
Image Anal Stereol 2004;23:177-183
Original Research Paper

A TIME-OPTIMAL ALGORITHM FOR THE ESTIMATION
OF CONTACT DISTRIBUTION FUNCTIONS OF RANDOM SETS

JOHANNES MAYER

Department of Applied Information Processing and Department of Stochastics, University of Ulm, D-89069
Ulm, Germany
e-mail: jmayer@mathematik.uni-ulm.de
(Accepted June 18, 2004)

ABSTRACT

This paper presents a linear-time and therefore time-optimal algorithm for the estimation of distance
distribution functions and contact distribution functions of random sets. The distance distribution function
is the area fraction of a dilated set, where this function depends on the size of the structuring element used for
the dilation. Furthermore, contact distribution functions are related to distance distribution functions. Minus-
sampling estimators are used for the estimation.

Keywords: algorithm, contact distribution, distance distribution, estimation, estimator, minus-sampling.

INTRODUCTION

Random sets, i.e., random variables whose values
are sets, have successfully been applied to model
patterns in various fields, such as materials science
(Ohser and Mücklich, 2000), medicine (Mattfeldt et
al., 1996), physics (Mecke, 1998), and astrophysics
(Mecke et al., 1994). In their statistical analysis, so-
called contact distribution functions (cdf’s) are very
important, cf. Serra (1982); Stoyan et al. (1995); Ohser
and Mücklich (2000). For a stationary random closed
set Ξ, the spherical contact distribution function is
the distribution function of the random (minimum
Euclidean) distance of an arbitrary point x outside
of Ξ to (the closest point at the boundary ∂Ξ
of) Ξ. The Euclidean metric yields the spherical
contact distribution function. Using other metrics,
such as the city-block metric, yields further important
contact distribution functions. There are various
estimators for contact distribution functions, cf. Stoyan
et al. (1995). The classical estimators are minus-
sampling estimators. Stoyan et al. (2001) point
out that these estimators for cdf’s are as good as
the more sophisticated estimators concerning the
mean squared error. Therefore, the classical (minus-
sampling) estimators are used in the following.

The cdf can be expressed in terms of the area
fraction of the stationary random closed set dilated
by a structuring element with variable size. In case of
the spherical cdf, the structuring element is the unit-
sphere.

When working with real data, binary images,
i.e., digital images with two phases, are the usual
basis for the estimation. They can be interpreted as

discretized samples of random sets. Thus, the minus-
sampling estimators have to be formulated for this
case. This is not difficult. However, it turns out,
that the running time of algorithms computing these
estimators is usually not linear in the number of pixels
of the image, but somewhat in between linear and
quadratic – even when a distance transform is used
and computed in linear-time. The presented novel
algorithm additionally uses an efficient data structure
to compute the minus-sampling estimator in linear
time. In the following, the two-dimensional case is
covered. However, the results can be generalized
analogously to higher dimensions (with not much
difficulty).

PRELIMINARIES

Let A and B be two arbitrary subsets of R
2. By

Ac := {x ∈ R
2 : x /∈ A} the complement of the set A

is denoted. Let c be a real constant. Then cA := {cx :
x ∈ A} is the scalar multiplication of c and A. The set
A⊕B := {x+ y : x ∈ A,y ∈ B} is called the Minkowski
addition of A and B. The Minkowski subtraction of
B from A is defined as A ª B := (Ac ⊕ B)c. The set
B is called the structuring element in the Minkowski
addition and subtraction above. A structuring element
Bm can be defined using a norm m as Bm := {x ∈ R

2 :
m(x) ≤ 1}. The disc b(o,r) with radius r around the
origin is, thus, equal to the set rBmE

, where mE denotes
the Euclidean norm. (Note that each norm m(·) has an
associated metric d(x,y) := m(x− y).)

Let X be a set from the extended convex ring over
R

2. Then A(X) denotes the area. Let Ξ be a stationary
random closed set over the extended convex ring. Let

177



MAYER J: Estimating Contact Distribution Functions of Random Sets

W be a non-empty, bounded convex set, the so-called
sampling window. Ξ∩W is the random set Ξ observed
within the sampling window W . The specific area or
area fraction of Ξ is defined as

AA(Ξ) :=
E[A(Ξ∩W )]

A(W )
. (1)

Let x be a (fixed) arbitrary point of R
2. Then AA(Ξ) =

P(o ∈ Ξ) = P(x ∈ Ξ) holds. Thus, ÂA(Ξ) =
�

Ξ(x) is
a simple and unbiased estimator for AA(Ξ). Given a
finite set of points G of R

2, an improved estimator for
the area fraction is given by ÂA(Ξ) = 1

#G ∑x∈G
�

Ξ(x)
which is also unbiased and known as the point count
method. (#G denotes the cardinality of the set G.) G
can be seen as the vertices of a grid – the locations of
the pixels of a binary image – and

�
Ξ(x) can be seen

as the values of the pixels of a binary image. Thus, the
previous estimator can easily be used for samples of Ξ
given as a binary image.

The area fraction can be studied for so-called
parallel sets Ξ ⊕ rB of Ξ, where B is a compact
and convex subset of R

2. This yields the following
morphological function, where this function depends
on the size r of the structuring element B:

AA(r) := AA(Ξ⊕ rB) (2)

AA(r) is sometimes called the distance distribution
function. A normalized version of AA(r) is the so-
called contact distribution function HB(r) which can
be defined as

HB(r) := 1− 1−AA(r)
1−AA(0)

(3)

for r ≥ 0. For example, choosing B = b(o,1) yields the
well-known spherical contact distribution function,
denoted Hs(r).

Let B = Bm for some norm m. Then, AA(r) is the
distribution function of the random (minimal) distance
between an arbitrarily chosen point x ∈ R

2 and Ξ.
Furthermore, HB(r) is the distribution function of
the random (minimal) distance between an arbitrarily
chosen point x ∈ Ξc and Ξ.

Let G be a finite grid over R
2. Given a metric d,

the distance transform of the set X on G is defined as

DX
d (x) := min{d(x,y) : y ∈ G∩X c} (4)

for each x∈G. It associates each point with its minimal
distance to Xc (on the grid) – a different distance in
comparison to the distance distribution and the contact
distribution. For a binary image being a discretization
of the set X on a rectangular grid G, this transform

can be computed in linear time (in the number of
pixels) for various metrics, such as the Euclidean,
the city-block, the maximum, etc., cf. Rosenfeld and
Pfaltz (1966; 1968); Danielsson (1980); Soille (1991);
Vincent (1991); Ragnemalm (1993); Breu (1995).

SOME ESTIMATION ALGORITHMS FOR
DISTANCE DISTRIBUTION FUNCTIONS
As before, let Ξ be a stationary random closed set

over the extended convex ring, B a compact and convex
subset of R

2, and W a non-empty, bounded convex
set, namely the sampling window. A minus-sampling
estimator for the distance distribution function is the
following:

ÂA(r) =
A([(Ξ∩W )⊕ rB]∩ (W ª rB))

A(W ª rB)
(5)

for r ≥ 0 such that A(W ª rB) > 0. Edge-effects
are removed through the reduction of the sampling
window from W to W ª rB.

Let G be a finite rectangular grid over R
2 for the

discretization of Ξ and W . The area of the unit cell of
G is called A0. Furthermore, let B = Bm for some norm
m and let d be the metric associated with m. Then, the
above estimator can be discretized as

ÃA(r) =
A0 ∑x∈G

�

[0,r](DΞc

d (x)) · �

(r,∞](DW
d (x))

A0 ∑x∈G
�

(r,∞](DW
d (x))

=
∑x∈G

�

[0,r](DΞc

d (x)) · �

(r,∞](DW
d (x))

∑x∈G
�

(r,∞](DW
d (x))

(6)

for r ≥ 0 such that the denominator does not vanish.
Informally speaking, this estimator gives the fraction
of all pixels with (minimal) distance greater than r
to the boundary of the sampling window W that have
(minimal) distance at most r to Ξ.

The direct algorithm
The direct algorithm to compute the above

discretized estimator first computes the distance
transforms of Ξc and W (in linear time). (Note that
the distance transform of W can easily be computed
directly if W is a rectangle.) Thereafter, it computes
the above fraction for each value of r.

To make the description of the direct algorithm
precise, the following listing is an implementation of
this algorithm in Java. However, an implementation in
C, C++, or C# would look very similar. For simplicity
considerations, the images are represented by two-
dimensional arrays. The complementation of a binary
image is done by the method C() and the distance
transform is computed by the method DT(). These
methods are used as black boxes.

178



Image Anal Stereol 2004;23:177-183

1float[] estimateDirect(boolean[][] im,
2 boolean[][] sw, int metric)
3{
4 // width and height of im and sw
5 int width = im.length;
6 int height = im[0].length;
7

8 // distance transform of sw
9 // and the complement of im

10 float[][] dim = DT(C(im), metric);
11 float[][] dsw = DT(sw, metric);
12

13 // arrays for numerator and denominator
14 int min = Math.min((width+1)/2,
15 (height+1)/2);
16 int[] num = new int[min];
17 int[] denom = new int[min];
18 for (int r = 0; r < min; r++)
19 num[r] = denom[r] = 0;
20

21 // process each pixel for all values of r
22 for (int r = 0; r < min; r++)
23 for (int y = 0; y < height; y++)
24 for (int x = 0; x < width; x++) {
25 // increment denominator
26 if (r < dsw[x][y])
27 denom[r]++;
28

29 // increment numerator
30 if (r >= dim[x][y]
31 && r < dsw[x][y])
32 num[r]++;
33 }
34

35 // compute the estimator for all r
36 // such that denom[r] != 0
37 for (int r = 0; r < min; r++)
38 num[r] = (denom[r] == 0)
39 ? Float.NaN
40 : (float) num[r]
41 / (float) denom[r];
42

43 return num;
44}

The parameter im is a discretization of a sample
of Ξ and the parameter sw is a discretization of W ,
i.e., im and sw are binary images. It is assumed that
both have the same size (computed in lines 5 and
6). The parameter metric is passed to the method
that computes the distance transform. It determines the
structuring element Bm. The numerator of the estimator
is stored in the array num; the denominator is stored
in the array denom. For values of r such that the
denominator of the estimator vanishes, the estimator is
set to “not a number” (Float.NaN), since it cannot
be determined in this case.

The computation of the fraction for one value of r
takes Θ(#G) time and there are Θ(

√
#G) values of r

(if the image is quadratic). Thus, the direct algorithm
has in each case time-complexity Θ(#G

√
#G). This

is much more than linear time, i.e., Θ(#G). Consider,
for example, a 1000× 1000 pixels image, i.e., #G =
106. Then, #G

√
#G = 109 is significantly more than

just #G.

An improved algorithm

The direct algorithm processed the image once for
each value of r. An obvious improvement is, thus,
to process the image only once and to compute for
each pixel the range within which it is counted in
the numerator resp. the denominator. Using an array
for the numerator and the denominator, the elements
of this array have to be initialized with zero at the
beginning and incremented by one in the computed
range for each pixel.

The following Java implementation makes the
informal description of the improved algorithm
precise:

1float[] estimateImproved(boolean[][] im,
2 boolean[][] sw, int metric)
3{
4 // width and height of im and sw
5 int width = im.length;
6 int height = im[0].length;
7

8 // distance transform of sw
9 // and the complement of im

10 float[][] dim = DT(C(im), metric);
11 float[][] dsw = DT(sw, metric);
12

13 // arrays for numerator and denominator
14 int min = Math.min((width+1)/2,
15 (height+1)/2);
16 int[] num = new int[min];
17 int[] denom = new int[min];
18 for (int r = 0; r < min; r++)
19 num[r] = denom[r] = 0;
20

21 // process all pixels
22 for (int y = 0; y < height; y++)
23 for (int x = 0; x < width; x++) {
24 float d_xi = dim[x][y];
25 float d_wc = dsw[x][y];
26 d_xi = Math.min(d_xi, d_wc);
27

28 // increment denominator
29 for (int r = 0; r < d_xi; r++)
30 denom[r]++;
31

32 // increment numerator
33 // and denominator
34 for (int r = d_xi; r < d_wc; r++) {
35 num[r]++;
36 denom[r]++;
37 }

179



MAYER J: Estimating Contact Distribution Functions of Random Sets

38 }
39

40 // compute the estimator for all r
41 // such that denom[r] != 0
42 for (int r = 0; r < min; r++)
43 num[r] = (denom[r] == 0)
44 ? Float.NaN
45 : (float) num[r]
46 / (float) denom[r];
47

48 return num;
49}

It is interesting to study, how many increments
are necessary for all pixels together. This yields
the amortised time complexity of this algorithm.
The number of all increments is obviously between
once and twice the number of increments of the
denominator. Thus, only the number of increments
of the denominator is studied. For simplicity
considerations let the sampling window be quadratic
with even edge length n. If the distance of a pixel to
W c is d, this leads to d increments of the denominator.
It is easily verified that there are 4(2k)−4 pixels with
distance n

2 − k + 1 to W c for k = 1, . . . , n
2 . Thus, the

total number of increments of the denominator is in
each case

n/2

∑
k=1

(4(2k)−4)
(n

2
− k +1

)

=
n3 +3n2 +2n

6
= Θ(n3) = Θ(#G

√
#G), (7)

with n =
√

#G. Thus, this algorithm also has time-
complexity Θ(#G

√
#G) in each case.

The novel algorithm

The problem of the improved algorithm is that
in each case Θ(

√
#G) increments are necessary for a

huge subset of the pixels. However, these increments
are done within a continuous range of array elements.
Now, the novel algorithm uses the improved algorithm,
but it has a more sophisticated data structure to
represent the numerator and the denominator than just
a simple array. The basic requirement for this data
structure is that only a constant number of increments
(and decrements) is necessary to increment a whole
(continuous) range (with the same value). Figure 1
shows two different representations of the same integer
sequence (1,2,1,3,3,2).

0

1

3

−1

2

b[0] b[1] b[2] b[3] b[4] b[5]

(a)

0

1

3

−1

2

c[0] c[1] c[2] c[3] c[4] c[5]

(b)

Fig. 1. Two array representations of the same integer
sequence.

(a) shows the direct representation of the sequence.
In (b), the first element of the sequence and the
differences to the previous element are stored, i.e.,
c[i] = b[i]−b[i−1] for i > 0 and c[0] = b[0]. The array
b can, thus, easily be restored from c as follows:

b[0] = c[0] and b[i] = b[i−1]+ c[i], (8)

for i > 0. To increment the elements of the sequence
in the range [n,n + m − 1] it takes m increments
in representation (a) and only two increments resp.
decrements in representation (b), namely an increment
of c[n] and a decrement of c[n + m]. Therefore, during
the processing of the pixels, the numerator and the
denominator should be stored using representation (b).
At the end, this representation is converted to the
representation (a).

The following Java implementation gives a precise
description of the novel algorithm:

1float[] estimateNovel(boolean[][] im,
2 boolean[][] sw, int metric)
3{
4 // width and height of im and sw
5 int width = im.length;
6 int height = im[0].length;
7

8 // distance transform of sw
9 // and the complement of im

10 float[][] dim = DT(C(im), metric);
11 float[][] dsw = DT(sw, metric);
12

180



Image Anal Stereol 2004;23:177-183

13 // arrays for numerator and denominator
14 // in representation (b)
15 int min = Math.min((width+1)/2,
16 (height+1)/2);
17 int[] num = new int[min];
18 int[] denom = new int[min];
19 for (int r = 0; r < min; r++)
20 num[r] = denom[r] = 0;
21

22 // process all pixels
23 for (int y = 0; y < height; y++)
24 for (int x = 0; x < width; x++) {
25 float d_xi = dim[x][y];
26 float d_wc = dsw[x][y];
27

28 // increment denominator
29 if (d_wc > 0)
30 denom[d_wc-1]++;
31

32 // increment numerator
33 if (d_xi < d_wc) {
34 num[d_xi]++;
35 num[d_wc]--;
36 }
37 }
38

39 // reconstruct representation (a)
40 // in num and denom
41 for (int r = 1; r < min; r++)
42 num[r] += num[r-1];
43 for (int r = min-1; r > 0; r--)
44 denom[r-1] += denom[r];
45

46 // compute the estimator for all r
47 // such that denom[r] != 0
48 for (int r = 0; r < min; r++)
49 num[r] = (denom[r] == 0)
50 ? Float.NaN
51 : (float) num[r]
52 / (float) denom[r];
53

54 return num;
55}

The numerator of the estimator is stored in
the array num according to representation (b). The
denominator is stored in the array denom slightly
different; it contains the changes from right to left and
not from left to right. All pixels are processed in the
lines 23–37. For each pixel, d_xi is its (minimal)
distance to Ξ and d_wc is its (minimal) distance to W c;
cf. lines 25–26. The numerator has to be incremented
in the range [d_xi, . . . ,d_wc−1], which requires
one increment and one decrement; cf. lines 33–36.
Analogously, the denominator has to be incremented
in the range [0, . . . ,d_wc−1]. Thus, at most one
increment is necessary, since the changes are stored
from right to left; cf. lines 29–30. After the integer
sequences for the numerator and the denominator have
been reconstructed in the lines 41–44, the estimator

can be computed in the lines 48–52.

Concluding, the time-complexity of the novel
algorithm is in each case Θ(#G), where #G is
the number of pixels of the image. Therefore, this
algorithm is time-optimal, because linear time is the
best possible case.

EMPIRICAL STUDY
So far, “only” asymptotical results have been

presented. They show that the novel algorithm is
at least of theoretical importance. But the constants
hidden in the Θ-notation may be so huge that the novel
algorithm could be of no practical importance.

For this reason, the (stationary) Boolean model
with discs of radius 10 pixels and given hypothetical
area fraction p∈ {0.1,0.2, . . . ,0.9} has been simulated
for quadratic sampling windows of sizes (i.e., edge
lengths) 512, 1024, 2048, and 4096 pixels. Samples of
such Boolean models are shown in Figure 2.

The experiments have been conducted on an AMD
Athlon 900 with 1.5 GB of main memory, SuSE
Linux 7.3, and IBM JDK 1.3.0. The command java
was called with the option -mx1024m.

For each sampling window size and each
hypothetical area fraction, ten samples of the Boolean
model have been simulated. For each algorithm (direct,
improved, and novel), the mean of the execution times
was taken over the ten executions (with the different
samples). Since the Euclidean distance transform,
which has been used for the experiments – the
algorithm of Danielsson (1980) has been implemented
– is very time consuming, the execution times have
been determined excluding (cf. Table 1) and including
(cf. Table 2) the time necessary for the distance
transforms.

Both tables show that the novel algorithm is
also in practice much faster than the direct and the
improved algorithm. The novel algorithm is for the
given image sizes at best 68 times as fast as the
improved algorithm and 1887 times as fast as the
direct algorithm (excluding the time necessary for the
distance transform). This is a significant improvement.

RELATED WORK
Most publications about estimators for contact

distribution functions make no statement on the
implementation of these estimators. The only
publication (known to the author) that contains explicit
descriptions of algorithms is that of Bhattacharya
(2003). These descriptions are quite informal and
indicate that the direct (or, at best, the improved)
algorithm has been used.

181



MAYER J: Estimating Contact Distribution Functions of Random Sets

p = 0.1 p = 0.2

p = 0.3 p = 0.4

p = 0.5 p = 0.6

p = 0.7 p = 0.8

p = 0.9

Fig. 2. Samples of the Boolean model with discs of
radius 10 pixels and hypothetical area fraction p
within a sampling window sized 512×512 pixels.

Klaus Mecke confirmed that he has not yet seen the
presented “novel” algorithm been published.

CONCLUSION

To compute the minus-sampling estimator for
distance distribution functions, it has been shown that
a straightforward approach is not sufficient. Therefore,
a novel efficient algorithm has been presented. This
algorithm has in each case linear time-complexity,
which is optimal.

Although, the algorithms are only given for the
two-dimensional case, they can easily be adapted to
higher dimensions.

Table 1. Execution times of the novel (above), the
improved (middle), and the direct (below) algorithm
(excluding the execution time for the distance
transforms).

Hypothetical Size n (in pixels)
Area Fraction p 512 1024 2048 4096

0.020 s 0.077 s 0.31 s 1.25 s
0.1 0.13 s 0.97 s 8.00 s 70.1 s

4.48 s 34.6 s 289 s 2338 s
0.021 s 0.080 s 0.31 s 1.25 s

0.2 0.13 s 1.07 s 8.34 s 64.9 s
4.37 s 36.1 s 284 s 2279 s

0.019 s 0.076 s 0.32 s 1.27 s
0.3 0.14 s 1.05 s 9.17 s 70.8 s

4.43 s 34.5 s 277 s 2287 s
0.020 s 0.078 s 0.31 s 1.20 s

0.4 0.13 s 1.05 s 10.3 s 72.2 s
4.39 s 35.2 s 282 s 2226 s

0.017 s 0.075 s 0.31 s 1.18 s
0.5 0.13 s 1.11 s 11.0 s 75.2 s

4.35 s 34.6 s 282 s 2227 s
0.018 s 0.076 s 0.28 s 1.19 s

0.6 0.13 s 1.23 s 9.66 s 76.9 s
4.26 s 34.3 s 276 s 2158 s

0.018 s 0.077 s 0.29 s 1.15 s
0.7 0.14 s 1.12 s 10.1 s 76.6 s

4.12 s 34.0 s 257 s 2127 s
0.018 s 0.074 s 0.29 s 1.18 s

0.8 0.13 s 1.10 s 9.86 s 79.7 s
4.15 s 33.3 s 262 s 2102 s

0.018 s 0.071 s 0.29 s 1.14 s
0.9 0.14 s 1.08 s 9.43 s 76.2 s

4.07 s 31.8 s 261 s 2069 s

182



Image Anal Stereol 2004;23:177-183

Table 2. Execution times of the novel (above), the
improved (middle), and the direct (below) algorithm
(including the execution time for the distance
transforms).

Hypothetical Size n (in pixels)
Area Fraction p 512 1024 2048 4096

0.044 s 1.87 s 7.08 s 28.2 s
0.1 0.56 s 2.65 s 14.7 s 96.8 s

4.91 s 36.3 s 296 s 2365 s
0.043 s 1.70 s 6.81 s 27.2 s

0.2 0.54 s 2.68 s 14.8 s 90.8 s
4.79 s 37.7 s 290 s 2305 s
0.042 s 1.68 s 6.69 s 26.7 s

0.3 0.53 s 2.62 s 15.5 s 96.0 s
4.83 s 36.1 s 283 s 2313 s
0.041 s 1.62 s 6.48 s 25.9 s

0.4 0.51 s 2.57 s 16.5 s 96.6 s
4.78 s 36.7 s 288 s 2251 s
0.039 s 1.62 s 6.41 s 24.9 s

0.5 0.51 s 2.62 s 16.5 s 98.7 s
4.73 s 36.1 s 288 s 2251 s
0.038 s 1.53 s 6.06 s 24.5 s

0.6 0.49 s 2.68 s 15.4 s 99.5 s
4.62 s 35.8 s 282 s 2181 s
0.038 s 1.49 s 5.93 s 23.2 s

0.7 0.48 s 2.51 s 15.6 s 98.5 s
4.47 s 35.4 s 263 s 2149 s
0.037 s 1.41 s 5.59 s 22.6 s

0.8 0.47 s 2.43 s 15.1 s 101 s
4.49 s 34.7 s 268 s 2124 s
0.035 s 1.39 s 5.49 s 22.1 s

0.9 0.46 s 2.36 s 14.6 s 96.5 s
4.40 s 33.1 s 266 s 2090 s

Experimental results show that the novel algorithm
is also in practice much better than simpler algorithms.
The Boolean model has been chosen for the
experiments. Since there is no major dependency
between the running-time of the algorithms and the
image data, this is representative.

The presented algorithms can also be used to
compute estimators of contact distribution functions,
since distance distribution functions and contact
distribution functions are related to each other as
shown.

ACKNOWLEDGMENTS
The author is grateful to Volker Schmidt for

valuable comments. He also wants to thank Klaus
Mecke for helpful remarks which initiated the
experimental part of this work.

REFERENCES

Bhattacharya A (2003). Measurement of Contact
Distribution Functions on 2d Binary Images Using
Image Processing Techniques. Diploma Thesis,
University of Kaiserslautern.

Breu H, Gil J, Kirkpatrick D, Werman M (1995). Linear
Time Euclidean Distance Algorithms. IEEE Trans
Pattern Anal 17:529-33.

Danielsson PE (1980). Euclidean Distance Mapping.
Comput Vision Graph 14:227-48.

Lang C, Ohser J, Hilfer R (2001). On the Analysis of Spatial
Binary Images. J Microsc 202:1-12.

Mattfeldt T, Schmidt V, Reepschläger D, Rose C, Frey
H (1996). Centered Contact Density Functions for
the Statistical Analysis of Random Sets. J Microsc
183:158-69.

Mecke K (1998). Integral Geometry and Statistical Physics.
Int J Mod Phys B 12:861-99.

Mecke K, Buchert T, Wagner H (1994). Robust
Morphological Measures for Large-Scale Structure in
the Universe. Astron Astrophys 288:697-704.

Ohser J, Mücklich F (2000). Statistical Analysis of
Microstructures in Materials Science. Chichester: John
Wiley & Sons.

Ohser J, Steinbach B, Lang C (1998). Efficient Texture
Analysis of Binary Images. J Microsc 188:20-8.

Ragnemalm I (1993). The Euclidean Distance Transform.
Ph.D. Thesis, University of Linköping.

Rosenfeld A, Pfaltz J (1966). Sequential Operations in
Digital Picture Processing. J ACM 13:471-94.

Rosenfeld A, Pfaltz J (1968). Distance Functions in Digital
Pictures, Patt Recogn 1:33-61.

Serra J (1982). Image Analysis and Mathematical
Morphology. London: Academic Press.

Soille P (1991). Spatial Distributions from Contour
Lines: An Efficient Methodology Based on Distance
Transformations. J Vis Commun Image R 2:138-50.

Stoyan D, Kendall WS, Mecke J (1995). Stochastic
Geometry and its Applications. Chichester: John Wiley
& Sons.

Stoyan D, Stoyan H, Tscheschel A, Mattfeldt T (2001). On
the Estimation of Distance Distribution Functions for
Point Processes and Random Sets. Image Anal Stereol
20:65-9.

Vincent L (1991). Exact Euclidean Distance Function by
Chain Propagations. Proc IEEE Comput Vision Patt R
520-5.

183


