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ABSTRACT

Deformable models are able to solve surface extraction problems challenged by image noise because image-
independent constraints are used to regularize the shape of the extracted surface. However, this ability of
deformable models is shadowed by their application specificity, initialization sensitivity and the difficulty
of the selection of proper values for user definable parameters. To overcome these problems restricting the
automation of surface extraction, we present a new algorithm, named AdaCoP, for the global minimization of
the energy of deformable surfaces. It iteratively performs constrained local minimizations of the energy. It
avoids the detection of the same local minimum multiple times by constraining the local optimizations in an
adaptive manner. AdaCoP escapes from local minima by imposing an adaptive penalty energy to it. These
constraints and penalties prevent the convergence to the local minima already found. The performance of the
AdaCoP algorithm is relatively independent on the nature of the underlying image as well as the shape of the
surface to be extracted. The performance of the algorithm is evaluated by extracting surfaces from synthetic
images. Moreover, the good properties of the algorithm are demonstrated by considering applications within
the automated analysis of positron emission tomography images. Although AdaCoP cannot be proven to
converge to the global minimum, it is insensitive to its initialization and it therefore provides a way to automate
surface extraction problems within medical image analysis.

Keywords: energy minimization, medical image analysis, positron emission tomography, segmentation,

surface extraction .

INTRODUCTION

The quantitative analysis of volumetric medical
images is essential for biological and medical
research. The analysis and interpretation of these
three-dimensional (3-D) images usually requires
surface extraction and/or image segmentation before
quantitative values of interest can be computed.
Manual and semiautomatic methods for image
segmentation may suffer from inter and intra observer
variability of segmentation results. Moreover, the
large size of images makes it burdensome to process
them manually or even in a semiautomatic way.
Consequently, there is a large need for automatic
algorithms for image segmentation and surface
extraction in medical imaging community.

Deformable models are widely applied techniques
for surface extraction within medical image analysis
(Mclnerney and Terzopoulos, 1996, Montagnat et al.,
2001). The surface extraction with deformable models
is re-formulated as an energy minimization problem.
The energy function to be minimized is a weighted
sum of two energies: the internal energy reflects prior
information about the shape of surface of interest and
the external energy is derived from image data. By the

internal energy deformable models are able to cope
with image noise and discontinuous object boundaries
that are typical to medical images.

Deformable models may show a drawback
despite of their wide applicability. Namely, the
energy function has numerous local minima, which
causes deformable models to be sensitive to their
initialization. This complicates their fully automatic
use for surface extraction. Several distinct approaches
have been taken to overcome the initialization
sensitivity problem. Koikkalainen and Lotjonen
(2002) have suggested techniques to automate the
initialization process and Xu and Prince (1998a,b)
have proposed an advanced method to compute
external forces to reduce the initialization sensitivity.
The level-set technique (Malladi et al., 1995) can be
applied if the topology of the surface of interest is not
a priori known. However, level-set based deformable
models for the extraction of surfaces with a fixed
topology appear to be sensitive to their initialization
(Han et al., 2003). In this study, we take a direct
approach to reduce the initialization sensitivity and
aim to minimize the energy of the deformable surface
globally.



We have previously proposed the dual surface
minimization algorithm (DSM) for the global
optimization problem (Tohka and Mykkénen, 2004).
The algorithm, although not proven to converge to the
global minimum, has been found effective in reducing
the initialization sensitivity. Hence, it can be well
applied to surface extraction tasks challenged by image
noise (Mykkinen ef al., 2003, Kivimiki ef al., 2004,
Tohka et al.,2004). As a downside, the DSM algorithm
makes implicit assumptions about the shape of the
surface to be extracted. In particular, the extraction of
surfaces with a complex geometry does not succeed
well with the algorithm. In addition, the algorithm is
restricted to the extraction of surfaces topologically
equivalent to the sphere.

In this study, we introduce a new global
optimization algorithm that makes less assumptions
about the shapes of the surfaces to be extracted than
DSM and that can extract surfaces with handles and
holes as long as the surface topology is a priori known.
If fixing the surface topology is not appropriate then
other methods, such as level-set based deformable
surfaces (Malladi et al., 1995) are better suited. The
new algorithm, termed AdaCoP (adaptive constraints
and penalties), differs fundamentally from the DSM
algorithm although both algorithms are meant for
the global optimization of the energy of deformable
surfaces. The main technical difference is that DSM
is based on iterated local search whereas AdaCoP is
based on the principles of constrained optimization in
the continuous domain. AdaCoP uses an algorithm for
constrained local optimization in an iterative manner.
The convergence to a same local minimum over and
over again is prevented by adapting the constraints for
optimization. The algorithm is helped to escape from
local minima by inducing an adaptive penalty energy.
(That is why we name the algorithm as AdaCoP
(adaptive constraints and penalties)).

The organization of the paper is as follows:
First, we describe simplex meshes that are applied
for surface representation. Then, we lay out the
assumptions concerning the energy functions of the
deformable surface. After that, we describe the
AdaCoP algorithm. We experiment the algorithm with
synthetic and medical images. Finally, we discuss
the algorithm related to other relevant methods for
deformable mesh optimization.

DEFORMABLE MODEL

SIMPLEX MESHES

In this study, surfaces are represented using
simplex meshes (Delingette, 1999). A simplex
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mesh is defined as a pair (W,¥), where W =
{wi,..., Wy}, w; € R3 is the set of vertex coordinates
(i.e., mexels) and ¥ is the vertex adjacency graph of
the mesh. Simplex meshes have the desirable property
that the graph of the mesh ¢ is 3-regular. That is, each
vertex [ has exactly three adjacent vertices denoted
by i1,i»,13. Simplex meshes are the topological duals
of triangular meshes in a sense the dual graph of
the graph of a simplex mesh is the graph of some
triangular mesh. However, there does not exist similar
geometrical dualism between simplex and triangular
meshes.

Our interest is in the global optimization of
simplex mesh geometry. This means that the graph
of the mesh ¢ during the deformation must be fixed
(Tohka, 2003, Chapter 4.6), i.e., the topology of the
surface to be extracted and the number of vertices in
the mesh must be specified prior to surface extraction.
In medical image analysis, the surface topologies are
often known prior to surface extraction, and then it
is advisable to constrain the topological type of the
deformable surface. Indeed, it is often necessary that
a surface extraction algorithm produces a surface with
the pre-defined topology. In addition, the number of
vertices in the mesh can often be selected based on
prior information about the surfaces to be extracted.
Hence, these limitations are not severe. Because ¥ is
constant, we identify W as the surface and assume
that ¢ is implicitly known. The three neighbors of the
mexel w; are denoted w;, , W;,, W;,. The unit normal to
the surface at w; is denoted by n; and it is proportional
to W;, X W;, +W;, X W;; +W;, X W;, where x denotes
cross product. It is assumed that the surface normals
point inwards.

Simplex meshes are preferred here over triangular
meshes because surface normals are unambiguously
definable at the vertices of the simplex mesh
(Delingette, 1999) and our algorithm depends on the
definition of the surface normal at the vertices of the
mesh. With triangular meshes the surface normals are
unambiguously definable on the faces of the mesh, but
not at the vertices of the triangular mesh.

ENERGY FUNCTIONS

The energy of a surface quantifies how well the
surface couples with the underlying image and how
well it satisfies our prior assumptions about its shape.
The energy of W is

E(W) = )’Eint(w) + (1 - A’)Eext (W) ’ (1)
where Ej,(-) is the internal energy, E,.y(-) is the

external energy, and the regularization parameter A €
[0,1].
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The internal energy reflects the prior assumptions
about the surface shape. It acts as a regularizer of
the surface shape, for example by penalizing surfaces
that are not smooth. The regularization of the energy
function by the internal energy is the key to noise
tolerance of deformable surfaces.

The derivation of the AdaCoP algorithm does not
require the full specification of the internal energy
function. Moreover, deformable meshes with quite
different internal energy functions can be optimized
with the algorithm. Therefore, to maintain a high
level of generality, the internal energy function is
not specified at this point. However, it is helpful if
the internal energy E;,(w;|W) as a function of w;
with all the other vertex coordinates given is easy to
compute. In addition, the internal energy should be
scale, rotation, and translation invariant.

The external energy incorporates the information
about the image into the surface extraction process. We
define the external energy as

3
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where I : R* — [0, 1] is a piecewise constant function
with a finite support. The function I called the
energy image is constructed based on the image to
be processed. The energy image may be viewed as a
look-up-table for the external energy values for each
image voxel. The values of the energy image should
be high, on the average, for those voxels which are
likely to be intersected by the surface to be extracted
and low, on the average, for other voxels. For example,
if the interest is in locating of the surface defined
by the changes in image intensity, then the gradient
operator followed by appropriate scaling of intensity
values is used to construct the energy image. Note that
the external energy is defined on the continuum (R?)
as opposed to a discrete integer grid.

ADACOP ALGORITHM

OVERVIEW

The aim of the AdaCoP algorithm is to find
a global minimizer of the energy (1), or more
specifically to find a strong local minimum of (1)
within a set of admissible meshes. The AdaCoP
algorithm starts with an initialization placed inside
or outside the surface of interest. For convenience,
it is assumed that the initialization is placed outside
the target surface. Modifications to the algorithm are
straight-forward if the initialization is placed inside the
target.
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The surface W/*! at the iteration ¢ + 1 is obtained
by a local minimization algorithm initialized with W’
(the LM-step). In the LM step, constraints are set to
prevent the volume inside the surface from increasing.
After the step, the energy of the current surface is
compared to the minimal energy value found during
the iterations 1,...,¢. If there is an improvement, the
current surface and the current energy value are stored.
Indeed, because of the hill climbing ability of AdaCoP,
the current mesh has to be compared to the best
mesh so far rather than to the mesh at the previous
iteration. It may happen that the difference between
W’ and W/ is negligible. In this case we say that the
algorithm is in a local minimum. For escaping from
local minima, the AdaCoP algorithm is equipped with
a hill-climbing ability. The hill-climbing is realized by
adding a penalty energy term to the energy function.
The penalty applies to vertex positions close to their
current positions and the penalty is adaptively grown
until the result of the LM step differs from its
initialization. When the mesh has changed its position,
the penalty is removed and the iterations of the LM
step continue in the normal fashion until the algorithm
is in another local minimum. The AdaCoP algorithm
stops when the volume inside W’ is lower than a given
threshold. The surface of the lowest energy is returned
as the result. A pseudo-code for AdaCoP is presented
in Algorithm 1.

Algorithm 1 AdaCoP Algorithm
Initialize WY, sett < 0
Set best minimum «— E(W?), set W* «— WP
while Area inside W' larger than the threshold do
Obtain W't by a local energy minimization
starting from W/
if E(W'*!) < best minimum then
set W* — Wil
end if
if W' £ W't then
Set penalty term to zero
else
Increase the penalty term
end if
Sett«—t+1
end while
Return W*.

In the following sub-sections the LM step,
constraints that are set, and the hill-climbing are
presented in more detail. The surface at the iteration
t is denoted by W’ = {w!}. Further, we set

t+1 t
W Wiy

t _ t+1 t
Wi—{Wl g ,Wm}.
The symbol n} denotes the unit normal to the surface

at w; and it is computed based on W:.



LOCAL MINIMIZATION: LM STEP

Starting from the surface at the iteration 7, W’
{w!}, the surface at the iteration 7 + 1 is obtained by
an iteration of an iterative conditional modes (ICM)
like algorithm (Besag, 1986). Each vertex position
w is sequentially updated by minimizing the energy
E(w;|W%) with respect to w;. Given a feasible search
direction d! € R? (||d!|| = 1), we set

Wl;_Jrl

= W} + Spind; 3)
Smin = arg Ygﬁi)nl]E(wﬁ +sdi|WE) = arg énin}f(s) .

se

)

The optimization along the unit-vector d’ ensures that
the volume of the surface does not increase. It is
explained in the next sub-section how d is chosen.

To find s, one dimensional line search problem
has to be solved. For this, there are several possible
methods. We apply a straight-forward one of detecting
all critical points and selecting the one with the lowest
value of f(s) as syin. The critical points are 1) zeros
of the derivative of f(s), 2) points of discontinuity of
f(s), and 3) points s = 0 and s = 1. Since the external
energy is piecewise constant, its derivative is equal to
zero, and

_ JE(W; 4 sdi|WY)
ds

OEn (W + sd:|W?)
ds ’
®)
where the derivative is defined. This means that zeros
of f(s), if exist, can be solved based on the internal
energy only. The function f(s) is not continuous where
w4 sd; crosses voxel boundaries. These points, there
exist at most three of them, are easily detected. The
value of f(s) must be evaluated at both sides of these
critical points, because f(s) is not continuous.

f(s) =2

Fig. 1. A failed extraction of a sphere surface
from noiseless image with surface normals as search
directions. Left: Initialization (transparent surface)
and the correct surface. Right: The extraction result.

SELECTION OF SEARCH DIRECTION

A feasible search direction must guarantee
reduction of the volume inside the surface. A
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possible choice would be the surface normal at w.
Unfortunately, this choice leads easily to surface self-
intersections destroying the information about the
orientation of the surface that is essential to AdaCoP,
cf. Fig. 1.

Instead, we generate a sequence of search
directions {d|t = 1,2,...}, which 1) ensure that
the volume of the surface diminishes, 2) do not
change radically from an iteration to another, and
3) are similar between neighboring vertices. The
requirements 2) and 3) are to prevent formations of
surface self-intersections, or more precisely, to make
the intersections less likely. A sequence of slowly
adaptive unconstrained search directions u’ is defined
by

VEiu (wi|W;)
|IVEim (Wi [W)I| -

(6)
where @ € R is a user-definable parameter. In the
right hand side of Eq. 6, the first term maintains
the search directions between the iterations and
neighboring vertices similar, and the second term is an
approximation of the steepest descent direction which
alters the unconstrained search direction. From uﬁ,
the search direction d} is generated by a projection
technique (Rosen, 1960). With the convention that
d; =n! if u} = 0, we select

1 3
ul = 20 —o)d '+ ) d ) -0
=1

J

1 s I3 ! 1
di‘x{ w; if lli'l’liZSHUiH (7

u’ +cn  otherwise

where ¢ =

<3 112 t 2 t t
1_82\/”“1‘” — (0 -u})? —mf - wj, and
- denotes the scalar product. As it is verified in

Appendix, for this selection and € € (0, 1), it holds that

di-n; > e|dif| ®)
(In this study, we set always € = 0.1.) This means
that the search direction d! points inwards from the
surface at the current mexel position w/ if the surface
is locally smooth enough. In practice, this ensures that
the surface volume does not increase with iterations.
Indeed, while this kind of condition seems natural, we
have been unable to formally prove that Eq. 8 ensures
the decrease in the volume of the mesh. This difficulty
relates to ambiguity of the computation of the volumes
of simplex meshes.
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HILL-CLIMBING ABILITY

The LM step sometimes produces its initialization
as its result, i.e., W' = W't for some 7. In this case,
the algorithm is at a local minimum, and it must be
helped to escape from the minimum. For this, a penalty
term p(s) that decreases with s is added to the right
hand side of Eq. 4, and s,,;,, is solved as

Smin = al‘gélg[lér%]E(W + sd} W) +rp(s) .

©)

The integer r = 1,2, ..., is increased until W’ # W7,

We define
p(s) = {

For us, ¥ = 0.02 has worked well. When this penalty
term is active, s = 0.5 is a critical point in addition to
the ones mentioned previously.

Y when s<0.5

0O when s>0.5 (10)

PROPERTIES OF THE ALGORITHM

The AdaCoP algorithm is global in a sense that
it avoids getting trapped in local energy minima
due to its hill-climbing ability. This is important in
deformable model optimization since this property
allows initialization far away from the surface of
interest. The algorithm cannot be proven to converge
to the global minimum, but it is capable to find a very
good local energy minimum.

The energy of the deformable surface decreases
with each LM step assuming that the penalty term is
not active. This follows from resemblance to the ICM
algorithm (Besag, 1986).

In practice, the volume inside the deformable
surface does not increase with iterations. This, again
in practice, ensures the convergence of the algorithm
in a sense that the algorithm will stop. Because the
information about the oriented surface normals is
used to select *volume decreasing’ search directions,
the self-intersections of the surface can break down
the algorithm. Instead of forbidding self-intersections
explicitly, which would be of high computational cost
(MacDonald et al., 2000), we select search directions
in such a way that the surface evolves in a controlled
manner during the optimization.

INTERNAL ENERGY
FOR EXPERIMENTS

We fix the internal energy function and derive
the required formulae to optimize the energy function
with AdaCoP. This simple internal energy function,
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which encourages smooth surfaces, is applied in our
experiments. The internal energy (Eq. 11) states that
a mexel should lie near the centre of mass of its three
neighbours.

Let A; = {i1,i2,i3} denote the set of vertices
adjacent to the vertex i. The internal energy function
is defined as

1 m

Ein( Z ine(WilWj, j € Aj)
m:
13 ||w 2
_ZH i 3Z]€A H ’ (11)
m = W)

where the normalization factor u(W) is a measure of
the area of the surface required for scale invariance.
We calculate (W) as the average area of faces of
simplex mesh. For computational simplicity, @(W) is
approximated by a constant computed based on the
current vertex positions. Then, using the chain rule, the
gradient of Ej, (w;|W?%) becomes

2((1+%)Wi+2jeA,-[—%W_t,~+%ZkeAj,k;éiWw
1(W)
and d} can be computed according to Eq. 7. The

derivative of f(s) (Eq. 5) has at most one zero in the
range s € [0, 1] and it is

w+z W]—E Y wl=s"

kEAj,k%l'

if it lies in the desired interval. Hence, in order to find
Smin the energy needs to be evaluated at s =0,s = 1,5 =
s*, intersections of w’ + sd} with the voxel boundaries
within s € [0,1], and s = 0.5 if the penalty term is
active.

EXPERIMENTS AND RESULTS

In this section, the performance of the AdaCoP
algorithm is evaluated by extracting of surfaces from
synthetic images. The parameter values for AdaCoP
are ¥ =0.02,A = 0.5 and ® = 0.25 unless otherwise
mentioned.

In the first experiment, the surfaces of an ellipsoid
bended along the y-axis and a torus were to be
extracted. The surfaces were drawn to 128 x 128 x 128
image with the intensity value of one, the background
having intensity of zero. (These were the energy
images, which means that we were interested in
locating surfaces characterized by high intensity values
in the original images.) In Fig. 2, the correct surfaces
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Bended ellipsoid
True surface AdaCoP result Snakes result

Torus
True surface AdaCoP result DSM result

Fig. 2. Bended ellipsoid and torus extraction results. The column ’true surface’ shows the correct surface and
intersections of the correct surface (in gray) and initial surface (in white) with the central xy-plane of the image.
The result columns show surfaces extracted by different algorithims and their intersections with the central xy-
plane (in white) along with the intersections of the correct surface (in gray). For the extraction of bended ellipsoid
(resp. torus), we applied meshes with 1280 (958) mexels.
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metasphere 1

metasphere 2

(a)

(b)

(©)

(d)

Fig. 3. Example results from experiments with noisy images. All shown results are from the initialization that
vielded the median value of error. (a) Central cross-sections (in xy-plane) of noisy energy images, the noise
variance was 0.2. (b) The synthetic surfaces inside the initializations for the algorithm. (c) The resulting meshes
extracted from noisy images starting from initializations in (b). (d) Intersections of the resulting meshes with the
central xy-plane (in white) compared to the ground-truth (in gray).

Table 1. The values of the error measure obtained by the AdaCoP and the DSM algorithm. The parameter ® was
0.01. The results of DSM are from (Tohka and Mykkcinen, 2004). 62 denotes the variance of the Gaussian noise
in the image.

sphere metasphere 1 metasphere 2
o’ 0 02 06 10| 0 02 06 10| 0O 02 06 1.0
AdaCoP | 0.03 0.07 0.12 0.21 | 0.03 0.09 0.16 0.20 | 0.05 0.12 0.22 0.27
DSM | 0.03 0.07 0.11 0.18 | 0.03 0.08 0.12 0.15]0.07 0.13 0.18 0.27
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and the extraction results using AdaCoP, DSM-outer
surface (DSM-0OS), and a 3-D version of standard
snakes (Kass et al., 1988) are shown. Starting from
the same initialization, placed outside the surface of
interest, AdaCoP captured non-convex parts of the
bended ellipsoid much better than the snakes algorithm
as can be seen in Fig. 2. The parameter values for
snakes were obtained by the trial and error method and
the result shown in Fig. 2 was with the best parameter
set. The capture range of snakes was also increased
by Gaussian filtering the energy image before the
external force computation. As shown in Fig. 2, the
extraction of the torus with the DSM-OS algorithm did
not succeed. On the other hand, the AdaCoP algorithm
was able to extract the torus of our experiment. The
initial surface for both algorithms was a torus placed
outside the surface of interest.

In the second experiment, the noise sensitivity
of AdaCoP and (the standard) DSM algorithm was
compared. We used the same synthetic images and
experimental setting as Tohka (2002) and Tohka
and Mykkdnen (2004). The images contained closed
surfaces (sphere, metasphere 1, or metasphere 2 in
Fig. 3) drawn to a 64 x 64 x 64 grid with intensity
value of one. Thereafter, white Gaussian noise was
added to the images. The energy images were created
by filtering noisy images with a Gaussian filter, and
then linearly scaling images to have intensities from
zero to one.

Quantitative results were computed using the
following error measure: Let EV (extracted volume)
be the set of voxels that are inside of or intersected by
the extracted surface and let TV (true volume) be the

the set of voxels on or inside of the true digital surface.
|TVNEV]|

Then, the errore = 1 — [TVUEV]*

Each surface was extracted starting from five
different initializations placed outside of the target
surface. The quantitative error measure was computed
for all five surfaces and the median values of it are
listed in Table 1. For comparison, the results with
the DSM algorithm are also shown in Table 1. Some
examples of extracted surfaces are shown in Fig. 3. The
AdaCoP algorithm achieved good results with each
surface with the two lowest levels of noise (variances
0 and 0.2). With the two higher noise levels, the results
obtained by DSM were slightly better than AdaCoP’s
results. This could be expected since the purpose of
AdaCoP was not to achieve the noise robustness of
DSM but to allow the extraction of more complex
surfaces. The results obtained by AdaCoP were
consistent between initializations, which is important
for repeatable and reliable surface extraction.

In the second experiment, meshes with 1280
mexels were applied and the value of ® was
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0.01. A surface extraction with a Matlab-based
implementation of AdaCoP took from 6 to 15 minutes
with a Linux PC with a 3.0 GhZ processor.

APPLICATIONS

Fig. 4. PET brain surface extraction. Left column from
top: central transaxial, coronal, and sagittal cross-
sections of the extracted brain surface overlaid on the
corresponding image slices and a 3D rendering of
the extracted brain surface mesh. Right column from
top: Slices of the energy image and the transaxial
cross-section of the initial surface. The simplex mesh
contained 1280 mexels and the parameter values for
AdaCoP were A = 0.5, y = 0.02, ® = 0.01. The image
dimensions were 128 x 128 x 35 and the voxel size
was 1.72 mm X 1.72 mm X 4.25 mm.

In this section, potential applications of the
AdaCoP-based deformable surfaces for automatic

medical image analysis are presented. The
demonstrations are drawn from the automated
segmentation of positron emission tomography

(PET) brain images displaying information about the
physiological properties of the brain. For more about
PET imaging and its applications in medicine, see
Phelps and Mazziotta (1985) and Passchier et al.
(2002). In Fig. 4, brain surface extraction from a noisy
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PET image acquired using fluoro-2-deoxy-D-glucose
(FDG) as the radiopharmaceutical is demonstrated.
Since the brain surface is characterized by strong
image edges, the energy image was computed using
the 3-D Sobel edge operator (Zucker and Hummel,
1981). Despite of large amount of noise in the image,
AdaCoP captured details of the surface surprisingly
well. In addition, the initialization could be placed far
away from the brain surface.

¢

Fig. 5. Extraction of striatum from Raclopride PET
images. Left column from top: transaxial, coronal,
and sagittal cross-sections of the extracted surfaces
overlaid on the corresponding image slices and a 3D
rendering of the extracted striatum. Right column from
top: Slices of the energy image for the right hemisphere
and the transaxial cross-sections of the initial surfaces.
The parameter values for AdaCoP were A = 0.5,
Y=0.02, ® =0.25. The image dimensions were 128
X 128 x 35 and the voxel size was 2.3 mm X 2.3 mm
X 4.25 mm.

In Fig. 5, the extraction of left and right striatum
from binding potential (Passchier et al., 2002) ''C
Raclopride-PET images is depicted. The automatic
extraction of striatum has potential applications for
drug development (Tohka et al., 2004). The energy
images, computed again using the 3-D Sobel edge
operator, were computed separately for left and right
hemispheres, allowing the extraction of left and right
striatum separately. The hemispheres were separated
using an automatic algorithm for mid-sagittal plane
determination (Mykkénen et al., 2003). As can be
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seen in Fig. 5, the surfaces of left and right striatum
were well extracted by AdaCoP. The main challenge
in this extraction task lies in the heterogeneity of the
intensity values within the striatum which is mainly
due to image noise and the partial volume effect.

DISCUSSION

We have introduced a new algorithm for the global
minimization of the energy of deformable surface
models. Efficient and effective global optimization
strategies are important for deformable models,
because local approaches, such as snakes (Kass et al.,
1988), are overly sensitive to their initializations.
Due to this, a good initial surface mesh in a close
vicinity of the surface of interest must be provided by
the user. This restricts the automatic use of locally-
based deformable models for surface extraction from
volumetric image data.

The initialization  sensitivity = problem  of
deformable models has been addressed in various
ways. For example, Xu and Prince (1998a,b) suggested
an external force which allows for initializations far
from the surface of interest. Application specific shape
models have been used to reduce the number of local
optima of the energy function (Shen er al., 2001).
However, the construction of a statistical shape model
requires a large number of examples of the typical
shape of the surface of interest. The construction of
such examples, that have to be handcrafted, can be
costly and time-consuming.

The global optimization approach to reduce the
initialization sensitivity taken in this work has the
advantage of being conceptually simple and well-
defined at the mathematical level. The challenge is
algorithmic: The optimization problem formulated is a
difficult one having a large number of variables (from
thousands to tens of thousands). Only few authors
have considered the global optimization of deformable
surfaces; with the exception of coarse-to-fine methods
tailored for a particular application (MacDonald et al.,
2000). This is in contrast to deformable contours
for which a number of global optimization methods
have been suggested e.g., (Storvik, 1994, Geiger
et al., 1995, Akgul and Kambhamettu, 2003). The
optimization approaches for deformable contours
are, however, often completely unsuitable (dynamical
programming) or computationally too burdensome
(evolutionary approaches) for deformable surface
optimization.

We have previously proposed the dual surface
minimization algorithm (DSM) for deformable mesh
optimization. The algorithm is not suitable for the



extraction of surfaces with a non-spherical topology
or complex shape as was demonstrated in the
Experiments Section. The purpose of the current work
was to derive an algorithm, termed AdaCoP, which
could be used to extract a larger variety of surfaces
than DSM while retaining the algorithm robust to
image noise. The basic idea of AdaCoP is similar
than in DSM. The deformable surface approaches
the surface of interest by successively detecting local
energy minima. Still, the two algorithms are quite
different. (i) In AdaCoP the optimization problem
is posed in continuous domain whereas in DSM
the search space is discretized. Optimization in
continuous domain is perhaps more elegant solution,
and nevertheless setting the resolution of the discrete
search space can be problematic. (ii) The evolution
of the deformable surface is controlled differently in
DSM and AdaCoP. In DSM, each mexel tends towards
a single point, termed the reference point. This is
the source of incapability of the DSM algorithm to
capture complicated shapes properly. The AdaCoP
algorithm, on the other hand, uses a strategy of slowly
updating the search direction for each vertex. This
enables us to control of the tradeoff between the shape
complexity and image noise using a single parameter
(). Increasing the value of @ means that there is more
freedom for surface shape. As was demonstrated, the
deformable surface based on the AdaCoP algorithm is
able extract surfaces with a challenging shape as well
as simpler surfaces from very noisy images. Only the
value of @ was varied between the experiments. The
values for other parameters were the same in all the
experiments, which demonstrates that AdaCoP does
not rely on extensive parameter tuning as opposed to
many other deformable surface methods.

A new algorithm, termed AdaCoP, to minimize
the energy of deformable meshes globally has been
proposed. The importance of the global optimization
of deformable meshes lies in the possibilities that
it allows for unsupervised surface extraction from
noisy volumetric images. This, for example, is
required when extracting quantitative information
from a large medical image database. We have
evaluated the proposed algorithm quantitatively with
synthetic image data and shown that the algorithm can
operate in fairly distinct conditions. In addition, we
have presented potential applications of the AdaCoP
algorithm within the medical image analysis. As
these experiments suggest, the algorithm reduces
the initialization sensitivity of deformable surfaces
and therefore allows completely automatic surface
extraction in a variety of possible applications.
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APPENDIX

In this Appendix, we show by a direct calculation
that the condition in Eq. 8 follows from the selection
of search direction according to Eq. 7. Indices are
dropped for convenience. Let u be an arbitrary vector,
n be such that ||n|| = 1, and select d according to Eq. 7.
Let € € (0,1). Then

d-n=(u+cn)-n=u-n+c

€ 2 2
=——uo\/|[u|?—(u-n)?,
= [u|? — (u-n)

(12)

[1d][* = [l +2¢(u-n) + ¢

= |[u][* = (u-n)*+ (Iluf]> = (u-m)?)
_ 1
o 1—¢g2

1—g?

(I[ulf? = (u-n)?).

(13)
By combining Eqs. 12 and 13, we obtaind-n = ¢||d||.
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