjusted for each 3D sequence. In the
following, individual 2D images were called optical
images and the stacks of 2D images were called 3D
sequences. The optical images were coded using 256
grey level values.

Mosaic image
A 2D mosaic image was extracted from the 3D

sequences (Fig. 1b). As the microscope was not
equipped with a motorised stage, the shift between 2
sequences had to be calculated in the x (or y) and z
direction. Axial z shift was taken into account because
of the different starting points of z scan between the
3D sequences (Fig. 1b).

The mosaicking procedure was developed within
the matlab environment (http://www.mathworks.com)
and is described in Fig. 2. Lateral and axial shifts were
sequentially searched for. The maximum correlation
coefficient between the grey levels of the overlapping
regions was chosen as quality criterion. The algorithm
progressed following the different steps (Fig. 2):

- The operator chooses a starting optical image i in
the first 3D sequence.

- The homologous ith optical image of the next 3D
sequence is considered first.

- Lateral shifts from 1 to n are tested and the one
for which the correlation coefficient between the
overlapping regions is maximum is selected. The
lateral shift research stops at step n after the
correlation coefficient has decreased five times
consecutively. The first estimation of the lateral
shift is l = n-5.

- The lateral shift is fixed to l.

- The axial shift is searched for by testing the
evolution of the correlation coefficient for the
optical images over and under the current optical
image. Again, the research stops when a maximum
is found.

- The axial shift is fixed to j, optical image number
for which the correlation coefficient is maximum.

- The lateral shift is adjusted by searching a new
maximum before and after the preceding value l
for images i of the first sequence and j of the
second one.

- The procedure is repeated from step 4 to step 7
until neither the lateral shift nor the axial shift are
modified.

- The two optical images are joined by giving the
overlapping region the grey level values of the
first image.

- If another image is to be combined, the shift
research goes on from step 3 between the last
combined image and the ith optical image of the
new 3D sequence.

− The final result is a 2D mosaic image.

http://www.mathworks.com/
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Fig. 2. Main steps of the construction of the mosaic image.
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Image segmentation
A standardisation of the grey levels was achieved

in order to apply a single threshold. The grey level
variations over the image were considered as a
multiplicative shading effect (Tomaževič et al., 2002).
This shading was estimated by dilating the image
with a squared structuring element of size 11×11
pixels and by filling the remaining holes, holes being
defined as areas of dark pixels surrounded by lighter
pixels (Soille, 1999). Dividing the original image by
the calculated «shading» image and adjusting the grey
levels between 0 and 255 achieved the normalisation. A
single threshold of 50 was visually chosen leading to
the segmentation of the cells. Cells with an area
lower than 100 pixels were eliminated as well as
those intersecting the image border. The cell label
image and the cell wall binary image were computed.

MEASURES
Individual features were extracted for each

segmented cells. The matlab morphological parameters
: Area, Length and Width along the major axes, Area
of the Convex Hull, were measured. From these
parameters, an elongation factor was computed as the
Width to Length ratio, and a solidity index estimated
as the ratio of the Area to the Convex Hull Area. This

index makes it possible to reveal concavities in an
object shape.

A procedure has been developed to estimate the
Cell Wall Thickness (Fig. 3). For this purpose, both
the cell wall and cell label images were considered.
Each cell was analysed separately in order to extract
its individual cell wall. The cell was first dilated
using a disk structuring element of 31 pixel diameter
within its extended bounding box. The surrounding
cell walls were extracted as the intersection of the
dilated cell and the cell wall binary image. The
skeleton of the local cell wall was computed and spur
pixels were removed. The distance function was then
applied to the local cell wall image using the
Euclidean distance metric. The intersection between
the distance image and the skeleton made it possible
to extract the distance values of the skeleton. The
Cell Wall Thickness was computed as twice the mean
of the distance values observed along the skeleton. In
the example given in Fig. 3, the value was 8.2 pixels
corresponding to 5.1 µm.

The result of feature extraction was a data table
containing the 4 variables : Area as size parameter,
Elongation and Solidity as shape parameters and Cell
Wall Thickness measured for each cell.

Fig. 3. Extraction of cell wall thickness.
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Cluster analysis
An automatic clustering procedure, based on the

4 morphological features, has been developed to
reveal cell groups without any prior information on
searched groups.

The procedure combined a hierarchical clustering
and k-means clustering steps (Filtzmoser et al., 1999).
Divisive hierarchical clustering aims at partitioning the
initial population into an increasing number of groups
while the objective of the k-means method is to find a
partition into k groups, k being fixed (Lebart et al.,
1995). In the present work, the techniques were
implemented as follow (Fig. 4). At the beginning step,
all cells belonged to the same group. The population
was split into two groups using the k-means technique
with k = 2. The next hierarchical step consisted in
choosing one group to be further divided and in
initialising the two new groups. The k-means method
was then applied with k = 3 by considering the two
new groups and the remaining one to calculate the 3
final groups (Fig. 4). The procedure was repeated to
find a 4 group partition, 5 group … The interest of the
k-means steps applied by considering all the current
groups, and not only the one in division, is to avoid
freezing the frontier between groups during the
hierarchical divisive steps.

Several criteria had to be defined to implement
the procedure: choice of the group to be divided and
for the k-means technique: initialisation of the new

groups and distance criterion to assign cells to groups.
Principal Component Analyses were performed to
determine the group to be divided and to find the
initial group centres. Principal Component Analysis
is a data analysis technique that reveals the structure
within observations and variables (Jolliffe, 1986). It
was applied on the data table constituted by the cell
morphological parameters. At the first step, all the
cells were considered and for the next steps, the
groups were analysed separately. A large percentage
of variance calculated for the first principal component
was considered as representative of heterogeneous
observations. At a given step k, the percentage of
variance of the first principal component was therefore
assessed for each of the k groups and the group with
maximum value was considered for division (Fig. 4).
The first Principal Component was also used to initialise
the new groups as being the cells for which positive or
negative scores were respectively obtained (Fig. 4). In
the k-means method, the minimum Euclidian distance
was chosen to affect cells to groups and the procedure
stopped when all the groups were stable.

The splitting procedure was repeated until the
number of groups was found satisfactory. At each
step, a label image was assessed on which the cells
belonging to the same group are given the same
colour. The operator chose the final number of groups
by visual examination of these images. The average
values of the 4 morphological features were assessed
for each group.

Fig. 4. Clustering principle. PC1: principal component 1. V1 and V2: percentage of variance of principal
components 1 for groups 1 and 2. The group to be divided is the one with the maximum percentage of variance.
Initialisation of the division of the groups is based on the positive or negative values of the first principal
component scores. At each step, the groups are adjusted by k-means clustering.
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RESULT

MOSAIC IMAGE

Thirteen 3D sequences were acquired to visualise a
complete vascular bundle region of the beet root. Two
adjacent rows of 3D sequences were necessary. The
images were combined to extract a 2D mosaic image.
An example of image combination is given in Fig. 5 for
two 3D sequences. Optical image 10 in the first 3D
sequence was chosen as starting image (Fig. 5a). The

homologous image in the adjacent 3D sequence was
first considered to estimate the lateral shift (Fig. 5b).
The maximum correlation coefficient was 0.53 for a
lateral shift of 17 pixels (Fig. 5c, step 1). This 17-pixel
shift being fixed, optical image 14 lead to a
maximum of 0.92 for the correlation coefficient (Fig.
5d, step 2). Step 3 (Fig. 5c) showed that the best
lateral shift value was again 17 when considering
optical planes 10 of the first 3D sequence and 14 of
the second one. The final values were therefore 17
pixels for the lateral shift and +4 for the axial shift.

a)   b) 

c)   d)

e) 

Fig. 5. Example of mosaic image construction. (a) and (b) Initial images : 10th optical plane of the 3D
sequences. (c) Correlation coefficients according to the lateral shift: steps 1 (dotted line) and 3 (solid line). (d)
Correlation coefficients according to the axial shift: step 2. (e) Final mosaic image obtained by combining
optical image 10 of the first 3D sequence and 14 of the second one for a lateral shift value of 17.
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A first 2D mosaic image was obtained from the
first row of 3D sequences acquired. The last image
selected was chosen to find the first starting optical
image of the second row and a second mosaic image
was constructed. The final mosaic image was obtained
by searching the lateral shift between the two mosaic
images. The resulting image is shown in Fig. 6a. The
correlation coefficients ranged between 0.89 and 0.97
for 11 of the 12 combinations, the last one being 0.49
between images 11 and 12. For these 2 images, no
overlapping region could be found as a few pixel
lines were missing on acquisition. As no drastic
deformations of the cells was observed, the images
were nevertheless combined in order to visualise a
larger region of the section. The correlation coefficient
between the two row mosaic images was 0.78.

Some grey level variations can be seen over all

the area of the final mosaic image (Fig. 6a). They were
caused by the fluorescence attenuation with optical
depth in confocal microscopy. The optical planes in the
3D sequences ranged from 12 to 19 for the 6 top images
of the mosaic image versus 0 to 9 for the 5 bottom ones.
A standardisation of the grey levels was achieved in
order to correct these grey level heterogeneities (Fig.
6b). The cell walls were extracted by thresholding the
normalised image (Fig. 6c) and the cells were labelled
(Fig. 6d). The resulting image contained 795 objects
mainly composed of individual cells sections. Some
cell walls were rough, as some cells were sectioned
on their top or bottom resulting in viewing cell walls
partly in surface. A few cells were still connected.
The 4 morphological features, Area, Elongation,
Solidity and Cell Wall Thickness, were computed for
each of the 795 cells.

   
a) b) c) d)

Fig. 6. Mosaic image. a) Original. Individual images were acquired along two rows from 1 (lower left) to 6
(upper left) and 7 (upper right) to 13 (lower right). b) Image corrected for grey level variations. c) Binary cell
wall image. d) Label image of segmented cells.
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Cluster analysis
Images in Fig. 6 clearly reveal that some regions

can be visually identified. For example, small
rectangular cells that were arranged along a circle arc,
corresponded to the cambium area while the small
and larger elongated cells forming a triangle over the
cambium area corresponded to the phloem area.
Xylem vessel cells were aligned and were small and
circular with thick cell walls. Both individual cell
features and cell arrangement contribute to identify
homogeneous areas in the image. In the present paper,
only the contribution of individual morphological
features to identify cell groups was tested. An
automatic clustering procedure has been developed to
reveal groups without any prior information.

The image obtained for 8 groups was retained and
is shown in Fig. 7. Some histological regions were
clearly revealed from the cell clustering. Yellow cells
mainly corresponded to the cambium region while the
cyan ones corresponded to storage parenchyma. The
interpretation of each cell group according to histology
and the average values calculated for each parameter are
reported in Table 1. The average values show which
features were important in group determination. The
storage parenchyma was characterised by its large
cells. Blue cells that were medium sized, convex,
circular and with thin cell walls, corresponded to
vascular parenchyma. Grey cells constituted another
class of parenchyma cells that were smaller and
exhibited thicker cell walls. They were mainly found
around the xylem vessels and also within the two
other parenchyma groups. A few phloem cells were
classified in this group. Within the green group were
found xylem vessels, which had thick cell walls. For
the other green cells, the walls were found thick
because they were partly viewed in surface. Pink cells
were characterised by an elongated shape and thick
cell walls. They were localised in several regions of
the section. The phloem area was mainly constituted
by this kind of cells. They also exhibited a lower
Solidity than the preceding groups, due to rough
edges caused by a rather poor segmentation. Yellow
cells were mainly found in the cambium region that
was characterised by small sized cells with thin cell
walls. Cambium is the region of cellular division,

which indeed result in thin cell walls and also in a
concave shape. The two remaining groups were
composed of small sized cells, with elongated and
highly concave shapes. They were distinguished from
the other groups by their cell wall thickness. The red
cells could be found in the cambium region or when
cells were in division. Some intercellular spaces were
also classified in this group. The white group was
mainly composed by intercellular spaces and by cells
where walls were viewed in surface.

Fig. 7. Label image for eight groups.
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Table 1. Assignment of groups to cell types and average values of Area, Elongation, Solidity and Cell Wall
Thickness. Colour refers to the cell group colours in the label image Fig 7. Values were rounded to 2 digits.

Group
colour

Assignment to cellular type Area (µm2) Elongation Solidity Cell Wall
Thickness (µm)

Cyan Storage parenchyma 3600 0.73 0.94 4.5

Blue Vascular parenchyma 1300 0.75 0.94 4.0

Grey Touching vessel parenchyma 670 0.72 0.91 5.0

Green Xylem vessels 600 0.75 0.90 6.5

Pink Phloem 340 0.43 0.80 4.9

Yellow Cambium 300 0.71 0.83 3.6

Red Cambium, intercellular spaces 280 0.48 0.70 2.9

White Intercellular spaces 230 0.34 0.55 4.3

DISCUSSION - CONCLUSION

The objective of the present work was to test the
contribution made by individual cell features to
identify histological regions in plant material. Cell
morphology was defined both by the cell size and
shape and by the cell wall thickness. The task required
considering several steps from image acquisition to
cell clustering.

Plant cells are often large requiring the acquisition
of adjacent images to observe a representative area in
the samples. Grape and potato cells can be as large as
150-200 µm (Gray et al., 1999, Konstankiewicz et
al., 2002,). In tomato fruit, cells can even be larger
than 500 µm long (Barret et al., 1998). In the present
work, 13 images were necessary to visualise one
vascular bundle of beet root. A smaller magnification
would have allowed viewing a larger area but would
have also lead to a poor resolution concerning the cell
wall thickness. Typically, cell walls were 5 to 10
pixels large using the × 40 lens. Another advantage of
mosaic image was to analyse cells larger than what
could have been possible using single images, as
large cells often intersect with image borders. The
mosaic image has to be reconstructed. Few softwares
and techniques have been reported concerning the
mosaicking of confocal images (Karen et al., 2003).
In the present work, the procedure has been
developed using the correlation coefficient as quality
criterion to reveal the shift positions (Fig. 3). Fig. 3c
shows that some false maximum could be found,
depending on the local cell shape in the overlap
region. As neither geometrical deformation nor rotation
occurred during acquisition, only lateral and axial
shifts were searched for. The method developed was

straightforward and only allowed shifts in the x-z or
y-z direction. Alternative techniques to automatically
assemble images are based on pyramidal decomposition
(Dani and Chaudhuri, 1995). Computation time would
be reduced and shifts in the x, y, z direction could be
envisioned.

Simple size and shape parameters were used to
describe the cell morphology. Cell wall thickness was
assessed for each cell using a procedure based on the
skeleton and the distance function. Travis et al. (1996)
estimated cell wall thickness by a similar procedure
after a watershed segmentation. Such approaches make
the extraction of cell wall thickness profile easy by
collecting all values measured by the distance function
along the skeleton. This would reveal local thickness
variations within the cell perimeter. Considering both
cell lumen and cell wall is a challenge as both features
may contribute to the mechanical resistance and texture
of plant material (Jackman and Stanley, 1995).

Cell groups were determined by a clustering
procedure. Discriminant analysis could have been
used alternatively and would have required building a
calibration set (Travis et al., 1996). An automatic
clustering procedure has been preferred to reveal the
groups that came out from cell morphology. The cell
population was successively split into an increasing
number of groups in a completely determined way
and the procedure did not depend on random starting
groups. Only the final number of groups had to be
decided from the visual examinations of the label
images.

In the present work, individual cell features were
extracted to study plant histology. Results showed
that these features were relevant to reveal much of the
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group that would have been defined by an expert. The
next steps are to study the contribution of cell
arrangement and to take into account the 3D
information visualised by confocal microscopy.
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