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ABSTRACT

State-of-the-art computerized stereology systems combine high-resolution video microscopy and hardware-
software integration with stereological methods to assist users in quantifying multidimensional parameters of
importance to biomedical research, including volume, surface area, length, number, their variation and
spatial distribution. The requirement for constant interactions between a trained, non-expert user and the
targeted features of interest currently limits the throughput efficiency of these systems. To address this issue
we developed a novel approach for automatic stereological analysis of 2-D images, Verified Computerized
Stereoanalysis (VCS). The VCS approach minimizes the need for user interactions with high contrast [high
signal-to-noise ratio (S:N)] biological objects of interest. Performance testing of the VCS approach
confirmed dramatic increases in the efficiency of total object volume (size) estimation, without a loss of
accuracy or precision compared to conventional computerized stereology. The broad application of high
efficiency VCS to high-contrast biological objects on tissue sections could reduce labor costs, enhance
hypothesis testing, and accelerate the progress of biomedical research focused on improvements in health
and the management of disease.

Key words: image analysis, stereoanalysis, unbiased stereology, volume fraction.

INTRODUCTION

The sustained efforts of stereologists for the past
four decades developed design-based techniques for
quantification of arbitrary-shaped biological features
in tissue sections. These methods included unbiased
sampling schemes in combination with geometric
probes to quantify first- and second-order stereological
parameters of interest to biomedical research, including
feature number, length, surface area, volume, their
variation and spatial distribution. The mathematical
foundations of these theoretically unbiased approaches
draw heavily on stochastic geometry and probability
theory, in contrast to earlier so-called assumption-
and model-based approaches that apply poorly to
arbitrary-shaped biological features (Gundersen et al.,
1988a,b; Mouton, 2002; Hilliard and Lawson, 2003).
In the middle 1990s the emerging consensus by the
biomedical research community began to openly favor
the design-based stereological methods, where possible,
for the morphological analysis of tissue sections:

"Stereologically based unbiased estimates are
always preferable for establishing absolute counts or
densities of structures in tissue sections. We expect
that any papers that use simple profile counts, or
assumption-based correction factors, will produce
adequate justification for these methods. Referees are
urged to… insist on unbiased counts when this
justification is not adequate" (Saper, 1996).

This preference for stereological approaches
continued into the new decade, stimulating demand for
high-throughput computerized stereological systems.
The development of computer stereology software
linked to acquisition of real-time and stored microscopic
images dramatically improved the throughput efficiency
of data collection using design-based stereology (Fig.
1). The recent availability of low-priced, high quality
hardware for these systems, including high-resolution
microscopy and video card technology, motorized X-
Y-Z stage control, and PC- or Macintosh-based
computing power, further improved the accessibility of
these systems by rank-and-file biomedical scientists.

mailto:stereologer@spa.com;
mailto:peter@disector.com
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Fig. 1. A computerized stereology system (Stereologer,
Systems Planning and Analysis, Inc., Alexandria, VA).

In recent years the user of computerized stereology
have focused critical attention on the rate-limiting step
in the efficiency of systems: The requirement for
tedious, costly, and labor-intensive identification of
targeted features by non-expert users. Overcoming
this limitation, without introducing non-verifiable
assumptions or models, would enhance the throughput
efficiency of computerized stereology while reducing
labor costs and accelerating the progress of biomedical
research.

To address this issue we developed a novel hybrid
program, Verified Computerized Stereoanalysis (VCS),
which involves a two-step combination of image
analysis and unbiased stereology: auto-detection of
high contrast images of biological interest based on
high signal-to-noise (S:N) ratio, followed by auto-
analysis of images using state-of-the-art stereological
principles. Operationally, the VCS approach involves
the acquisition of an internal range of target color
pixels associated with the high contrast feature of
interest while the user carries out conventional
procedures of computerized data collection on the
first section of the initial case in a study. Performance
testing of the VCS program confirmed dramatic
improvements in efficiency of volume (size) parameter
estimation compared to conventional computerized
stereology approaches.

MATERIALS AND METHODS

HARDWARE-SOFTWARE
COMPONENTS
For testing purposes, algorithms for automatic

VCS were developed and incorporated into a PC- and
Mac-compatible computerized stereology system
(Stereologer, Systems Planning and Analysis, Inc.,
Alexandria, VA). The integrated hardware-software
components of the system includes the following:

• Light microscopy images captured and displayed
on the computer monitor using a high-end video
card and digital video camera.

• Accurate stage movement in three dimensions via
motorized X-Y-Z stage and controller.

• Software integration for simultaneous management
of devices and implementation of stereology and
image analysis algorithms.

VCS Menu
The program provides access to the VCS routines

using three commands:

1. Display the Settings dialog box.

2. Execute Semi-Automatic Mode to collect data for
current probe at current x-y location.

3. Execute Automatic Mode to collect data for
current probe at all locations on the current section.

SETTINGS DIALOG BOX
Using the Setting dialog box the user trains the

software to recognize the specific color pixel spectrum
for the target images. The dialog box is split into three
sections: color control, feature size, and pixel resolution.
The Color Control dialog (Fig. 2) selects the desired
probe-feature intersections based on the relative
contrasts between red-green-blue pixel components for
the various features in the sampling frame.

Fig. 2. Dialog box for VCS Settings.
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The range of target pixels is a function of the
average of sampled colors and the proximity to the
target color, as determined by user-selected standard
deviations (SD) from the selected color samples to
the target color. These studies verified that for high
contrast features, optimal feature identification to
100% accuracy was achieved in the range of 1.5 to
2.0 SD from the central tendency of targeted pixels.
The Clear Color Samples button clears the collected
color samples to allow retraining the program. The
Feature Size Control minimizes unwanted outliers
from inclusion as a targeted intersection. Pixel
Resolution Control averages several pixels together
as a single pixel. Merging pixels regulates the speed
of the data processing since fewer pixel elements
require less time, from about 0.5 seconds for 4×4, to
about 1.5 seconds for the 1x1 setting. The majority of
these studies were carried out using the 2×2 setting in
1.0 sec, which achieved an optimal balance between
speed and performance for high contrast features.

VCS DATA COLLECTION LOGIC
The VCS program follows the following logic:

1. Capture the image within the sampling frame into
memory.

2. Fill an internal array with the RGB (red, green,
blue) color information for the captured image.

3. Sharpen the color image by removing all colors
distant from the target color. The color distance is
calculated at each pixel location by a simple
Pythagorean rule, Color Distance = ((Rp – Rt)2 +
(Gp – Gt)2 + (Bp – Bt)2)(1/2), where p subscript
values are the RGB values at a pixel location and
the t subscript values are the RGB values of the
target color. The corresponding distance is then
compared to the threshold defined by the user.
Pixel locations which produce a color distance
less than or equal to the threshold are retained,
whereas pixel locations which produce a color
distance greater than the threshold are cleared.

4. Fill an array with the gradient at each pixel
location by examining the nearest neighbors in x
and y, i.e., Sobel Edge Detection.

5. Locate the features of interest by examining the
gradient array.

6. Mark intersections between the probe and the
identified features of interest.

As an illustration, consider an array filled with
values from C1 to C10 representing ten potentially
different RGB values (Fig. 3).

3 3 10 3 3 6 10 6 4 3 3 8 10 10 8 6
5 1 7 6 4 10 1 8 10 8 10 7 1 10 6 10
9 1 2 2 2 2 6 6 5 8 5 9 6 5 9 4
9 10 2 2 2 2 1 8 5 4 6 8 7 4 5 5
7 4 2 2 2 2 6 7 1 6 8 7 9 5 1 10
7 7 6 2 2 2 8 7 5 1 2 2 2 9 3 8
6 4 5 1 1 6 9 10 9 10 2 2 2 6 4 7
10 6 4 10 4 1 5 7 7 9 2 2 2 3 10 9
1 3 3 7 1 4 10 5 1 1 2 2 2 8 10 8
5 5 5 8 4 4 4 4 7 1 5 2 2 4 1 4
7 3 4 3 1 2 2 3 3 7 1 8 8 9 3 10
8 1 4 1 2 2 2 2 8 10 6 10 1 1 9 3
5 4 1 7 2 2 2 2 6 1 1 9 6 10 4 5
5 3 5 4 2 2 2 2 4 6 5 1 6 1 1 4
8 9 3 10 1 4 6 9 5 4 8 8 5 6 9 9
10 1 6 10 10 5 1 7 6 6 6 7 8 5 1 7

Fig. 3. An internal array filled values ranging from
C1 to C10 to represent potential RGB values.

We will now specify that our target color value is
the RGB value corresponding to C2 and that we
require an exact match i.e. threshold equal to 0. Since
only array locations with C2 will produce a color
distance of zero, only those locations are kept, the rest
are zeroed. Finally, examination of gradients greater
than zero generates an outline of the features (Fig. 4).
This approach allows for the specific identification of
the boundaries of individual target features.

SEMI- AUTOMATIC AND AUTOMATIC
MODES
In order to ensure that the targeted color spectrum

avoids automatic type 1 and type 2 statistical errors,
i.e., mistaken “yes” and “no” selections, respectively,
the user trains the software to autodetect and
autoanalyze target features of interest at systematic-
random locations on the current section. In Semi-
Automatic mode, the user approves the automatic
selections for the current probe at the current x-y
location, prior to motorized movement to the next x-y
location. When the S:N ratio of the targeted feature is
sufficient to support fully automatic data collection,
as evidenced by 100% agreement between manual
and automatic counting, the user switches to full
Automatic Mode by selecting Collect Images from
the VCS drop down menu. The software automati-
cally drives the motorized stage to collect and
analyze data for current probe at all locations on the
current section. If additional sections from the same
reference space are contained on other slides, the user
must switch slides then continue with the above steps
until all sections have been analyzed for the current
case.
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Fig. 4. Color gradients smooth the feature detection process.

VERIFICATION STUDIES

Verification studies focused on the analysis of
sections immunostained for bromodeoxyuridine (BrDU)
from n = 3 mice. A total of 7-8 BrDU-stained sections
were sampled in a systematic-random manner from the
hippocampus of each mouse. Sections were cut on a
freezing microtome at an instrument setting of 50
µM. Immunostaining for BrDU followed the protocol
detailed by Lee et al., (2003). This immunologic-
based stain provides a high contrast stain of the nuclei
of stem cells undergoing cell division, as shown in
Fig. 5.

Fig. 5. A BrDU-stained cells showing probe-feature
intersections (“+”) using a point grid placed at
random over the image. Note that the uppermost left
point on the “+” must hit the feature for an
intersection to be counted for either manual or VCS
methods.

After complete tissue processing the sections had
an average thickness of 19.5 µM measured orthogonal
to the tissue section by focusing on the top and bottom
of the section using a 100× (N.A. 1.4) oil immersion
objective.

The purpose of these studies was to assess the
efficiency, accuracy, and precision of estimates using
the gold-standard (conventional computerized stereo-
logy) compared to automatic and semi-automatic VCS
for three size parameters: volume fraction (Vobj/Vref),
total volume of the reference space (Vref), and total
object volume, Vobj,, as described below.

• Pobject/Pref =Aobject/Aref = Vobject/Vref. According to
the Delesse principle (Delesse, 1847), the ratio of
object profile area (∑Pobject • area per point) to
area of reference area sampled ((∑Pref • area per
point) provides an unbiased estimate of the object
volume fraction, Vobject/Vref (Fig. 5). On random
sections through high contrast of interest, the
random intersection between a sum of points
(∑P) and 2-D profiles of targeted features is
proportional to the volume of the feature in 3-D
(Cavalieri, 1635; Glagolev, 1933; Gundersen et
al., 1988 a,b; Mouton, 2002; Perry et al., 2004).

• Estimation of total reference volume, Vref,
obtained by integration of area measurements on
planes (physical or optical) a known distance
apart, according to the Cavalieri principle (Vref =
∑Asection• average distance between planes), as
shown by Gundersen and Jensen (1987; for
biological examples, see Mouton et al., 1998).
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• Estimation of total object volume, Vobj, where
Vobj = (Vobj/Vref) • Vref, for thin or thick sections
containing anatomically well-defined reference
spaces that are 100% available for sampling. This
includes reference spaces that can be systematically
sampled in entirety, such as the majority of
samples from mice, rats, non-human primates,
and human tissue at autopsy. One example where
this method would not be useful is when an
unknown fraction of the reference space is
available for sampling, i.e., tumor biopsies. In
this case the expected volume would vary with
the unknown volume of the tumor in situ, rather
than the volume of the biopsy available for
sampling.

RESULTS

Data are presented for timed estimations of
volume fraction (VV) by three methods: manual point
counting; VCS in semi-automatic mode (semiVCS);
and, fully automatic VCS (autoVCS). Table 1 shows
the time required for analysis by section using each of
the three approaches applied to animal #1.

As shown in Table 1, a reliable VV estimate by
manual point counting in animal #1 required 141
minutes for analysis of n = 8 sections, including the
actual time for analysis (excluding Study Set-up and
Case Initialization), as outlined below.

1. Load slide onto motorized stage.

2. Outline the reference space at low power (4×);
switch to high power (63×)

3. Locate the top and bottom of the section.

4. Focus to the approximate mid-point of the section
and manually select (click) each probe-feature
intersection between an area point probe (+) and
the feature (BrDU-immunostained nucleus)

5. Select Next to move to the next x-y position via
motorized stage movement in x-y axes.

6. Repeat steps 2-4 above for all frames spaced in a
systematic-random manner across 8 sections.

For semiVCS, the user analyzed the same
sections and followed the above steps 1-3 and 5-6. At
step 4, the user selected Collect Data For Current
Probe at each sampling frame. The program
automatically selected points hitting BrDU-positive
nuclei, with a total time of 90 min for analysis of n = 8
sections for animal #1. For autoVCS, the user
followed the same steps 1 and 2 above, selected Clear
Color Samples, then retrained the program to recognize
BrDU-stained profiles. Once 100% agreement was
achieved between automatic and manual data
collection, the user selected Collect Data For Current
Section. The same comparison was repeated for two
additional animals. Table 2 shows the results for the
analysis of BrDU-positive cells in animal #2 for
manual, semiVCS, and autoVCS methods.

Table 2 illustrates the increase in throughput
efficiency for autoVCS from animals 1 to 2, due to
the carry-over effect of training in the initial case to
all subsequent cases in the same study. Table 3
compares results of throughput for animal 1-3. A total
of 27 min was required to train the program to collect
VV data for animal #1. Carryover of training reduced
the time to collect data for animal #2 to 14 min,
reduction. Analysis of VV in animal #3 only required
12 min; again, because the training effect carried over
from animal #1 (Table 3).

Table 1. Data collection times by section for VV estimation of BRDU-immunostained cells in animal #1.

Section# 1 2 3 4 5 6 7 8 Total (min)
Manual 14 20 23 15 28 17 15 9 141
SemiVCS 12 15 15 10 14 12 8 4 90
AutoVCS 10 3 4 2 3 2 2 1 27

Table 2. Data collection times by section for VV estimation of BrDU-immunostained cells in animal #2.

Section# 1 2 3 4 5 6 7 8 Total (min)
Manual 15 15 25 27 24 20 18 10 154
SemiVCS 9 10 14 15 10 11 9 3 81
AutoVCS 2 1 2 3 2 2 1 1 14
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The throughput analysis in Table 3 indicates that
the rate of tissue analysis for autoVCS approximately
doubled from about one-third of a section per minute
on animal #1, to a stable throughput of two-thirds of
each section per minute for animals #2 and #3, as
evidenced by results from efficiency testing across
animals. Table 4 compares the analysis of VV for n = 3
mice using manual point counting, semiVCS, and
autoVCS approaches on the basis of precision (CE),
as calculated using the quadratic approximation
revised by Gundersen et al., (1999); and, efficiency
[(CE/ time) •103].

These data confirm the efficiency of semiVCS
and autoVCS compared to manual data collection.
Furthermore, the results for autoVCS confirm that
throughput increases as more cases are analyzed in
the same study. Starting with the second section in
animal #1, VCS achieved 100% agreement with
manual point counting, allowing the user to analyze
the remaining sections in the most efficient, fully
automatic mode. For animals #2 and #3, the user
verified 100% agreement on the first section, then
carried out the analysis of remaining sections for each
case in fully automatic mode. The final data for
verification of total VV for BrDU-positive cells in n = 3
mouse hippocampi are shown in Table 5.

Table 5 shows the lack of differences for VV

estimation of BrDU-positive cells for the three
different approaches. From these estimates of VV the
program automatically calculates total object volume,
Total Vobj, as the product of: VV (Vobject/Vref); and, the
automatic estimate of total reference volume (Total
Vref) (data not shown). The small amount of observed
variation in mean Vobject/Vref across different methods
occurs from random sampling error (i.e., true
variation between adjacent sampled regions).

Statistical studies with analysis of variance
revealed significant differences in efficiency across
the three methods [F(1,7) = 23.22, p < 0.002)]. Post-
hoc testing showed an eight-fold increase in efficiency
for autoVCS compared to manual methods (F(1,5) =
20.64, p < 0.01)]; and, a significant doubling (2-fold)
in efficiency for semiVCS compared to manual
methods (F(1,5) = 75.54, p < 0.001)]. Comparable
values for coefficient of error (CE) (Tables 4,5), a
measure of within-sample precision, across the three
different methods reflect the equivalent level of
sampling within the same sections from the same
animals. Therefore, the results reveal no differences
in accuracy and precision across the three methods
for volume (size) estimation, with the semiVCS and
autoVCS approaches increasing efficiency for the
procedure by 2 and 8 times, respectively, compared
to manual data collection.

Table 3. Throughput (sections/time,t) for estimation of VV using autoVCS.

Animal # total # sections total time (min) throughput
1 8 27 0.30
2 8 14 0.60
3 7 12 0.60

Table 4. Comparison of precision (CE), data collection time (t) and efficiency [CE/time)•10-4] for manual point
counting, semiVCS, and autoVCS for n = 3 mice.

Animal# method #sections #frames CE t(min) efficiency
1 manual 8 116 0.12 141 0.85
2 manual 8 163 0.09 154 0.58
3 manual 7 142 0.10 145 0.69
1 semiVCS 8 123 0.10 90 11
2 semiVCS 8 164 0.12 81 15
3 semiVCS 7 140 0.12 75 16
1 autoVCS 8 122 0.10 27 37
2 autoVCS 8 169 0.09 14 64
3 autoVCS 7 137 0.10 12 83

Table 5. Mean BrDU volume fraction (VV), within-animal precision (CE) and efficiency [(mean CE/mean time)
(•10-4)] for manual, semiVCS, and autoVCS (n = 3 animals).

Method mean V/V(SEM) mean CE mean t (min) mean efficiency
Manual 0.0446(0.0034) 0.10 146 6.8
SemiVCS 0.0460(0.0030) 0.11 82 13**
AutoVCS 0.0431(0.0028) 0.10 18 55*
*sig. diff., p < 0.01; **sig.diff., p <0.002
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DISCUSSION

In practical terms, the VCS approach allows
design-based stereological analyses of volume fraction,
reference volume, and total volume of BrDU-stained
nuclei for n = 8 cases in the same time required to
analyze a single case (n = 1) using the same point
counting approach assisted by a state-of-the-art
computerized stereology system. The logic flow
allows users to identify features of interest and then
train the software to correctly identify feature hits
that intersect the pixel mask for the current probe.
Color gradients smooth the feature detection process
and provide a sharp border between targeted pixels
and background. Each sample pixel is compared against
the target color to see if it matches. The maximum
allowed distance is defined by the sampling standard
deviation times the user specified allowed number of
standard deviations. The user controls the sensitivity
of the color matching by selecting the scaling factor
that is multiplied by the calculated color standard
deviation. The product of the average gradient and
the user-provided gradient factor (a global setting)
represents the threshhold value for determining if a
cell is on an edge or not. The gradient at each location
based on the pixel distances across the boundary, and
the Sobel operator is calculated. Finally, the Sobel
filter is applied to the combined color distance
information, rather than each channel separately.
Feature size is quantified by point counting, which is
more accurate and efficient than pixel counting
(Gundersen et al., 1981). Finally, performance testing
of the VCS approach confirmed the specificity for a
particular population of high contrast targets: Training
to recognize a population of high contrast dark blue
images did not mistakenly identify high-contrast red
features in the same sampling frame. Though the
method is arguably simple, as far as we are aware
VCS represents the most sophisticated approach to
date to combine image analysis with state- of-the-art
systematic-random sampling and parameter analysis.

A second important finding is that the VCS
program provides an increase in efficiency for features
of interest with middle levels of contrast. If VCS does
not achieve 100% agreement with manual selections
by the user, as required for fully automatic VCS, then
the user has two options: continue under Semi-
Automatic (user-assisted) mode; or, end the session
and attempt to improve contrast using histological
staining methods. In Semi-Automatic mode the
software waits for the user to visually approve, and if
necessary edit, the VCS-selected probe-feature inter-
sections before proceeding to the next sampling frame.

In practice, accuracy of VCS selections depends on the
S:N ratio for the particular feature, which varies
according to biological and methodological factors
that control staining intensity. In these cases the
program selects a subset of probe-feature inter-
sections subject to editing for accuracy by the user.
Testing confirmed that the majority of initial
selections are correct for features with middle levels
of contrast, requiring the user to make a few additions
i.e., 1-5 clicks; only rarely did the program make
incorrect selections that required removal of clicks.
Therefore, in semi-automatic mode VCS selected the
majority of correct probe-feature intersections, thereby
reducing time spent selecting probe-feature intersections
within each sampling frame. For middle levels of
contrast the Semi-automatic mode increases the
efficiency of data collection to a significant extent
over manual data collection, albeit less than that for
fully automatic VCS. Since the majority of tissue-
based stereological analysis focuses on features that
can be stained for at least middle levels of contrast,
semi-automatic mode for VCS is expected to increase
efficiency on broad range of biomedical research
projects.

The advent of VCS shifts the rate-limiting step
from labor-intensive user interactions with targeted
images to the generation of high contrast images that
allow the program to recognize the targeted feature.
To minimize time required for program training, VCS
includes carryover of auto-detection for features of
interest on the first few sections of the first cases to
subsequent sections/slides/cases within the same
study, thus eliminating the need for retraining. Optimal
staining for VCS includes minimal variation in staining
across the population of targeted objects, which
increases the efficiency of training. For features
stained to reveal at least mid levels of contrast, VCS
shows remarkable sensitivity to fine distinctions in
contrast between target features and background.
Failure to achieve maximal contrast would favor the
less efficient semi-automatic VCS mode. A major
factor in the overall efficiency of the VCS approach
is the ability to analyze as many sections as possible
on the same slide. For most reference spaces obtained
from small experimental animals (e.g., mouse and
rats) and many samples of human tissues, multiple
sections can be mounted on a single slide. In these
cases the automatic VCS feature supports automatic
analysis of all sections for one animal at a single
setting, without interruption to change slides, thereby
reducing the time to analyze each animal in 30 min or
less.
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The VCS approach can be readily applied to a
wide variety of biomedical research projects focused
on the quantitative analysis of high contrast features
of biological interest. As shown in the present study,
VCS could be applied to the auto-detection and auto-
analysis of BrDU-positive cells following a variety of
potential interventions designed to affect neurogenesis
(Lee et al., 2003). The VCS approach can be expected
to accelerate the collection of design-based stereology
data include predictive studies of cancers where changes
in volume-weighted mean nuclear volume of BrDU-
stained cells provides a reliable indicator of probability
to metastasize (Sorensen, 1989; Masson et al., 1992;
Madsen and Schroder, 1994; Ladekarl, 1998).

Though the time and effort saved by VCS could
be used to sample a greater number of frames or
sections from each animal, that strategy would quickly
reach a point of diminishing returns (Gundersen and
Jensen, 1987; Gundersen et al., 1999; West, 1999;
Mouton, 2002). Because the estimation process is
based on probability theory, optimal within-animal
sampling to reveal significant group differences
occurs after analysis of about 100 to 200 systematic-
random spaced locations on 6-10 sections through the
reference space on each case. Negligible gains in
precision occur beyond this level of sampling effort,
while there is a drastic reduction in efficiency for the
process, analogous to the cumulative probability of
hitting heads or tails after flipping a coin over 200
times (50:50). As expected, sampling small frames in a
large number of locations within a defined reference
space achieved comparable accuracy and precision,
but with higher efficiency, than large amount of data
(i.e., whole images) at fewer locations. Furthermore,
the additional time required to analyze the whole
image at each X-Y location reduced the efficiency of
procedure, without added benefits in terms of
accuracy or precision to the volume estimate. Once
the minimal level of sampling within each case is
achieved, the major contribution to the observed
variation arises from natural inter-animal variation,
i.e., case-to-case differences. Thus, the most efficient
strategy to reduce observed variation in the results is
to repeat the minimal analysis in more cases from
each group, also known by the adage, “Do More,
Less Well,” coined by the Swiss stereologist Ewald
Weibel (see Gundersen and Osterby, 1981; Gundersen
and Jensen, 1987).

In conclusion, these findings provide the first
demonstration of verified computerized stereoanalysis
for automatic quantification of size parameters for high
contrast features of biological interest. This innovative

approach takes advantage of the high efficiency of auto-
detection approaches associated with image analysis
and avoids the introduction of stereo-logical bias that
characterized previous attempts to automate quantitative
morphometry using assumption- and model-based
stereology methods. Future studies include extrapolation
of the VCS approach to virtual probes in 3-D in order
to provide automatic analysis of the full spectrum of
first-and second-order stereo-logical parameters
available for studies of biological tissue.
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