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ABSTRACT

Herein one proposes a mutual information-based registration method using pixel gradient information rather
than pixel intensity information. Special care is paid to finding the global maximum of the registration
function. In particular, one uses simulated annealing method speeded up by including a statistical analysis to
reduce the next search space across the cooling schedule. An additional speed up is obtained by combining
this numerical strategy with hill-climbing method. Experimental results obtained on a limited database of
biological images illustrate that the proposed method for image registration is relatively fast, and performs
well as the overlap between the floating and reference images is decreased and/or the image resolution is
coarsened.

Keywords: gradient code mutual information, hill-climbing, image registration, mutual information, simulated
annealing.

INTRODUCTION

Image registration is the process of aligning two
or more images. A variety of approaches have been
published. Good surveys are available in Maintz and
Viergever (1998) and in Hajnal et al. (2001). Over the
last few years, mutual information (MI) has become
one of the most popular methods of image registration
because it is more flexible and accurate than any
other method based on global information content.
However, MI method has its own limitations. For
example, when the images are of low resolution,
when the images contain little information, or when
the region of overlap is small, MI may result in
misregistration (Pluim et al., 2000a).

Since the initial work of Wells et al. (1996) and
Maes et al. (1997), several groups have modified the
optimization objective MI itself. It is worth mentioning
Studholme et al. (1999) who introduced normalized
MI to rigidly register multi-modal images with different
fields of view, Pluim et al. (2000a) who added a
gradient-based term to the MI function in order to
decrease the number of local maxima, and Rueckert
et al. (2000) who applied second order entropy
estimation to model the dependency of a voxel gray

value on the intensities of a local neighborhood around
that voxel. Other groups discussed registration with
image features. Rangarajan et al. (1999) discussed
feature point registration with MI. Hellier and Barillot
(2003) coupled dense and landmark-based approaches
for non-rigid registration. Johnson and Christensen
(2002) used landmark and intensity information
together to produce consistent correspondences between
images. Hartkens et al. (2002) introduced feature
information into voxel-based registration algorithms
in order to incorporate higher-level information about
the expected deformation. Butz and Thiran (2001;
2002) recalled the very general definition of MI and
chose the feature of edgeness to perform image
registration. These methods combining directly image
features with MI have many advantageous properties
of both feature-based and intensity-based methods.
Our own work continues along this line.

In this paper, we propose a technique for image
registration, called Gradient Code Mutual Information
(GCMI). It estimates MI function based on the gradient
code, rather than on the widely used intensity. Another
problem is the presence of local maxima that may
cause local optimization algorithms to fail. Therefore
we improve the global optimal algorithm of simulated
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annealing (SA), and then combine it with the local
optimization of hill-climbing properly to reduce the
number of iterations.

The remainder of this paper is organized as
follows. Firstly, the method of GCMI is introduced.
Then, the advantages of GCMI method are experimen-
tally illustrated through applications to multimodal
medical image registration. Finally, conclusions are
provided.

METHOD

GRADIENT CODE
Take two 2D discrete images f(x,y) and r(x,y) to

be registered. From f and r, we construct gradient
code images, fg and rg, such that each pixel of the
images represents a gradient code that is, the
quantification of gradient vector at the corresponding
pixel position in the original gray-level images. Take
f(x,y) as an example, the horizontal and vertical
derivatives of f(x,y) are represented respectively as

xff x ∂∂=∇ /  and yff y ∂∂=∇ / . Partial differentials
are calculated using central differences (Rosefeld and
Kak, 1982). To avoid a reduction in image size,
forward / backward differences are used for border
pixels. Then the module ( ji,ρ ) and the phase ( ji,θ ) of
the gradient vector ),( yx ff ∇∇  at a pixel (i, j) are
calculated respectively as:

22
, yxji ff ∇+∇=ρ ,

αθ +∇∇= − )/(tan 1
, xyji ff , (1)

If 0≠∇ xf , or 0&0 ≠∇=∇ yx ff ,

where 0=α  if 0,0 ≥∇≥∇ yx ff ; πα =  if 0<∇ xf ;
πα 2=  if 0,0 <∇>∇ yx ff .

Herein, for convenience purposes, we make the
range ji,ρ  to be ]1,0[ . Then, the gradient code is
obtained by dividingθ  into N ( θπ ∆= /2 ) level-
intervals of constant width θ∆ , and ρ into M ( ρ∆= /1 )
level-intervals of constant length ρ∆ . We have to
choose appropriate interval-sizes for precise registration
of different modal images. This issue should be
considered in relation to inherent information amount
and spatial resolution. The gradient code (fg and rg
images) is ultimately defined as:
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[x] represents the integer which is equal or less than
x, Γ is a pre-specified threshold level for ignoring low
contrast pixels coded as L (L is a large value). The
purpose for using Γ is to prevent uniform or semi-
uniform regions from influencing the MI evaluation
as pixels with low contrast neighborhoods are more
sensitive to noise. Using a too large value for Γ can
cause the suppression of information in low contrast
images. An example of the 2D gradient code is
depicted in Fig. 1 for 4/πθ =∆  and 4/1=∆ρ .

Fig. 1. An example of 2D Gradient Code ( 4/πθ =∆
and 4/1=∆ρ ).

The method can be easily extended to 3D discrete
images. Similarly, we represent the gradient vector

),,( zyx fff ∇∇∇  in spherical coordinates as:

222
,, zyxkji fff ∇+∇+∇=ρ ,

)/(cos ,,
1

,, kjizkji f ρθ ∇= − , (3)

αϕ +∇∇= − )/(tan 1
,, xykji ff ,

If 0≠∇ xf , or 0&0 ≠∇=∇ yx ff .

Then, the gradient code images are obtained by
segmenting ρ into M ( ρ∆= /1 ) discrete level-intervals
of constant width ρ∆ , θ into N ( θπ ∆= / ) intervals of
width θ∆ , and φ into K ( ϕπ ∆= /2 ) intervals of width

ϕ∆ . The gradient code is defined as:
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GRADIENT CODE MI (GCMI)
MI is a widely used information theoretical distance

measure between probability densities. The MI between
two images f and r is:

),()()( rfHrHfHMI −+=
)|()()|()( frHrHrfHfH −=−= (5)

Where H( f ) and H( r ) stands for the entropies of
images f and r, H( f,r ) for their joint entropy, and

)|( rfH , )|( frH  for the conditional entropies.
Usually we use the generalized distance between joint
probability distribution pfr ( f,r) and marginal probability
distributions pf ( f ) and )(rpr  to estimate the MI:
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Registration of the images f and r can be defined
as finding the geometrical transformation T (mapping
the floating image f to the reference one r) which
maximizes the MI registration measure. In Wells et
al. (1996), the measured features were simply the
voxel intensities. In Rueckert et al. (2000), the sampling
space was defined by the intensities of two neighbor
voxels (i.e., a two-dimensional feature space). In Butz
and Thiran (2002), edgeness was defined as the feature
space to estimate the MI. In this paper, we restrict the
discussion to a feature space represented by gradient
code information. Because MI is evaluated based on
gradient code images, we call our approach Gradient
Code Mutual Information (GCMI).

In practice, MI cannot be computed exactly due
to the sampled nature of the floating and reference
images. One obvious problem is that the transformed
position of a voxel will generally not coincide with a
grid point of the reference image, such that the
corresponding intensity is unknown. Partial volume
(PV) interpolation, originally proposed by Collignon
et al. (1995; 1998) and Maes et al. (1997), is
specifically designed to update the joint histogram of
two images. It has been found PV interpolation
generally outperforms linear interpolation in terms of
smoothness of the MI registration criterion. This
study uses PV interpolation for both MI and GCMI.

OPTIMIZATION STRATEGY

An optimal optimization strategy should converge
to the global extreme of an optimized function and
also be fast. Several strategies available in the literature
including genetic algorithm (Parker, 1997), Powel’s
method (Press et al., 1992), amoeba (Press et al.,
1992) and SA (Goffe et al., 1994) are compared. The
genetic algorithm is a relatively robust strategy, but
its convergence to the global extremum is slow;
amoeba and Powel’s method are faster optimizers,
but they frequently terminate in local extremes. SA is
a global optimization method that distinguishes between
different local optima. It is fast and is more robust
(Čapek et al., 2001). Therefore, we apply here the
Metropolis SA strategy (Metropolis et al., 1953), and
modify it to adaptively adjust the search space for the
transformation parameters of optimization. That is,
before updating the annealing temperature, we
statistically analyze the whole results (including the
transformation parameter sets and their corresponding
MI values) performed at current temperature to obtain
the maximum (MImax) and minimum (MImin) of the
objective function, and then calculate the middle
value (MImid):

MImid = (MImax – MImin)/2 + MImin. (7)

Among all the parameter vectors (geometrical
transformation mapping the floating image to the
reference image) at this temperature, only those of the
corresponding MI value being above the middle MImid
are retained. Within all these retained vectors, we get
the maximum and minimum of each parameter, and
then assigned them respectively as upper bound (ub)
and lower bound (lb) of the optimization parameters for
the next search space. Thus the optimization process
is greatly speeded up for avoiding many useless
evaluations of the objective function. Since the
algorithm makes very few assumptions about the
function to be optimized, it is robust with respect to
non-quadratic surfaces.

However, the time consumption of the above
strategy for image registration is still too high to be
allowed. We have found that when MI value is not
changed or the change is very small within several
successive iterations, the transformation parameters
are close to the optimal values. If one continued to
perform SA search, the process would be very slow.
So we quit SA at this moment, and then use a local
optimization of hill-climbing (Russell and Norvig,
1995) for optimal search. The idea behind hill climbing
is as follows:
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1. Pick a random point in the search space.

2. Consider all the neighbors of the current state.

3. Choose the neighbor with the best quality and
move to that state.

4. Repeat 2 thru 4 until all the neighboring states are
of lower quality.

5. Return the current state as the solution state.

The scheme does not only prevent the optimizing
course from trapping in local extrema, but also saves
a large number of iterations. The whole algorithm is
implemented as follows:

Step 1: Transform the two original images to be
registered into gradient code images.

Step 2: Initialize the cooling schedule (initial
temperature T = 5.0, temperature reduction factor rt =
0.85) and the parameter values (initial transformation
parameter set x, upper and lower bounds on search
space lb and ub), where the temperature is initially set
at a relatively high value, which allows a large range
of possible perturbations. Compute )(xMI .

Step 3: Pick a new set of transformation parameter
set x’, and compute MI(x’).

Step 4: Calculate the difference between MI(x)
and MI(x’). If MI(x’) > MI(x) the new parameter is
accepted; otherwise, acceptance or rejection is
determined by the Boltzmann probability given by

))()(exp(
'

T
xMIxMIp −

−=  where T is the temperature

parameter of the SA.

Step 5: If the number n of evaluations of the
objective function is more than a large predefined
number or if the current MI value is not changed
within four successive iterations, then go to step 6.
Otherwise, adjust the upper (ub) and lower bounds
(lb) as mentioned above and accordingly the next
search range vm = ub – lb, decrease the temperature
according to the cooling schedule T = T0 • rt, and go
to step 3.

Step 6: Perform hill-climbing algorithm for optimal
search.

RESULTS

To illustrate the performance of our method, we
consider hereafter two different 2D registration
problems: T1 magnetic resonance (T1-MR) to T2
magnetic resonance (T2-MR), and T1-MR to computed
tomography (CT) and compare the results obtained

by MI and GCMI methods (with 8/πθ =∆  and
8/1=∆ρ ). Our images are real data from Beijing

Tiantan hospital and consist of pairs of CT and MR
(T1 and T2) images of 6 patients. Each studied pair of
images relates to the same patient.

Then, we evaluate the efficiency of our method
for 2D and 3D registration by duplicating the original
MR images.

The study was approved by the local ethic
committee and consented by the patients after
explaining the purpose of the study. All the
experiments below are based on our medical image
processing platform 3Dmed (Tian et al., 2003).

ACCURACY
• MR-T1 and T2

T1- and T2-MR images are multimodal in that
different tissue characteristics are imaged. Yet, the
structure in both images remains similar. Each pair of
images comes from the same patient and the same
scan, and we assume accordingly that no transformation
is required to align the images.

Fig. 2 displays the registration function of the T1-
MR image to the T2-MR image using GCMI and MI
for translation along the Ox axis. In the left column of
Fig. 2 (images with full resolution), both methods
perform well. In the mid column (images sub-sampled
by a factor of eight in each dimension) and in the
right column (image-overlap changed to 60%), the
MI registration does not perform well, and the
optimum is stretched and shifted. In contrast, the
GCMI registration performs well and the optimum is
accurately identified. The results illustrate that GCMI
function is invariant to the reduced overlap between
the floating and reference images and less sensitive to
the sub-sampling rate.
• MR-T2 and CT

Although MR images depict different anatomical
details than CT images, there are generally
corresponding structures in both images. Each studied
pair of images comes from the same patient; the
images have been manually registered by clinical
experts so that no transformation is assumed to be
needed for aligning the images. Fig. 3 shows
examples of MR-CT registration using GCMI and
MI. We can observe that when the image-overlap is
reduced to 60% (mid-column in Fig. 3) and when the
images are in addition sub-sampled (by a factor of
four in each dimension) (right column), the MI
functions deteriorate, while the GCMI functions are
much better.
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Fig. 2. T1- to T2-MR registration using GCMI and MI for translation along Ox axis. From left to right: images
with full resolution, images sub-sampled by a factor of 8 in each dimension, and image-overlap changed to 60%.

Fig. 3. MR-CT registration using GCMI and MI. From left to right: images with full resolution for translation
along Ox axis, image-overlap changed to 60% for rotation around Oz axis, and in addition images sub-sampled
by a factor of 4 in each dimension for translation along Ox axis.

Table 1. Mean time requirement of three optimization methods for the registration of a pair of 2D images.

Method zθ∆

[°]
x∆

[mm]
y∆

[mm]
Total time

[s]
Number of
Iteration

Standard SA 1.117 0.712 0.655 1651 1801
Improved SA 0.011 0.038 0.010 455 496
Improved SA +
hill-climbing 0.006 0.012 0.041 66 72

Table 2. Mean time requirement of three optimization methods for the registration of a pair of 3D images.

Method xθ∆

[°]
yθ∆

[°]
zθ∆

[°]
x∆

[mm]
y∆

[mm]
z∆

[mm]
Total time

[s]
Number of
Iteration

Standard SA 1.052 1.547 0.160 0.231 0.087 1.496 3583 1747
Improved SA 0.014 0.015 0.101 0.038 0.020 0.349 769 376
Improved
SA+hill-climbing 0.006 0.009 0.015 0.007 0.015 0.025 98 48
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(a) (b) (c)

(d1) (d2) (d3) (d4)

(e1) (e2) (e3) (e4)

Fig. 4. Illustration of MR-CT registration results based on GCMI and MI. (a) MR floating image. (b) CT
reference image. (c) Image containing 60% of the information in (b). From (d1) to (d4), GCMI registration
results with full resolution images (d1), with images sub-sampled by a factor of 8 in each dimension (d2), with
images sub-sampled by a factor of 4 in each dimension and overlap changed to 60% (d3), and with images sub-
sampled by a factor of 8 in each dimension and overlap changed to 60% (d4). (e1) to (e4): Corresponding
results using MI.

Some results for MR-CT registration are illustrated
in Fig. 4. On these examples, we clearly observe that
when the images are of low resolution or when the
image-overlap is reduced, the MI results in mis-
registration, whereas, the GCMI performs better.

TIME REQUIREMENT
To illustrate the speed-up (time-wise) allowed by

our numerical strategy, we duplicate a 2D MR image
of size 256×256 and then register it to its original.
Repeated experiments of this type illustrate that the
registration using standard SA optimization (Table 1;
1st line) requires about 1650 seconds. The improved
SA optimization (Table 1, 2nd line) requires only about
455 seconds with the accuracy significantly improved.
When combining the improved SA optimization with
hill-climbing method (Table 1, 3rd line), an accuracy
of the same order is still observed, and the time is
significantly reduced. To 3D volume registration, we
duplicated a 3D MR image of size 256 × 256 × 24
and registered it to its original. The results are listed

in Table 2. All the experiments were performed using
MATLAB on a PIII800, 128M.

CONCLUSIONS

In this paper, we present a Gradient Code Mutual
Information (GCMI) based registration technique.
The first step consists in transforming intensity images
into gradient code images. MI is then calculated directly
based on the gradient code images. Relying on a
limited database of multimodal images relating to 6
patients, it is preliminarily observed that the proposed
GCMI method yields a more accurate registration
function than does standard MI when the image
overlap is reduced and/or the sampling resolution is
coarsened. In this respect, and at least for the studied
database, gradient code information seems more
appropriate than intensity information for MI based
image alignment.



Image Anal Stereol 2005;24:1-7

7

As in Pluim et al. (2000b), we can observe the
local extrema in both MI and GCMI functions (Figs.
2, 3) brought with the PV interpolation. According to
the optimization strategy mentioned above, sub-pixel
registration accuracy can be obtained (Table 1, 2).
Several aspects of the method shall be improved or
further investigated: mention in the first place the
robustness of GCMI. Also, experiments with images
of lower intrinsic resolution such as PET and SPECT
should be carried out. This will be dealt with in the
future work.
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