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ABSTRACT

Starting from scanning electron microscope images of some food products, we generate binary images of
composite materials. After measuring the covariance and the probability for segments and for squares to be
included in the dominant component, we develop a modelling of the microstructure from random sets
obtained by thresholding Gaussian random functions. The covariance function of the underlying Gaussian
random function is estimated from the experimental covariance of the food products. The validity of the
model is checked by comparison of the probability curves for segments and for squares, measured on
simulated and on initial images. The approach enables us to generate 3D realisations of the microstructure.

Keywords: 3D simulations, food microstructure, mathematical morphology, random sets, truncated Gaussian
random function.

INTRODUCTION

Some food materials represent interesting classes
of composite materials. In the present study, two-phase
food materials are characterised by image analysis.
Then a random set modelling of the microstructure is
proposed, based on image analysis measurements on
2D images.

Two dimensional scanning electron microscope
(SEM) images of the food microstructures are used to
make quantitative analysis of the spatial arrangements
of the phases. The primary tool used in this analysis
is the set covariance (also known as the two point
probability function) that quantifies for a range of
distances the probability that two points will both
land within the phase of interest. In this study, we
used a Gaussian random field model that seems capable
of capturing a great deal of pertinent morphological
information in a very compact manner. Once the
model has been fitted, we are free to make any number
of simulations (in both two and three dimensions) of

structures. We show that the set covariance and other
morphological functions of the 2D and 3D simulations
suit very well the experimental ones.

FOOD MICROSTRUCTURE

The food material studied here is a two-phase
material composed of a second phase and of a matrix
phase. To observe the microstructure, we used the
following procedure: the samples are quickly cooled
at -110 °C to congeal the microstructure and cut to
observe an internal surface. Then, a projection of argon
ions (Ar+) is used to etch the surface and to reveal the
microstructure. Micrographs are taken with a cryogenic
SEM. We based our work on four micrographs taken
from the same sample (cf. Fig. 1). At the magnification
used (×200), one pixel corresponds to 585 nm; the
size of the images is 992×688 pixels, and the dark
phase is the matrix while the bright one is the second
phase.
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image 1 – ×200 image 2 – ×200

image 3 – ×200 image 4 – ×200

Fig. 1. The 4 micrographs taken from the sample.

IMAGE SEGMENTATION

A difficult problem with experimental micrographs
is to separate the two different phases. We need to
transform grey level images into binary ones. To do
this, we applied three consecutive morphological
operations.

The first step is an “opening top hat”: an erosion
is followed by a dilation (this is an opening). This
value (one at each pixel) is then subtracted from the
image so that the dark phase becomes homogeneous
on the whole image. The structuring element used to
perform the top hat must be larger than the cluster
size, to be sure to capture the local background, but
not too large if we want this operation to be useful.

For the four images, the same parameters were used:
the structuring element is a hexagon with a radius of
50 pixels.

The second step is a threshold. It is selected on
the histograms of the images, from the local minimum
between the two peaks representing the two phases.

Finally, to remove small white dots in the black
phase, a small opening by a hexagon of radius 2 pixels
was performed on the binary image. The result of the
segmentation for Image 2 can be seen in Fig. 2.

For each image, we can measure the volume
fraction of the second phase. The mean value 75% is
a good estimation for the sample. The results are given
in Table 1.

200 µm 200 µm

200 µm 200 µm
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Fig. 2. Segmentation of image 2.

MORPHOLOGICAL
MEASUREMENTS

We need to find some measurements to describe as
objectively as possible the morphology of images. This
is based on the theory of random sets. A random set is
completely defined by probability laws generalising the
case of random variables: any random closed set A is
completely characterised by its Choquet capacity
(Matheron, 1975; Serra, 1982; Jeulin, 1991; 2000), a
functional T(K) defined over all compact sets K:
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where P(E) refers to the probability of event E and
cA  is the complementary set of A.

In practice, different sets K are used to evaluate
the morphological properties of a heterogeneous
structure, but it is necessary to point out that if we
cannot know the Choquet capacity for all compact
sets K, we only get a limited amount of information
that is not enough to identify a unique random set. It
is always the case when analysing an experimental
structure (Serra, 1982; 1988).

In this paper, only four different compact sets K
were used: two points, a line segment, a square, or a
cube. The corresponding morphological functions are
explained below. Besides, we always assumed (and
checked) a hypothesis of isotropy, so that each
function is not dependent on the orientation; its
vector argument becomes a positive real number
representing a distance. We also assumed a hypothesis

of ergodicity or stationarity that allows us to replace
expectations by averages over the space.

THE SET COVARIANCE
The covariance C(h) is the probability for two

points A and B with a given distance h to be in the
same phase ϕ.

( ) ( )hABBAhC =∈∈= ,,P ϕϕ (2)

We recall here some properties of this function:
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where f is the volume fraction of phase ϕ.

One can see on Fig. 3, the experimental covariance
of the four images. They all have the same simple
shape, namely a monotonically decreasing exponential
function.
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Fig. 3. C(h) plotted for the 4 images; at the
magnification used, 1 pixel (pix.) represents 585 nm.

THE FUNCTION PSEG

( )hsegP  is the probability of one line segment of a
given length h to be all included in the same phase:

( ) ( )hABABh =⊂= ,][PPseg ϕ (4)

Here are some properties of this function:
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One can see on Fig. 4, the Pseg function of the four
images, which can be described by a decreasing
exponential function.

200 µm
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THE FUNCTION PSQR

( )hsqrP  is the probability of one square of a given
length side h to be all included in the same phase (it
is related to the contact distribution function in 2D):

( ) ( )ϕ⊂= hh  side of squarePPsqr (6)

Here are some properties of this function:

( ) ( )
( ) 0Plim

0PP0

sqr

sqrsqr

=

=≤≤

+∞→
h

fh

h

. (7)

As seen in Fig. 5, the Psqr function of the four
images are decreasing exponential functions.
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Fig. 4. Pseg plotted for the 4 images; 1 pixel (pix.)
represents 585 nm.
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Fig. 5. Psqr plotted for the 4 images; 1 pixel (pix.)
represents 585 nm.

THE CORSON MODEL FOR THE
COVARIANCE

Corson (1974) proposed a simple model for the
function C(h), called the stable covariance in the

geostatistical literature (Wackernagel, 1998; Lantuéjoul,
2002):

( ) ( )nchhC −+= expβα . (8)

α and β are given by the limit conditions:
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So we have:

( ) ( ) ( )nchfffhC −−+= exp12 . (10)

The parameters c and n can be obtained from a
linear regression:
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The Corson model fits very well for the food
microstructure (Fig. 6).

Table 1 gives the values of the three parameters f,
c and n, the coefficient 2r  and the values of h used to
apply the regression to the experimental covariance
of each image and to its average. One can notice that
n is very close to 1 for every image, so that the
experimental covariances are nearly exponential.

In fact, the Corson model for C(h) is non physical
if n ≥ 1 because the slope at the origin must be
strictly negative (n ≥ 1 would produce a null slope).
When the slope is infinite (n < 1), we get a fractal
microstructure. When n = 1, we get:

( ) 0
4

0 <−= vS
dh
dC

, (12)

where vS  is the specific surface area of the phase
divided by the total volume (Stoyan et al., 1995).

In addition, a necessary condition for a function
C(h) to be the covariance of a random set is that the
variogram C(0) - C(h) should satisfy the triangular
inequality (Matheron, 1987). It is easy to check that
this inequality is violated when 1 < n ≤ 2. When
n = 1, the covariance is exponential, and is permitted
for a random set. For n < 1, this point can be proved
as follows: consider realisations of random sets with
an exponential covariance, and with a random
coefficient c following a stable distribution with
parameter 0 < n < 1. The resulting (non ergodic)
random set has a stable covariance with parameter n.
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Fig. 6. Fitting of the Corson model for C(h) of the 4
images; symbols indicate experimental values with the
corresponding Corson fitted model as a smooth line.

TRUNCATED GAUSSIAN
RANDOM SET MODEL

We will try now to build a 3D structure that has
the same morphology as the sample. The first step is
to identify the morphology of the sample on a 2D
image. This will be done with the covariance function.
The second step consists in building a model of a 3D
structure that has the same correlation function as the
2D images. Then, one can simulate multiple 3D
structures by using this random set model. This
method provides a way to reflect the variability of the
morphological properties in the simulations.

We use simulations based on Gaussian random
functions, following the approach proposed in
(Quiblier, 1984; Berk, 1987; Teubner, 1991; Roberts
and Knackstedt, 1996; Roberts and Garboczi, 1999).
A wide range of truncated Gaussian random sets
models is given (Lantuéjoul, 2002). In the present
part, we detail the derivation of the model.

Let N be the number of dimensions of the
simulation space (N = 1, 2 or 3) and let Ni be the

width of the simulation in the dimension number i.
Then let Ω be the simulation field, a subset of ZN,
which is a line [0; N1 – 1] or a rectangle [0; N1 –
 1]×[0; N2 – 1] or a parallelepiped rectangle [0; N1 –
 1] ×[0; N2 – 1]× [0; N3 – 1]. So, we have:
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Later, we will deal only with periodic boundary
conditions. We can define the set of all translations T
on the network:
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For example, if we are in 2D (N = 2) with N1 =
10 and N2 = 13, T is defined as follows:
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Then, if g is a function of Ω∈r  we have:

( ) ( )rgtrgTtr =+∈∀Ω∈∀ ,, . (16)

BUILDING THE SIMULATION
The principle of the simulation is to generate

realisations of Gaussian random functions by
convolution of Gaussian noise with a weight function.
A convenient way to produce these simulations is to
work in Fourier space: in that case, it is easy to
generate realisations with a given experimental
covariance. Other methods could be used, like the
Turning Bands method (Matheron, 1973; Dietrich,
1995; Lantuéjoul, 2002), involving simulations of
Gaussian random functions in a lower dimensional
(like 1D) space, with an appropriate covariance
derived from a model of covariance in 3D. We now
describe how we build the simulation.

Table 1. Volume fraction of the second phase from the 4 images and Corson parameters for the covariance.

Image f c (h in pixels) n r2 Interval used (pix.)
1 0.7795 0.1691 0.9820 0.9999 [ ]14;1∈h
2 0.7397 0.1521 0.9984 0.9999 [ ]10;1∈h
3 0.7290 0.1406 0.9942 0.9999 [ ]19;1∈h
4 0.7501 0.1612 0.9983 0.9999 [ ]19;1∈h
Average C(h) 0.7496 0.1543 0.9948 0.9999 [ ]18;1∈h
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Non-correlated Gaussian random field
For each point r∈Ω, we define a random variable

U(r), which is a standard Gaussian with null
expectation and unit variance:

( ) ( )1;0~, NrUr Ω∈∀ (17)

Because this Gaussian random field is noncorrelated:
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where

( ) ( )( ) ( )( )[ ]YYXXYX EEE;Cov −−= (19)

The non-correlated Gaussian random field U can
be easily generated by a computer and is the starting
point of every simulation.

Introducing a correlation
In order to model a realistic microstructure, a

correlation is imposed by the convolution with a
weight function w (defined on Ω):

( ) ( )( ) ( ) ( )∑
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There are two conditions on w that will help us to
give an interpretation later:
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Thresholding
Finally, the correlated Gaussian field Z is

thresholded to get the binary simulation B:
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INTERPRETATION
Threshold z
Recall that f is the volume fraction of the phase 1

in the simulation:

( )( ) ( )[ ] ( )( )zrZrBrBf ≥==== PE1P (23)

( )rZ  is Gaussian, as a sum of Gaussian variables (by
construction, it is also standard):
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and then
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where F is the cumulative distribution function of a
standard Gaussian.

This gives a simple interpretation of the threshold
z: the volume fraction f is the probability of a
standard Gaussian to be greater or equal to the
threshold z (see Fig. 7).
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Fig. 7. Interpretation of the threshold z.

Weight function w
To understand better the meaning of w, we need

to calculate the covariance of ( )rZ  and ( )hrZ + . It
is easy to show that we have:

( ) ( )[ ] ( )( )hwwhrZrZ *,Cov =+ (26)

where * is the product of convolution, with

( ) ( )[ ] ( )hhrZrZ ρ=+,Cov . (27)

And so now:

( ) ( )( )
( ) ( ) ( )ww

hwwh
FFTFFTFFT

*
×=ρ

=ρ
(28)

where FFT means the fast Fourier transform (a
discrete Fourier transform). The imaginary part of

( )wFFT  is null because of the symmetry of w. So
( )ρFFT  is a real positive and:

( )( )ρ= − FFTFFT 1w . (29)
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The covariance ρ is related to the covariance of
the binary images, defined by thresholding the Gaussian
random function. This is done through the bivariate
Gaussian distribution:
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It can be shown (Berk, 1987; Teubner, 1991;
Lantuéjoul, 2002) that we have:
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The inversion of Eq. 31 will give ρ(h). Then, we
can calculate w by 29, convolve it with a Gaussian
random field and threshold.

COMPUTING THE MODEL
The measurements and simulations programs follow

the different steps of the model:

1. calculation of volume fraction and experimental
centred covariance with periodic boundary conditions;
2. calculation of ρ(h);
3. calculation of w;
4. simulation of a non-correlated Gaussian random field
5. convolution;
6. threshold.

Experimental centred covariance with
periodic boundary conditions
With periodic boundary conditions, we have:
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This expression is symmetric in h, and then (e.g.
Marcotte, 1996):
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This is the equation that we use to get the
covariance of a given image. By construction, the
experimental covariance is the inverse Fourier transform
of a positive function. It is, therefore, positive definite.
Then, an average over the series of images is made.
The volume fraction is Cov(0).

Finally, the covariance is centred:

( ) ( ) 2CovCCov fhh −= . (34)

If the experimental covariance is assumed to be
fitted by the Corson model, we fit the model from the
average on the set of images of the experimental
covariance. This covariance is non-centred and without
periodic boundary conditions. The first step is to
calculate the non-centred covariance with periodic
boundary conditions and then it is simple to centre it.
This is detailed in the Appendix.

Estimation of ρ(h)
Using the experimental covariance function, we

estimate the covariance function ρ by inversion of the
Eq. 31, for discrete values of ρ between 0 and 1
(using a set of 20000 values). The function ρ must be
positive definite. To our knowledge, this is an open
problem when starting from the Corson model, but in
our simulations the numerical Fourier transform of ρ
was positive. From the value of the volume fraction f,
the threshold is calculated by 25. Another way to
generate simulations is to start from a model of
covariance for ρ and, then, to compute the covariance
Cov(h) from Eq. 31 (Roberts and Knackstedt, 1996;
Roberts, 1997; Roberts and Garboczi, 1999; Lantuéjoul,
2002). In (Wilson and Nott, 2001), a stable covariance
is used for ρ, and the parameters are estimated by
fitting the predicted and the experimental Cov(h).
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Fig. 8. Experimental structure.
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Fig. 9. Scheme of the truncated Gaussian model.
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Estimation of w and simulations
We estimate w from the Eq. 29; in fact, we need

only its Fourier transform because we want to
convolve it with the Gaussian white noise (Eq. 20),
which is obtained by a product in the Fourier domain.
Once it has been convolved, we can threshold the
result to get binary images.

APPLICATION OF THE TRUNCATED
GAUSSIAN MODEL TO FOOD
PRODUCTS
Using the experimental covariance
For illustration, we made 32 (2D) simulations of

the food product using the average experimental
covariance. Their size is the same as the one of the
experimental micrographs (992×688 pixels). Two of
them are printed on Fig. 19. They look like the
originals (see Fig. 2) but there is a “noise” in it: some
small white dots appear in the black phase and vice
versa (see Fig. 19, right). But the suitability of the
simulated function C(h) to the experimental one is
very good (see Fig. 10). Also we can see in Fig. 11
and Fig. 12 that the two other functions Pseg and Psqr
of the simulations are very close to those from the
experimental images. This is very interesting because
it was not used as an input in the simulation.
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Fig. 10. C(h) for experimental images (symbols) and
2D simulations (smooth lines) using the experimental
covariance.
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Fig. 11. Pseg for experimental images (symbols) and
2D simulations (smooth lines) using the experimental
covariance.
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Fig. 12. Psqr for experimental images (symbols) and
2D simulations (smooth lines) using the experimental
covariance.

Using the experimental covariance fitted
with the Corson model
For illustration, we have made 32 (2D) simulations

of the food microstructure using the average
experimental covariance fitted by the Corson model
(last line of Table 1). Their size is the same as the one
of the experimental micrographs (992×688 pixels).
Two of them are printed on Fig. 20.

They look like the originals (see Fig. 2) and there
is no noise as there was in the previous simulation
(see Fig. 20). We have the same conclusion about the
suitability of the function C(h), Pseg and Psqr but there
is less variability between all the simulations.
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Fig. 13. C(h) for experimental images (symbols) and for
2D simulations (smooth lines) using fitted correlation.
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Fig. 14. Pseg for experimental images (symbols) and for
2D simulations (smooth lines) using fitted correlation.
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Fig. 15. Psqr experimental images (symbols) and 2D
simulations (smooth lines) using fitted correlation.

The results in 3D are exactly the same as in 2D with
the Corson model as the input for covariance. This
enables us to generate 3D microstructures from a model
estimated from 2D images. To illustrate this point, 16

(3D) simulations have been done (256×256×256). The
morphological functions are shown in Fig. 16 - 18.
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Fig. 16. C(h) for experimental images (symbols) and
for 3D simulations (smooth lines) using fitted
correlation.
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Fig. 17. Pseg for experimental images (symbols) and
for 3D simulations (smooth lines) using fitted
correlation.
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Fig. 18. Psqr for experimental images (symbols) and
for 3D simulations (smooth lines) using fitted
correlation.
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Fig. 19. 2D simulation of the food product using the experimental covariance (left), and zoom to show the
artefacts.

Fig. 20. 2D simulations of the food microstructure using the experimental covariance fitted by the Corson
model, and zoom in on the simulations showing that the artefacts have disappeared Fig. 20: Zoom in on the
simulations to see that the artefacts have disappeared.

CONCLUSION

In this paper, we could simulate the 3D micro-
structure of food products, using the truncated
Gaussian model and morphological information from
2D sections.

The experimental plots of the covariance C(h) fit the
model of Corson quite well (a simple monotonically
decreasing exponential function).

The thresholded Gaussian random field is capable
of reconstructing such a structure with the required
C(h) function in both two and three dimensions. Both

visually and quantitatively, the 2D images generated
from the thresholded Gaussian field agree with the
2D SEM images of the food products very well.
Surprisingly, although only the covariance function is
used as input to the Gaussian random field model, the
simulated structures give Pseg and Psqr functions that fit
the corresponding experimental functions very closely.
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APPENDIX
We offer a way to estimate a periodic covariance

from an image. In two or three dimensions, h is the
length of a vector.

In 1D, periodic conditions would give:
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Fig. 21. Periodic boundary conditions for covariance.

The following lines prove the previous equation:
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We have a similar expression in 2D and in 3D.
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