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ABSTRACT

A method of spatial extrapolation of traffic data is proposed. The traffic data is given by GPS signals over
downtown Berlin sent by approximately 300 taxis. To reconstruct the traffic situation at a given time spatially,
i.e., in the form of traffic maps, kriging with moving neighborhood based on residuals is used. Due to
significant anisotropy in directed traffic data, the classical kriging has to be modified in order to include
additional information. To verify the extrapolation results, test examples on the basis of a well-known model
of stochastic geometry, the Boolean random function are considered.

Keywords: anisotropy, asymptotic Gaussian test, Boolean model, kriging, moving neighborhood, random field.

INTRODUCTION

A common difficult problem of large cities with
heavy traffic is the forecasting of traffic jams. In
this paper, a first step towards mathematical traffic
forecasting, namely the spatial reconstruction of the
present traffic situation from point measurements
is done. To describe the traffic states, models
of stochastic geometry and spatial statistics (or
geostatistics) are used. A corresponding Java software
that implements efficient algorithms of spatial
extrapolation is developed.

This research is based on real traffic data
originating from downtown Berlin. They were
provided by the Institute of Transport Research of the
German Aerospace Center (DLR). Approximately 300

test vehicles (taxis) were equipped with GPS sensors
transmitting their geographic coordinates, velocity and
status line (e.g., “free”, “hired”, “at the taxi rank”, etc.)
to a central station within regular time intervals from
30 sec. up to 3 min. The regularity of these signals
depends on the taxi’s status. Thus, a large data base of
more than 13 million positions was formed since April
2001 (see Fig. 1).

In the present paper, a smaller data set (taxi
positions on all working days from 30.09.2001 till
19.02.2002, 5.00–5.30 p.m., moving taxis only) is
considered. The observation window was reduced to
downtown Berlin in order to avoid inhomogeneities in
the taxi positions. To study traffic jams, the rush hour
(5.00–5.30 p.m.) was chosen.

Fig. 1. Observed positions of test vehicles in downtown Berlin.
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To produce road traffic maps, the velocities of
all vehicles at time t are assumed to be induced
by a realization of a spatial random field V (t) =
{V (t,u)} where V (t,u) is a traffic velocity vector at
position u ∈ R

2 and time t > 0. The spatial structure
of such random velocity fields makes the analysis
of traffic-jam mechanisms possible. Thus, the spatial
localization of traffic jams can be obtained by a
threshold operation on the grey-scale image of the map
of velocities V (t,u): a point u lies within the traffic
jam region at time t if |V (t,u)| is smaller than a given
threshold value, e.g., 15 kph.

Since V (t,u) can be measured just pointwise at
observation points ui, a spatial extrapolation of the
observed data is necessary. Notice that the velocities
strongly depend on the movement directions, e.g., the
speed limits and consequently the mean velocities
are higher on motorways than in downtown streets.
Furthermore, the formation of traffic jams is also
directional since a vehicle can influence only those
vehicles moving behind it along the same road in the
same direction. Moreover, the traffic speed at position
u clearly depends on the traffic direction on the road,
e.g., in directions of the city center or suburbs.

The classical extrapolation methods of
geostatistics such as the ordinary kriging (see, e.g.,
Stoyan et al., 1997, Wackernagel, 1998) either
make no use of additional information or provide
measurements V (t,u+ui) and V (t,u−ui) with equal
weights. Both these features are not relevant to the
above problem setting. An extrapolation method
designed for directional data, the so-called complex
cokriging of velocities and their directions (see, e.g.,
Wackernagel, 1998) cannot be used here as well
since there is no one-to-one correspondence between
measurement positions u and traffic directions. An
obvious counterexample is a crossroads. Thus, the
standard extrapolation methods had to be adapted to
our specific problem. Therefore, a modified ordinary
kriging with moving neighborhood is described that
allows to extrapolate directed velocity fields. First, the
original data set should be split into N directionally
homogeneous subsets. A data unit (u,V (t,u)) belongs
to the data set i (i = 1, . . . ,N) if the polar angle of the
vector V (t,u) lies within the directional sector

Si = [2π(i−1)/N,2πi/N) .

By convention, the zero polar angle corresponds to the
eastward direction on the city map. Throughout this
paper, we put N = 4. From the practical point of view,
this is sufficient for the separation of opposite traffic
directions and, simultaneously, keeps the amount of
resulting data sets small. Nevertheless, in principle,
any other N > 4 could be used instead.

The above data sets should be extrapolated
separately from each other. This yields N velocity
maps corresponding to N directional sectors.

In what follows, the data from a given time interval
[t1, t2] will be taken for extrapolation. To be precise,
we put t1 = 5.00 p.m. and t2 = 5.30 p.m. Keeping this
in mind, we shall omit the time parameter t in further
notation. The observed velocities are not spatially
homogeneous. Hence, the mean velocity field {m(u)}
obtained by averaging the traffic velocities over all
working days from 5.00 p.m. till 5.30 p.m. should
be considered. As far as this mean field is subtracted
from the original data, the deviations of actual velocity
values are extrapolated in order to create the spatial
field of velocity residuals.

This extrapolation method has been implemented
in Java. Thus, a software library was developed
comprising the estimation and fitting of variograms
as well as the ordinary kriging with moving
neighborhood. As far as it is known to the authors,
it is the first complete implementation of such
kriging methods in Java. An advantage of the
Java programming language lies in its platform
independence. Great attention was paid to the efficient
implementation of fast algorithms. In contrast to
classical geostatistics operating with relatively small
data sets, this efficiency is of great importance
for larger data sets with more than 10000 entries.
For instance, the Java package for variogram fitting
described in Faulkner, 2002 cannot be used for
data sets with more than 1000 entries due to
unacceptable runtimes. Efficient image processing and
computational algorithms (see, e.g., Mayer et al.,
2004) enabled us to drastically reduce the runtimes of
the Java library.

The extrapolation method itself as well as the
software quality are verified on the test example
of a Boolean random function; see Serra, 1988.
Remarkable features of this model are its simplicity
of simulation and nice analytical description. For test
purposes, 90 independent realizations of a Boolean
model with a deterministic drift have been simulated.
The quality of extrapolation is proved by means of
statistical significance tests of the area fraction. It is
shown that extrapolated images perfectly retain the
essential structure of original test images.

This justifies the application of the above method
to traffic data. First, the mean velocity fields are
estimated for all directional sectors. Then, the
deviations from the mean of actual speed values are
extrapolated for particular days and time intervals. On
their basis, traffic-jam maps are created; see Figs. 19–
21.
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There are several interesting perspectives for
further research. In particular, using methods recently
developed in Heinrich et al., 2004, Klenk et al., 2004,
and Schmidt and Spodarev, 2004, models of stochastic
geometry can be statistically fitted to extrapolated
traffic maps. In the next step, the fitted models can
be used in order to predict future traffic states on the
basis of currently incoming traffic data. Such space-
time prediction models as well as their applications
to forecasting of traffic states will be discussed in a
forthcoming paper.

SOME PRELIMINARIES

RANDOM FIELDS

To model traffic maps, non-stationary random
fields composed of a deterministic drift and an
intrinsically stationary random deviation field, the
so-called residual, are used. See, e.g., monographs
Cressie, 1993 and Wackernagel, 1998 for details.

DRIFT AND DEVIATION FIELD

Let X = {X(u), u ∈ R
2} be a non-stationary

random field with finite second moments

E[X(u)2] < ∞, u ∈ R
2.

Then X can be decomposed into a sum

X(u) = m(u)+Y (u)

where m(u) = E[X(u)] is the mean field (drift) and
Y (u) = X(u)−m(u) is the deviation field from the
mean or residual. Clearly, it holds E[Y (u)] = 0 for all
u. Assume that Y is intrinsically stationary of order
two. Denote by

γ(h) =
1
2

E[(Y (u)−Y (u+h))2] (1)

its variogram function. In practice, the field X can
be observed in a compact (say, rectangular) window
W ⊂ R

2. Let x(u1), . . . ,x(un) be a sample of observed
values of X , ui ∈ W for all i. The extrapolation
method described in the next section yields an
“optimal” estimator X̂(u) of the value of X(u) for
any u ∈ W based on the sample random variables
X(u1), . . . ,X(un). Among the variety of extrapolation
techniques for non-stationary random fields (see, e.g.,
the universal kriging in Cressie, 1993, Kitanidis,
1997, Wackernagel, 1998), our approach is similar
to the so-called kriging based on the residuals; see

Cressie, 1993, p. 190. The main idea of the method is
straightforward. First of all, an estimator m̂(u) for the
drift m(u) has to be constructed. Then, the deviation
field Y ∗ = {Y ∗(u), u ∈ R

2} defined by

Y ∗(u) = X(u)− m̂(u) (2)

is formed and its kriging estimator Ŷ ∗(u) is computed.
Finally, the estimator X̂(u) is given by

X̂(u) = m̂(u)+ Ŷ ∗(u). (3)

If we suppose that the drift is known, i.e., m̂(u) =
m(u) for all u then we know the exact values
Y (u1), . . . ,Y (un) of the deviation field at u1, . . . ,un
since

Y ∗(u) = Y (u) = X(u)−m(u).

Let

y(ui) = x(ui)−m(ui), i = 1, . . . ,n

be a realization of the sample values of Y . The
extrapolation of Y (u) can be performed either by
simple kriging based on the covariance function

C(h) = E[Y (u)Y (u+h)]

or by ordinary kriging making use of the variogram
γ(h); see Cressie, 1993, Kitanidis, 1997, Wackernagel,
1998. In what follows, the second method is used.

ORDINARY KRIGING WITH
MOVING NEIGHBORHOOD

THE KRIGING ESTIMATOR
A simpler version of the following ordinary

kriging with moving neighborhood can be found in
Chilès and Delfiner, 1999, pp. 201–210, Kitanidis,
1997, p. 71 and Wackernagel, 1998, pp. 101–102.
Denote by 1 the usual indicator function

1{x ∈ B} =

{
1 if x ∈ B,
0 otherwise.

Introduce the estimator Ŷ (u) of Y (u) at u ∈ W as a
linear combination of the sample random variables
Y (ui) with unknown weights λi = λi(u) by

Ŷ (u) =
n

∑
i=1

λiY (ui)1{ui ∈ A(u)} . (4)
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The estimation involves only the sample random
variables Y (ui) such that ui is positioned in the
“neighborhood” A(u) of u, i.e., ui ∈ A(u). Being an
arbitrary set, this moving neighborhood A(u) contains
a priori information about the geometric dependence
structure of the random field Y . For instance, it
could be designed to model the formation of traffic
jams. In the case of a Boolean model, this set A(u)
is influenced by the shape of the primary grain.
In general, A(u) can be a random closed set, i.e.,
A(u) = A(Z(u,ω),u) where Z = {Z(u), u ∈ R

2} is
a random field containing extra information about
Y . Under such general assumptions on A(u), the
system of linear equations on the weights λi looks
much more complicated than (7) considered below.
In order to solve it, additional parameters such as
crosscovariances of Y and Z should be estimated. Even
in the case of uncorrelated fields Y and Z, it makes the
extrapolation unnecessary complex. To avoid this, the
present paper uses only deterministic sets A(u).

The normalizing condition on the weights λi

n

∑
i=1

λi = 1 (5)

ensures the unbiasedness of the estimator given in (4).
In other words, it holds

E[Ŷ (u)] = E[Y (u)]

even if the mean of Y is not zero. Moreover,
this condition makes it possible to use variograms
in (7) since variograms are negative conditionally
semidefinite (see, e.g., Wackernagel, 1998, pp. 52–53).
The “optimality” of the estimator Ŷ (u) means that its
variance should be minimal, i.e.,

E[(Ŷ (u)−Y (u))2] −→ min . (6)

This classical minimization problem yields further
conditions on λi which can be written together with
(5) in the following system of linear equations. For all
i = 1, . . . ,n with ui ∈ A(u) it holds

n

∑
j=1

λ jγ(u j −ui)1{u j ∈ A(u)}+ µ = γ(u−ui) ,

n

∑
j=1

λ j1{u j ∈ A(u)} = 1 .

(7)

In order to solve this system of equations, the
knowledge of the variogram function γ(h) is required.
However, in most practical cases γ(h) is unknown and
has to be estimated from the data y(u1), . . . ,y(un).

ESTIMATION OF THE VARIOGRAM

In applications, a variogram estimation method to
be used should always be chosen in accordance with
the data framework. The most simple and popular
one is undoubtedly the estimator of Matheron (see,
e.g., Chilès and Delfiner, 1999, Wackernagel, 1998).
Its drawback is sensitivity to outliers. Among robust
estimation methods, the trimmed mean estimator (see,
e.g., Lehmann and Casella, 1998) as well as the
estimators of Cressie–Hawkins (see Cressie, 1993) and
Genton (see Genton, 1998a, Genton, 2001) should be
mentioned. These methods are designed for noisy data
but they are biased.

Since the traffic data seem to be not contaminated
with outliers, the estimator of Matheron is used here.
It is defined by

γ̂(h) =
1

2N(h) ∑
i, j:ui−u j≈h

(Y (ui)−Y (u j))
2 , (8)

where ui − u j ≈ h means that ui − u j belongs to
a certain neighborhood U(h) of vector h and N(h)
denotes the number of such pairs (ui,u j) for i, j =
1, . . . ,n. The choice of U(h) depends on the problem.
In the present paper, the following segment of a circle
is used:

U(h) = {x ∈ R
2 : x = (|x|,ϕ),

| |h|− |x| |< δ , |ϕ −ϕ0| < ε}, (9)

where (|x|,ϕ) and (|h|,ϕ0) are the polar coordinates of
x and h; δ , ε > 0. If γ is continuous then the estimator
in (8) is asymptotically unbiased, i.e.,

lim
δ ,ε→0

E[γ̂(h)] = γ(h).

Under further assumptions on Y such as ergodicity, it
is also strongly consistent, i.e., it holds

lim
N(h)→∞

γ̂(h) = γ(h)

almost surely.

VARIOGRAM MODELS

In practice, the estimated variogram γ̂ cannot
be substituted directly for γ in the system of
linear equations (7). Trying this would make the
numerical computation in (7) unstable because of
the singularity of its coefficient matrix. Even in
the case when this computation is possible its
result is not correct. The reason for that is simple:
γ̂(h) is not a valid variogram function since it
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is not conditionally negative semidefinite. Hence, a
valid parametric variogram model γ (the so-called
theoretical variogram) should be fitted to the empirical
estimator γ̂ . In the following, some valid variogram
models are considered. The corresponding fitting
procedures are discussed later on. A popular isotropic
variogram model is the exponential one (see, e.g.,
Cressie, 1993, pp. 61–63, Wackernagel, 1998, pp. 244–
246):

γ(h) =

{
0, h = 0,

a+b(1− e−|h|/c), h 6= 0,

where a > 0, b > 0 and c > 0 are parameters with
the following geometric meaning. The value of the
nugget effect a measures the discontinuity of the
realizations of Y at the microscopic scale. If a > 0
then the realizations of Y are not continuous. The
sill b describes the variability of the data for greater
distances |h|. The third parameter c is the range
of correlation of Y which implies that the random
variables Y (x) and Y (x+h) are almost uncorrelated for
|h| > 3c.

A parametric variogram model γ is called
geometrically anisotropic if the range value c (and
none of the other parameters) depends on the direction
of h. If, in addition, the sill value b depends on
the direction of h, the variogram is called zonally
anisotropic.

As shown in Fig. 17, the traffic data lead
to empirical variograms that are clearly zonally
anisotropic. Below, we consider zonally anisotropic
variogram models constructed from isotropic ones (see
Cressie, 1993, Wackernagel, 1998). Introduce

γ(h) = γ1(h)+ γ2(h), (10)

where γ1(h) is an exponential isotropic variogram
model with nugget effect a1 > 0, sill b1 and range c1.
The second term

γ2(h) = b2(1− e−
√

h>Ch/c2) (11)

is a geometrically anisotropic exponential variogram
model with sill b2 > 0 and further parameter
c2 > 0. Here C is the quadratic matrix of a linear
transformation of the observation window, i.e.,

C = Q>ΛQ,

where

Q =

(
cosα sinα
−sinα cosα

)
(12)

is a rotation by the angle α around the origin and

Λ =

(
λ1 0
0 λ2

)
(13)

is a scaling transformation with scaling factors λ1, λ2
along the coordinate axes. For a vector h = (h1,h2), we
have

h>Ch = λ2h2
1 +λ1h2

2 +(λ2 −λ1)×
×
(
cos2 α(h2

2 −h2
1)−h1h2 sin(2α)

)
.

Level curves of γ2(h) are ellipses with main axes of
polar angles α and α +π/2. The range values in these
directions are equal to

3c2√
λ1

,
3c2√

λ2
. (14)

Fig. 2 shows the level curves of the variogram
model (10) with parameter values a1 = 130, b1 = 20,
c1 = 0.03, b2 = 70, c2

2/λ1 = 109, c2
2/λ2 = 5 · 10−5,

α = 5◦. Higher values of γ are marked red.

Fig. 2. Zonally anisotropic variogram.

VARIOGRAM FITTING

Let γ̂(h) be an empirical variogram estimated from
the experimental data {y(ui)} for the field Y and let
γβ (h) be a theoretical parametric variogram model
with parameter vector

β = (β1, . . . ,βk).

In the example mentioned above, we have

β = (a1,b1,c1,b2,λ1/c2
2,λ2/c2

2,α).

In practice, only a finite number m of values

γ̂(h1), . . . , γ̂(hm)
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can be computed. For two reasons, it is enough
to confine computations to vectors hi of length
|hi| < diam(W )/2. First, in most cases the behavior of
the variogram in a small neighborhood of the origin is
decisive for the adequate choice of the model. Second,
for large distances |h| > diam(W )/2 the estimated
values γ̂(h) are contaminated by noise due to edge
effects.

In order to estimate the parameter vector β , the
least-squares method is used. The generalized least-
squares method (see Genton, 1998b) minimizes the
following function of β ,

F(β ) =
m

∑
i, j=1

wi j(γβ (hi)− γ̂(hi))(γβ (h j)− γ̂(h j)) ,

where the weights can be chosen in accordance with
the a priori assumptions on Y (see Cressie, 1993
for Gaussian random fields). If the distribution of Y
is unknown, the classical weighting scheme can be
applied:

wi j =

{
1, i = j,
0, i 6= j

with the function

F(β ) =
m

∑
i=1

(γβ (hi)− γ̂(hi))
2 (15)

to be minimized. In the case of traffic data, no a priori
assumptions on the structure of Y have been made.
Thus, the classical least-squares methods is used.

For isotropic random fields, one fits the one-
dimensional curve of a parametric variogram model
γβ (|h|) to an empirical one. In the anisotropic case,
γ̂(h) is computed for vectors h on a square grid with
m points and is fitted by a two-dimensional parametric
surface γβ (h), h ∈ R

2. This can be done either by
summing in (15) over all grid points hi or only over
vectors hi in a certain direction of interest ϕ , i.e.,

hi = |hi|(cosϕ,sinϕ).

Since traffic data is substantially anisotropic, the
variogram model (10) has to be fitted to the data on
the whole grid as well as in two directions with polar
angles α and α +π/2.

DRIFT ESTIMATION

The mean field {m(u)} can be estimated from
the data by various methods ranging from radial

extrapolation (see, e.g., zu Castell et al., 2002 and
references therein) to smoothing techniques such as
moving average and edge preserving smoothing (see,
e.g., Tomasi and Manduchi, 1998). In what follows,
the moving average is used because of its ease and
computational efficiency for large data sets.

By moving average, the value m(u) is estimated as

m̂(u) =
1

Nu
∑

ui∈W (u)

X(ui) (16)

where W (u) is the “moving” neighborhood of the point
u and Nu denotes the number of measurement points
ui ∈ W (u). The choice of the neighborhood W (u) is
arbitrary. For fast computation, we put W (u) to be a
square with side length τ centered in u.

The estimator (16) yields arbitrarily smooth results
for large moving neighborhoods W (u). Thus, an
optimal side length τ should be found to fit the
problem. In the traffic problem, τ must be small
because edges of the surface {m(u),u ∈ W} are
intrinsic to the image structure and have to be
preserved by smoothing.

In all large cities, there are areas D of parks,
forests, building blocks, etc. where no road-traffic data
is available. By (16), this implies m̂(u) = 0 for all
points u with W (u) ⊂ D. Consequently, such points
u would automatically belong to traffic-jam regions
and so contaminate traffic-jam maps with artefacts.
To avoid this, the neighborhood W (u) of points u
with Nu = 0 has to be enlarged till it contains at
least one observation point. In this way, meaningful
average velocity maps are obtained that allow the
correct analysis of traffic jams.

Since X is not stationary and, consequently, m(u) is
not constant the estimator (16) is biased. Nevertheless,
in practical applications, the bias E m̂(u) − m(u) is
small provided that the area |W (u)| is small and the
net of observation points is spatially dense enough.

RESIDUALS FORMED WITH
ESTIMATED DRIFT

In previous sections, it has been assumed that
the drift m(u) was explicitly known. If it has to be
estimated from the data, the theoretical background for
the application of the kriging method breaks down.

Indeed, kriging requires intrinsic stationarity of
the field of residuals Y ∗(u) introduced in (2). This
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requirement is clearly not satisfied even in the case of
an unbiased estimator m̂(u) since the variogram

γ∗(h) =
1
2

E[Y ∗(u)−Y ∗(u+h)]2

is not equal any more to the variogram γ(h) of Y (see
Chilès and Delfiner, 1999, pp. 122–125, Cressie, 1993
p. 72, Wackernagel, 1998, p. 214) and depends clearly
on u.

Despite these theoretical obstacles, practitioners
continue to use the ordinary kriging of residuals
with estimated drift based on the data y∗(ui) =
x(ui)− m̂(ui), i = 1, . . . ,n legitimized by its ease and
satisfactory results.

ALGORITHMS AND
IMPLEMENTATION IN JAVA

In the following, some efficient algorithms
for spatial extrapolation are discussed. Their
implementation in Java was integrated into the
GeoStoch library GeoStoch, 2004 as a separate
package. The software is supplied with detailed
comments generated by Java-Doc complying with the
Sun standards; see Niemeyer and Peck, 1996, pp. 80–
81.

FAST ESTIMATION OF VARIOGRAMS
AND DRIFTS
Matheron’s estimator (8) requires all pairs of

positions ui and u j with ui −u j ∈U(h) to be found
for each lattice vector h. For k lattice vectors and n
positions, it costs kO(n2) operations. By means of the
binary search tree structure DTree, this complexity can
be significantly reduced.

Such algorithm tessellates the searching space into
rectangles and saves positions of actual measurements
in a binary tree. Thus, searching k points from p
costs in average k + log(p) operations; see Segewick,
1992. Since k ¿ p always holds, the average
complexity of the search is O(log(p)). Additionally,
the complexity of filling the tree with values is
O(p log(p)). For variogram estimation, one stores
p = n(n−1)

2 polar coordinates of the vectors between
any two measurement points in a DTree. Thus, the
overall complexity for the variogram computation is
O(p log(p)) + kO(log(p)). For large square lattices
with side length m > 200 (k = m2), the difference in
run times is significant!

The DTree structures can be used also for the
fast computation of the moving average. There,

measurement points lying in a certain square
neighborhood should be found. The complexity of
such computation can be estimated as mentioned
above.

VARIOGRAM FITTING

In variogram fitting, one employs essentially
known algorithms for the minimization of functions.
The idea of all stochastic algorithms lies in cleverly
modifying parameters of the variogram model at
random till the maximal quadratic distance to the
empirical curve becomes smaller than a critical
value ε . This can be done for instance by means
of genetic algorithms (see Goldberg, 1989) or the
method of simulated annealing; see, e.g., Press
et al., 2002, pp. 448–460. Genetic algorithms
were implemented in Java and integrated in the
GeoStoch library. The simulated annealing Java
package JSimul is available from Mégnin, 2001.
Additionally, one-dimensional variogram fitting by
slices was implemented in Java by Faulkner, 2002.
This Java package provides good GUI but poor runtime
performance for large data samples.

TEST EXAMPLE: BOOLEAN
MODEL

To test the performance of the above extrapolation
method, one needs to generate synthetic data whose
theoretical properties are known. In other words, one
has to find a random field {X(u)} with known structure
of distribution, variogram and shape of realizations
that is easy to simulate. In the following, we construct
such a random field on the basis of the so-called
Boolean random field, a model that is classical in
stochastic geometry.

DEFINITION AND PROPERTIES OF
THE SIMULATION MODEL

In what follows, basic properties of the Boolean
model in R

2 are described. For more details, see, e.g.,
Stoyan et al., 1995. Let

Φ = {X1,X2,X3, . . .}

be a stationary Poisson point process in R
2 with

intensity λ ; see Fig. 3.
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Fig. 3. Realization of Φ.

For simulation of Poisson processes, see, e.g.,
Lantuéjoul, 2002, Stoyan et al., 1995. A Boolean
random set Ξ with deterministic grains can be
introduced as

Ξ =
∞⋃

i=1
(Ξ0 +Xi)

where Ξ0 is the so-called primary grain and Ξ0 + Xi a
grain translated to the germ position Xi.

Fig. 4. Realization of Ξ.

The primary grain Ξ0 can be an arbitrary compact
set in R

2. In the present paper, a rectangle

Ξ0 = [0,a]× [0,b] (17)

with width a > 0 and height b > 0 is considered; see
Fig. 4. On the basis of Ξ, one constructs a stationary
random field Y = {Y (u),u ∈ R

2} by setting

Y (u) = 1{u ∈ Ξ}− p

where the constant p = 1−e−λab is the volume fraction
of Ξ. This random field is a special case of a Boolean
random function considered, e.g., in Serra, 1988. It can
take only values −p or 1− p. The field Y is stationary

of order two and it holds E Y (u) = 0. So it can be used
to model the “deviations from the mean”.

Fig. 5. Variogram γ (level curves).

The variogram γ(h) of Y is given by

γ(h) = e−λab
(

1− e−λ (ab−|Ξ0∩(Ξ0−h)|)
)

.

For a vector h = (h1,h2), the area |Ξ0 ∩ (Ξ0 − h)| is
equal to (a−|h1|)(b−|h2|) for |h1| 6 a, |h2| 6 b, and
zero, otherwise. This variogram is clearly anisotropic
as shown in Fig. 5 for parameter values a = 40,
b = 20 and λ = 0.0006 in the observation window
W = [0,200]2.

In order to model a non-stationary field X , one adds
a deterministic drift variable m(u) to the field Y (u). As
a toy example, m(u) is chosen here to be the indicator
function

m(u) = 1{u ∈ Br(u0)} (18)

of a deterministic circle Br(u0) with center u0 and
radius r > 0; see Fig. 6. The resulting field

X(u) = m(u)+Y (u), u ∈ R
2

attains only three values −p, 1− p, 2− p.

Fig. 6. Realization of X.

To test the extrapolation quality on synthetic data,
one simulates X and measures its realization x(u) at
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a finite number of points ui. Then one extrapolates X
from the data x(ui) and compares the result with the
original realization x(u). Measurement points ui are
generated by an independent Poisson process Φ1 with
intensity λ1 = 0.01; see Fig. 7.

Fig. 7. Realization of Φ1.

The intensity of Φ1 is substantially higher than that
of Φ since otherwise the information contained in the
data is insufficient to reconstruct the original image.

SYNTHETIC DATA

Practically, the experiment described above should
be repeated many times in order to reduce the
randomness in the quality of results. In this paper,
90 realizations of X have been sampled. They yield
90 data sets each of them containing ca. 300 pairs
(ui,x(ui)). These data sets correspond to the traffic data
of a half an hour. The intensity of Φ1 is chosen to
produce in average about 300 measurement points to
comply with the real traffic situation.

For simulations, we used the following parameter
values:

W = [0,200]2, u0 = (100,100),

r = 30, a = 40, b = 20,

λ = 0.0006.

The mean area fraction is then

p = 0.38121662.

In Fig. 4, a realization of Ξ with these parameter values
is shown. By adding a circle in the middle of the
picture and subtracting p, one obtains a realization of
the random field X ; see Fig. 6.

NUMERICAL RESULTS;
RECONSTRUCTION OF SIMULATED
IMAGES

To estimate the drift, moving average with the side
length τ = 3 of the square neighborhood was used.

Fig. 8. Estimated drift m̂(u).

As seen in Fig. 8, the estimated drift preserves the
original drift structure.

After subtracting the estimated drift m̂(u) from the
data in each data set j, j = 1, . . . ,90, the empirical
variogram γ̂∗j of Y ∗ is computed; see Fig. 9. The
parameter values of the circular segment (9) are δ = 2,
ε = 3◦.

Fig. 9. Estimated variogram γ̂∗(h) (level curves).

Then, one averages the variogram over all 90
estimated copies γ̂∗j by arithmetic mean:

γ̂∗(h) =
1

90

90

∑
j=1

γ̂∗j (h).

This mean variogram can be well-fitted by the true
variogram of the Boolean model. For fitting, simulated
annealing was used to minimize the target function
(15) in the least squares method.
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The parameters of the simulated annealing
are chosen as follows: maximal temperature 106,
annealing rate 20, number of iterations 10, tolerance
value 10−5; see Press et al., 2002, for their meaning.
The starting values of the variogram parameters were
a0 = 20, b0 = 10, λ0 = 0.006. The fitting yields
parameter values

â = 39.7605124,

b̂ = 20.7768498,

λ̂ = 0.001193

lying quite close to the original ones. The maximal
(mean) deviation of γ̂∗ from γ∗ is 0.03684976
(6.337388 ·10−5, respectively); see Fig. 11.

Fig. 10. Fitted variogram model γ∗(h) (level curves).

Fig. 11. Difference between the fitted theoretical model
γ∗(h) and the empirical variogram γ̂∗(h).

The knowledge of the grain shape (17) can be
integrated in the indicator functions of the kriging with
moving neighborhood. Put the set {ui ∈ A(u)} in (4) to
be equal to

{|x− xi| 6 â, |y− yi| 6 b̂}

where ui = (xi,yi) and u = (x,y) denote the Euclidean
coordinates of points ui and u.

Fig. 12. Residual Ŷ ∗(u).

Fig. 13. Extrapolated field X̂(u).

Thus, the extrapolation method will use only those
points ui that can potentially affect the value Y ∗(u).
The extrapolation results Ŷ ∗(u) and X̂(u) are shown in
Figs. 12 and 13. The striking similarity of the images
for X(u) and X̂(u) in Figs. 6 and 13, respectively, is a
clear evidence for the high quality of the extrapolation
method.

STATISTICAL TESTS FOR THE AREA
FRACTION

The threshold image of Ŷ ∗ in Fig. 14 is a binary
image that can be compared with the original image of
Y in Fig. 4. Written in terms of functions, it is equal to
1{u ∈ Ξ̂} where Ξ̂ = {u : Ŷ ∗(u) > 1/2− p} and 1/2−
p = 0.11878339181. To quantify visual similarities in
both images, statistical tests for the area fraction can be
used, see Böhm et al., 2004. For each of 90 threshold
images, the null hypothesis H0 : p̂ = p is tested vs. its
alternative H1 : p̂ 6= p where

p̂ =
|Ξ̂∩W |
|W |
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is an estimator of the area fraction of the threshold
image and

p = 0.38121660819385905

the area fraction of the original Boolean model. If the
threshold image is a realization of a Boolean model
and the null hypothesis H0 is true the corresponding
test statistic

T =

√
|W |( p̂− p)√

∑
|h|6b

|W ∩ (W −h)|Ĉ1(h)
∼ N(0,1)

is asymptotically N(0,1)-distributed as |W | → ∞
where

Ĉ1(h) =
|Ξ̂∩ (Ξ̂−h)∩W ∩ (W −h)|

|W ∩ (W −h)| − p̂2

is a consistent estimator of the covariance function

C1(h) = P(o ∈ Ξ̂, h ∈ Ξ̂)−P2(o ∈ Ξ̂)

of the random set Ξ̂.

Fig. 14. The threshold image Ξ̂ of Ŷ ∗.

Thus, the null hypothesis H0 is rejected at the
asymptotic significance level 1−θ if

|T | > z1−θ/2 ,

where z1−θ/2 is the (1−θ/2)-quantile of the standard
normal distribution.

For θ = 0.04 and z1−θ/2 = 2.054, the null
hypothesis H0 was rejected in 6% to 10% of
realizations depending on the series of the 90 images.
It attests statistically the visual similarity of the images
of Ξ and Ξ̂. The test results can be improved by

choosing larger observation windows (e.g., 400 ×
400 pixels), smaller grains (e.g., a = 20, b = 10)
and more measurement points per image (say, 2000).
The reason for that is the asymptotic nature of the
test. The significance level is approximately equal to
1 − θ if W is large enough, i.e., beginning from a
particular relation between the sizes of grains and the
observation window. Additionally, we suppose that
increasing the number of measurement points would
improve the extrapolation quality and consequently
reduce the rejection rate of H0 to 4%. However,
in our experiments we kept the number of approx.
300 measurement points constant in order to preserve
analogies to the traffic problem setting.

ANALYSIS OF TRAFFIC DATA

In what follows, the above extrapolation method is
applied to real traffic data.

The original data set contains entries with spatial
positions scattered not only over Berlin but also over a
wide region with radius of approx. 100 km from the
city center. To avoid too large inhomogeneities, the
observation window is reduced to downtown Berlin
with geographic coordinates

13.3 6 x 6 13.46666 ,

52.48333 6 y 6 52.55 .

Then, the data analysis is performed for the directional
sector S2 = {α : π/2 6 α < π} including data of taxis
moving northwest. This partial data set contains 19699
entries collected over 90 days (see Fig. 15).

To calculate the mean velocity field m̂(u), the
moving average in (16) is applied to the data of
sector 2 (see Fig. 16). The side length of the square
moving neighborhood is τ = 0.005. In Figs. 15 and
16, the northwest movement direction of the taxis can
be clearly recognized. Color gradations reflect speed
variation from green and blue for high values through
yellow for the middle ones up to red for the low ones.
Figure 16 shows the corresponding mean field m̂(u).

The comparison of both maps confirms that the
estimator m̂ preserves the spatial velocity structure of
the data. To estimate the variogram γ∗ of Y ∗, the mean
values m̂(u) have to be subtracted from the actual
velocity values. Then, the empirical variogram γ̂∗i is
calculated for each day i = 1, . . . ,90.
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Fig. 15. Positions of taxis moving northwest.

Fig. 16. Mean field m̂(u) of data set 2.

Averaging on all days, one obtains the following
variogram estimator for Y ∗

γ̂∗(h) =
1

90

90

∑
i=1

γ̂∗i (h) ;

see Fig. 17.

Fig. 17. Empirical variogram γ̂∗(h) (level curves).

The parameters of the segment in (9) used for
variogram calculation are δ = 0.006 and ε = 3◦ with
maximal distance h = 0.07 being approximately a
half diameter of W . The empirical variogram γ̂∗(h)
with maxima in northwest direction and minima in
orthogonal direction is zonally anisotropic showing
substantial northwest correlation in the data.

In Fig. 17, level curves are colored in accordance
with the increasing variogram values from green,
blue and yellow to red, where the zonally anisotropic
behavior of γ̂∗(h) near the origin becomes clear. The
variogram values are low in a narrow sector at the polar
angle of approximately 170◦, i.e., traffic velocities are
highly correlated in this direction.

Fig. 18. Fitted variogram model γ∗(h) (level curves).

The zonally anisotropic variogram model (10)
with two fixed parameters α = 170◦, λ1/c2

2 = 1000
taken from Fig. 17 has been fitted to the empirical
one; see Fig. 18. The classical least squares fitting
method applied to one-dimensional vertical slices of
the empirical variogram in orthogonal directions α =
80◦ and α = 170◦ yields other parameter values:
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a1 = 31.77189640437076,

b1 = 116.21092322,

c1 = 245388.67081,

b2 = 22.6344102,

λ2/c2
2 = 683964.79366.

Thus, the range values in directions 170◦ and 80◦ are
r1 = 0.27 km and r2 = 0.162 km, respectively. So a
vehicle driving in direction α = 170◦ influences only
those vehicles driving behind it in the same direction
at a maximal distance 3r1 = 810 m. Vehicles driving
behind it in the orthogonal direction 80◦ are influenced
up to a distance of 3r2 = 648 m.

Additionally, the two-dimensional surface of the
above variogram model has been fitted by least
squares to the empirical one using genetic minimizing
algorithms. Resulting parameter values are very close
to those obtained above:

a1 = 19.379745108968454,

b1 = 95.3944270699768,

c1 = 245867.97491680854,

b2 = 9.486514644862856,

λ2/c2
2 = 684317.2022809463,

λ1/c2
2 = 1023.8357320907359,

α = 146,84◦.

For extrapolation, the sample of velocities
x(u1), . . . ,x(un) (n = 223) observed on Monday,
18.02.2002 is used. Compared to the whole data set
2 representing the “past”, it is interpreted as “actual”
data. The random field Y ∗ of deviations from mean
velocities is extrapolated using kriging with moving
neighborhood (4) with the following indicator function

1{ui ∈ A(u)} = 1{ϕ(ui −u) ∈ S2}

where ϕ(ui −u) is the polar angle of the vector ui −u.
This assumption is rather intuitive since only those
measurements with positions ui lying “ahead” of the
current position u can influence its velocity value.

Extrapolated residuals Ŷ ∗(u) and the resulting
velocity map X̂(u) are shown in Figs. 19 and 20,
respectively. Due to the particular asymmetric form
of the indicators, the extrapolated field of residuals
is strongly discontinuous. This obviously affects the
geometric characteristics of X̂(u). Discontinuities
of the realizations of X caused by the kriging
with moving neighborhood are essential for precise
localization of traffic-jam areas. In Fig. 21, areas with
velocities X̂(u) 6 15 kph are marked yellow. Some of
these regions might be caused by traffic jams.

Fig. 19. Residual field Ŷ ∗(u).

Fig. 20. Velocity field X̂(u).

Fig. 21. Traffic jams: X̂(u) 6 15 kph.
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