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ABSTRACT

This paper deals with the use of probabilistic models such as Voronoi tessellation and the Johnson-Mehl
model to simulate microstructures of monophased materials. Sintered cerine was chosen to test the various
models. The values of morphological parameters measured, both on such models and real microstructures
are in very good agreement. An extension for porous materials is also presented. This work shows that the
probabilistic models are very well suited for the simulation and description of ceramic and granular
microstructures.

Keywords: cerine, Johnson-Mehl model, mathematical morphology, microstructural and probabilistic models,
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INTRODUCTION

Two strategies exist to describe the microstructure
of a material: either to undertake an exhaustive morpho-
logical analysis or to use a model to describe the
microstructure. The complete morphological analysis
requires generally a large number of functions and
parameters.

There are several methods of modelling a micro-
structure. The first method and the most intuitive is
the physical approach: it consists of considering that
a microstructure can be modelled using simple
geometrical objects (spheres, cylinders …). These
objects are assembled initially in a random manner
and can be positioned in order to simulate the formation
of a material, following physical laws, such as
densification (Stroeven and Stroeven, 1996; Stroeven,
1999; Dinger, 2000).

A similar approach has been used to describe the
setting of cement during hydration by adjusting the
model with three morphological parameters: the
volume fraction, VV, the specific surface area per unit
volume, SV, and the grain size distribution in 2D
(Garboczi and Bentz, 1993; Bentz, 1997). Conse-
quently, the resultant structure is modified by a virtual

hydration. The inconvenience of such an approach is
the necessity to conceive specific simulations difficult
to test by image analysis (the tests have no direct
relation to significant parameters and are thus not
sufficiently discriminating to validate the model).

The second approach, frequently employed, is to
start with a tessellation in space. This can be obtained
by labelling the voxels related to a crystal orientation,
called spin. The grains are formed by all the voxels
with the same adjacent spin. This approach enables a
test of the methods of construction by using the 3D
characteristics deduced from 2D size distribution by
image analysis (Mehnert et al., 1998). Simulations by
the Monte Carlo method have also served to study
solid phase sintering (Matsubara et al., 1999) and
also grain growth in a monophased system (Xiaoyan
and Liu, 1998). The space tessellation most often used
is that of Voronoi. Here it serves from the beginning
to carry out virtual sintering with a liquid phase
(Tikare et al., 1998a, b). The Voronoi tessellation
likewise serves to characterize and analyse the
mechanical behaviour of heterogeneous microstructures
(Ghosh et al., 1997a, b). This second method resembles
that which we propose to use: probabilistic methods
such as those of Poisson tessellations (mosaic) (Xi et
al., 1996).
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The probabilistic models are well suited for the
simulation of many materials (Jeulin, 1991), or even
of their surface state (Jeulin and Laurenge, 1996; Aubert
and Jeulin, 2000). The comparison between real
microstructures and those given by such probabilistic
models permits a correct and complete description of
the microstructures only from few parameters (Jeulin,
1991; Coster and Chermant, 2002). These probabilistic
models include most part of tessellations. As for
example, only one parameter is requested for Voronoi
tessellation: the point density; for the classical Johnson
Mehl tessellation, two parameters are required, the
germination rate and the growth rate.

In this paper, we shall present this last approach,
using as an example, a sintered ceramic: cerine,
CeO2. Sintering CeO2 has already been investigated
by Arnould (Arnould et al., 2001; Arnould, 2002;
Arnould et al., 2002; Coster et al. 2005), using
segmented images, as described in these references.

The aim is to present to the ceramic and material
science community how one can use probabilistic
models to describe the morphology of granular
materials in terms of the statistical structure, i.e.,
without taking into account the “defects” of materials
such as anomalous grain size, cracks etc., and to
access 3D stereological parameters. At present the
ceramic industry pays a lot of attention to the
morphological parameters of the initial powders and
to the process to avoid such defects.

Several theoretical publications have considered
modelling of the morphology of materials from random
closed sets (RACS) (Matheron, 1975; Stoyan et al.,
1995; Jeulin, 1997a; Stoyan, 1998). Matheron (1975)
who devised the Boolean approach was the leader in
this field. His work has led to numerous and important
developments, substantially described by Serra (1982;
1988) and, more specially, by Jeulin (1997b).

PROBABILISTIC MODELS

Firstly, we shall inform the non-familiar readers
of the main probabilistic models.

POINT PROCESS

The main probabilistic models are constructed by
a random point process: the Poisson point process.

The probability that n points of the Poisson
process of density θ belong to a set Z is given by:

( )
( )( )

( )( )
n

n

Mes Z
P Z exp Mes Z

n!

θ
= −θ (1)

where “Mes” means measure of set Z: (volume in R3,
area in R2, length in R1).

The advantage of the Poisson point process is that
it is possible to process point densities totally
independently from one frame of measurement of
reference to another. It enables derived point processes
to be constructed, such as a set of points with repulsion
(hardcore model) or, with attraction (cluster model)
(Stoyan et al., 1995).

THE DIFFERENT CLASSES OF
PROBABILISTIC MODELS

The probabilistic set of models can be subdivided
into two main categories: the “monophased” models
which correspond only to a random tessellation of
space and “polyphased” models. Moreover, modelling
can be achieved “instantaneously” or “sequentially”.

Table 1 summarises the main models. During
sintering, the system evolves and can be considered
as polyphased (solid phase and pores), whereas
towards the end of sintering the material becomes
monophased. In order to choose the correct model,
the following approach has been proposed:

(i) to construct a model for a monophased material,
(ii) to implant a network of pores to describe the final

stages of sintering.
This implies that it is not necessary to construct a

model to describe the first stages of sintering. Of
course, it is not necessary to have a single model to
describe all stages of sintering. Thus the initial stages
will be incorporated in the group of space tessellations
irrespective of whether with instantaneous or sequential
processes.

The Poisson tessellation, developed by Matheron
(1975) and Miles (1971) and used by Xi et al. (1996),
has not been considered here, as it does not correspond
to granular structures of monophased ceramics
(alignments of tessellations).

The monocoloured dead leaves model (Jeulin,
1997b) can also be ignored as it leads to grains totally
included within others, which does not correspond to
the morphology of ceramics. Thus, only two possible
basic models remain, which are well known:

- the Voronoi model and,
- the Johnson-Mehl model.
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Table 1. The main groups of models.

Monophased models Polyphased models
Space tessellation

Voronoi model
Poisson mosaic

Space tessellation
Coloured tessellations

(Voronoi, Poisson)
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od
el
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Granular models
Boolean model
Stienen model

Space tessellation
Johnson-Mehl model

Se
qu

en
tia

l
m

od
el

s

Granular models
Monocoloured dead leaves model

Granular models
Coloured dead leaves model

HOW TO TEST A TESSELLATION
MODEL?

Before discussing the chosen models, it is
necessary to show how we can validate the choice of
a tessellation model. In fact, a visual comparison only
is insufficient: a comparison must be quantified. The
strategy must depend on a certain number of properties
of the models. In this work, the most important
properties will be the infinite divisibility and the
calculability.

Voronoi and Johnson-Mehl models are two
tessellations, which can be modified if necessary. To
choose the best model and to fit its parameters, one
must compare quantitatively the morphology of the
model to that of the material microstructure. Then the
model could be validated if a sufficient number of
parameters or of morphological functions lead to the
same results for the material and the model. To realize
this comparison and to choose the best strategy, a
certain number of properties of the tested models
must be investigated. So, if we can define the
relationship of a morphological function measurable
in 2D from the 3D parameters of the model, it will be
not necessary to carry out a 3D simulation of the
model and to make measurements on 2D section and
to compare these measurements to that of the
ceramographic sections (calculability of the model).
That is the case of some models such as the Boolean
models or the Poisson tessellations, which give 2D
sections of same nature (infinite divisibility of the
model). The morphological functions are the Choquet
capacities or their derivatives, which can be estimated
from measurements on eroded sets. Unfortunately the
Voronoi and Johnson-Mehl tessellations do not
possess these properties. So, one must carry out 3D

simulations and extract 2D sections to undertake
measurements and to compare them with that of the
material sections. The estimation of one morphological
function only is generally not sufficient to validate a
model. In fact for the Voronoi and Johnson-Mehl
tessellations, the P(l) function or its opposite 1- P(l)
are only known.

A random set possesses the properties of
calculability if we can define for certain compacts
(also called structuring elements in mathematical
morphology), K, some explicit expressions of the
Choquet capacity (Choquet, 1953). The Choquet
capacity for a compact (structuring element) K is the
probability that a compact hits the random set X:

( ) ( )T K Pr X K= ∩ ≠ ∅ . (2)

That Choquet capacity is easily estimated from
simple compacts used in mathematical morphology
(Serra, 1982; Coster and Chermant, 1985; 1989) as,
according to the previous definition, T(K) corresponds
to a measurement of the eroded of the complementary
set by the compact K.

The models we have chosen to test do not possess
these properties. As these models are not infinitely
divisible, the Voronoi tessellation nor the Johnson-
Mehl model, as defined in R3, does not reproduce a
model of the same type in R2. The stereological
aspect does not exist. To verify these models, a 3D
simulation, which is intersected by a plane, must be
undertaken.

The properties of calculability of these models are
also poor. The analytical expressions of T(K), or
derived expressions as P(l) function (in this case
T(K) = 1- P(l)), are generally not known. Let us recall
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that the P(l) function defines the probability that a
segment of length l is included in a set (Haas et al.,
1967). 1- P(l) is equivalent to the linear first contact
spatial distribution, H(l), while the granulometric
density f%(l) is the chord length probability density. 
Thus it is necessary to choose other measurements, as
grain size distribution in 2D or distribution of
neighbours in 2D, with which to compare the result
of intersections of 3D simulations by plane sections.

VORONOI TESSELLATION

Although the Voronoi tessellation hypotheses can
often be rejected (Stoyan et al., 1995), we shall
nevertheless discuss the Voronoi model for the reader
not familiar with it, and who wants to test it for a
given material.

DEFINITION

Consider a Poisson point process, { }ixP U= . A
zone of influence is associated with each point of the
process. This corresponds to the set of points y closer
than any other to the point xi:

{ }yxyxi ji
dd:yX <= . (3)

The Voronoi model has been discussed in many
publications and particularly in the book of Okabe et
al. (2000) and in the revue paper by Stoyan (1998),
which illustrates well its construction. The properties
of the model can also be found in the book of Stoyan
et al. (1995, chapter 10). In R3, tessellation can be
also described as a set of convex polyhedrae. Starting
from the Poisson point process, each point is linked
to its nearest neighbours by a straight segment. Each
segment enables the median plane to be constructed.
The intersection of these planes defines the faces of
polyhedrae.

CONSTRUCTION
The algorithm used to construct the Voronoi

model is an algorithm of “priority growth” similar to
the process used to define the watershed line (Serra,
1982; Beucher and Meyer, 1992). It can also be found
on Internet. So it will not be described in our paper.

Thus a mosaic in which the boundaries correspond
to a change in colour is obtained. Fig. 1 shows a 3D

simulation, Fig. 2 its intersection by a plane and Fig.
3 a cross section of CeO2.

CHOICE OF POINT DENSITY
The Voronoi model depends only on one parameter:

the Poisson point density, θ. We then have to estimate θ
from measurements on the real segmented structure.
As the model is constructed in R3, the stereological
relationship established for the Voronoi model can be
used: it provides the parameter θ = NV (i.e., here the
number of cells per unit volume, NV) as a function of
the connectivity number NA in R2 (the number of
polygons per unit area), (Serra, 1982):

( ) ( )2/3 2 /3
A VN X 1.46 N X 1.46= = θ . (4)

Several boxes of 612 × 468 × 468 pixel size were
created, with 678 nuclei per box (i.e., NV = 5.05 10-6

grain/pixel3 for a specimen sintered at 1400°C for 1 h).
Various sections regularly spaced (50 pixels) have been
made on these boxes to obtain images of 612 × 468
size, and with 512 × 368 format after elimination of
the borders to avoid a bias in the simulation. The
image of a 2D section of a simulation of a specimen
sintered at 1400°C for 1 h is then compared with a
SEM micrograph of the real CeO2 microstructure.

TEST OF MODEL
Stoyan et al. (1995) have proposed methods to test

Voronoi tessellation. In this work, the P(l) function is
calculated using a 2D section of a simulation and
compared to its value on a segmented image, obtained
from a SEM micrograph.

Fig. 4 shows that there is good agreement between
the simulation and the actual microstructure. But,
only one test is not sufficient to validate the model.

When 2D grain size distribution by individual
analysis is evaluated, significant deviations are observed
for the smallest values of the diameter D (Fig. 5).

The density of granulometry determined on plane
sections of the 3D tessellation show the same
characteristics as that observed in the literature
(Hougardy and Stienen, 1987).

Plane sections show more small sized grains than
there are in the plane sections of simulation. Hence,
this model is not appropriate. This shows that to
verify the validity of a model, it is necessary to test
several functions.
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Fig. 1. 3D simulation of a Voronoi tessellation.

Fig. 2. Intersection by a plane of the 3D simulation
of Fig. 1.

Fig. 3. Cross section of real sintered CeO2.
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Fig. 4. Comparison of the P(l) function for a real CeO2
microstructure and 2D sections on the Voronoi model.
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Fig. 5. Comparison of the 2D granulometric density
of the real CeO2 microstructure (1400°C, 1 h) and
2D sections on the Voronoi model.

THE JOHNSON-MEHL MODEL

DEFINITION
The Johnson-Mehl model was proposed in 1939

(Johnson and Mehl, 1939) to describe the crystalline
growth of metals in the liquid phase. In order to set
up a Johnson-Mehl tessellation one starts from the
Poisson point process.

Contrary to the Voronoi tessellation it is a
sequential model (i.e., function of time), for which
there is a rate of nucleation (corresponding to an added
rate of points) and also of growth, both of which can
remain constant or vary with time during tessellation.

Unfortunately, this model does not possess the
property of infinite divisibility. Moreover, computation
is difficult and in any case, more so than for the
Voronoi model. In addition, one must realize 3D
simulations and undertake plane sections to measure
the microstructural characteristics and to compare
them to that for the real microstructure of the material.
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Fig. 6. 3D simulation of the Johnson-Mehl model.

Fig. 7. Intersection by a plane of the 3D simulation
of Fig. 6.

SIMULATION OF THAT MODEL
The algorithm is a series of nucleation stage, ∆tn,

and of growth, ∆tg. During the nucleation stage, n
nuclei are set according to a Poisson process. The rate
of nucleation, Vn, is given by n/∆tn. The procedure
used for the growth stage (∆tg = 1) is close to that
adopted in the Voronoi model. The increase in grain
size is limited to ∆D for regions where growth is
permitted (no other grains in the region). Growth, in
fact, stops when there is contact with another grain.
The growth rate, Vg, is defined as:

Vg = ∆D/ ∆tg =  ∆D (5)

Since nuclei are created at different times the
grain boundaries are not straight (in 2D) but hyperbolae
contrary to the Voronoi model. Fig. 6 shows such a
3D simulation and Fig. 7 the result of a 2D section.

ADJUSTMENT OF THE MODEL
Choice of a control parameter and a
scale factor
As shown previously, the Johnson-Mehl model

depends on the rate of nucleation as given by the
density of the point process (Vn = θ) and the rate of
previously formed nuclei and grain growth, Vg.

In the Voronoi model, it is necessary to have a
quantifiable parameter, which can be related to a
model parameter. Since tessellation is taking place,
the most relevant control parameter is the specific
connectivity number, NA, i.e., number of cells per
unit area. In the Johnson-Mehl model, Serra (1982)
has shown that this parameter is related to the number
of grains per unit volume, NV, as described by the
relationship (in the case where Vn and Vg are constant
rates):

3
2

A
V

NN
1.22
 =  
 

. (6)

All size distributions measured on dense cerine
show that they could be deduced from the others by a
scaling factor. In other words, to complete the model
and choose adjustment parameters does not necessitate
a comparison with all specimens, but with one only.
It is sufficient to change the pixel value for the
simulated images in order to change from one real
structure to another.

The simulations were carried out on boxes of size
306 × 234 × 234 enabling a box of the size
256 × 184 × 184 to be selected after elimination of
borders. We have chosen to use this box size to
reduce the time to set up the model and to carry out
sectioning by two perpendicular planes to obtain 2D
images with at least 95 grains (NA = 2.0 10-9 grain/
pixel2). Thus, more than 3000 grains were analysed
per simulation. In 3D, this corresponds to ca. 1150
nuclei (NV = 6.7 10-5 grains/pixel3). On reaching this
number of nuclei, grain growth stops without the
addition of new nuclei.

Choice of the laws of nucleation and
growth
Simulations with constant nucleation and growth

rates are unsatisfactory. The choice of the nucleation
and growth laws is made by comparing the 2D size
distribution of the simulation with that of the real
microstructure, which corresponds to a normal law.

mailto:michel.coster@unicaen.fr
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In order to obtain the granulometric density, which
fits a normal law, a constant growth rate Vg is chosen
and the nucleation rate, Vn has to vary with time
(iteration) according to the semi-empirical law:

( )2
n 0 maxV n exp t t = −α −  , (7)

with tmax, the iteration for which the nucleation is
maximum.

Such systematical simulations enable the following
granulometric behaviour to be deduced:

- for a constant growth rate, Vg, the higher the
value of α is, the lower is the reduced standard
deviation (RSD) of the size distribution.

- with a nucleation law where the parameters tmax,
n0, and α are set once and for all, the more the
growth rate increases, the greater is the reduced
standard deviation, which characterises the normal
law.

The latter behaviour is the easiest to use if the
growth rate is sufficiently high not to be undergoing a
Voronoi tessellation.

Fig. 8. Change in the reduced standard deviation,
RSD, of the granulometric density of the simulated
microstructures as function of the growth rate, Vg.

The previous studies have enabled the following
nucleation expression to be established:

( )2
nV 300exp 0.2 t 6 = − −  . (8)

Fig. 8 can then be used as a calibration curve,
which provides the reduced standard deviation as a
function of Vg for the nucleation law.

COMPARISON BETWEEN
MEASUREMENTS ON THE MODEL
AND REAL MICROSTRUCTURES
Since the reduced standard deviation of highly

densified cerine is between 0.5 and 0.6, simulation of
such microstructures is possible. As some of the
specimens were fabricated at different temperatures
and times, the granulometric density characterized by
the same reduced standard deviation, a sole simulation
is sufficient to modelise the microstructure (only the
pixel value changes).

After calibration, granulometric densities can be
compared of simulated and real microstructures. Fig.
9, for example, shows the images and the granulometric
densities for the microstructure of cerine (fabricated
at 1450°C for 5 h) together with the microstructure
simulated from the previous nucleation rate and a
growth rate Vg, equal to 3.

The 2D granulometric distribution having been
used to fit the model parameters, other parameters
and functions must be used to replace the Choquet
capacity. The following functions have been compared
for the same specimen:

- the P(l) function and corresponding linear
granulometries (Figs. 10 a and b),

- the distribution in number of neighbours of a
grain on 2D sections (Fig. 11).

The linear granulometric distribution for the
simulated and real microstructures are in good
agreement. The distribution of the number of
neighbours for the two images are similar to a semi-log
plot but have slight differences in the standard deviation
(Fig. 11). In fact, the simulated microstructures contain
slightly more grains with a number of neighbours
smaller than 4.

To complete the investigation, all other
measurements, which enable the morphology of real
microstructures to be completely described, can be
validated on simulated microstructures. Results have
shown that real and simulated microstructures exhibit
the same morphological properties.

Table 2 shows all simulated parameters on a
dense microstructure of cerine: mean diameter, specific
connectivity number, intercept number, measured
both on real and simulated microstructures (numbers
in italics).
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Thus the use of the modified Johnson-Mehl
model with a nucleation rate according to the law:

( )2
nV 300exp 0.2 t 6 = − −  , (8)
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Fig. 9. a) Real metallographic section of CeO2
sintered at 1450°C for 5 h; b) Corresponding Johnson-
Mehl simulation; c) 2D granulometric density for the
real and simulated images of Fig. 9a and 9b, with Vg
= 3 and

( )2
nV 300exp 0.2 t 6 = − −  .

and a constant rate of growth has enabled a set of dense
CeO2 microstructures, despite slight variation in the
reduced standard deviation of the granulometric
densities to be modelled.
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Fig. 10. a) Function P(l), and b) Linear size
distribution density, f %, for simulated and real CeO2
microstructure (1450°C, 5 h).
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Fig. 11. Distribution of the number of neighbours,
Nb, on a 2D section for CeO2 microstructure (1450°C,
5 h) and its simulation.
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Table 2. Values of some morphological parameters measured on real and simulated cerine microstructures:
First column gives the fabrication conditions; Vg: growth rate; Dm: the mean diameter of the cerine grains; NA:
the connectivity number; NL: the intercept number. Values in italics are those for simulated microstructures.

Vg Dm (µm) NA (mm-2) NL (mm-1)
1300°C, 2 h 2.5 3.3  /  3.4 73 805  /  75 160 316  /  315
1300°C, 5 h 3 5.4  /  5,3 29 196  /  29 611 193  /  198
1300°C, 10 h 3.25 7.1  /  7.2 15 095  /  15 879 145  /  144
1300°C, 20 h 3.25 10.5  /  10.8 6 467  /  6 803 97  /  94
1400°C, 18 mn 2.5 2.2  /  2.2 170 903  /  174 048 417  /  480
1400°C, 36 mn 3 3.8  /  3. 8 58 134  /  58 747 242  /  279
1400°C, 1 h 2.5 5.4  /  5.2 30 481  /  31 153 194  /  204
1400°C, 2 h 2.5 7.7  /  7.6 14 414  /  14 690 135  /  140
1400°C, 5 h 3 10.4  /  10.2 7 921  /  8 007 100  /  103
1450°C, 18 mn 2.5 3.7  /  3.7 60 599  /  61 533 247  /  286
1450°C, 36 mn 2.5 5.6  /  5.5 27 846  /  28 255 168  /  194
1450°C, 1 h 2.5 7.5  /  7.4 15 436  /  15 636 138  /  144
1450°C, 2 h 3 9.3  /  9.2 9 811  /  9 886 111  /  114
1450°C, 5 h 3 14.0  /  13.9 4 259  /  4 303 74  /  75

TOWARDS A PROBABILISTIC
MODEL FOR POROUS
MATERIALS

The previous model can serve as a basis to
describe sintered materials when the pores are closed.
For this “reversible virtual sintering” is proposed
which retraces the various sintering stages from the
dense structure to the creation of pores.

The growth of pores and then their progressive
elimination are generally the final sintering stages.
The reverse phenomenon consists of pore creation in
a granular structure. The hypothesis is that pores
preferentially form at triple points (boundaries in
3D). Of course on real materials, these pores are very
rarely spherical! If granular structure is labelled,
these triple points can easily be located on a
simulation as the corresponding voxels are neighbours
with different labels.

The number and size of pores to be randomly
implanted on these triple boundaries are estimated
from the stereological parameters measured on real
microstructures. Obviously, there is a stereological
relationship (DeHoff, 1968) between the number of
pores (supposed to be convex) per unit volume,
NV(P), their number per unit area, NA(P), and their
mean Ferret diameter, DFm:

( ) ( )A Fm VN P D N P= , (9)

NA(P) is estimated from the microstructure, but DFm
is not known as it would be necessary to have the 3D
granulometric distribution. Hence the porous model
has been modified, supposing a single size of sphere.
In order to establish the pertinence of this assumption,
the covariance function of a porous network for
various sintering times at 1100°C was compared to
that of the simulation (Fig. 12). Indeed, covariance
function is the tool the best adapted to analyse the
dispersion of a phase in the other one.

It should be noted that this covariance function
passes through a minimum for all investigated CeO2
materials. This demonstrates, that there is a geometrical
effect of pore repulsion. Consequently, two very close
pores coalesce very quickly to form only one pore. In
a simulation with a random implant of pores, the
covariance function can only decrease monotonically.
We therefore introduced a repulsive force in the
mode, which imposed a minimum distance between
two neighbouring pores. Fig. 13 shows the obtained
results obtained under the following conditions:

- Vg = 2,

- ( )2
nV 300exp 0.2 t 6 = − −  ,

- number of pores in the 3D box = 2000,

- pore diameter = 10 voxels,

- repulsion distance = 2 voxels.

mailto:michel.coster@unicaen.fr
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Fig. 12. Covariance function, C(h), of the porous network for various times of sintering of CeO2 at 1100°C.

Fig. 13. Covariance function, C(h), of the simulated microstructure and representation of a 2D section of the
porous material.

These first results are encouraging enough to
consider an extension of the model so long as there
are still pores. The model could be improved, in
particular, with respect to the comparison of the 2D
distribution of the pores in a real material and in
fitting a 3D distribution, taking into account the
granulometric parameters and the shape of the grains.
In our approach we have only used monosized
spheres located at the edges of the 3D tessellation.

This demonstrates the flexibity of the approach
used in combining the simple probabilistic models
and coupling this construction to a comparison by
microstructural analysis of the model and the real
structure by mathematical morphology. This was the
approach adopted by Dequiedt et al. (2000). Following

the same concept, it is possible to implant defects
randomly in a model of a perfect microstructure.

CONCLUSION

In this work two probabilistic models were used
to simulate the morphology of a monophased granular
ceramic: cerine, CeO2: the Voronoi tessellation and
the Johnson-Mehl model.

The Voronoi tessellation is not convenient (as
even already shown by Stoyan et al., 1995), as the
simulated granulometric densities are different from
those of the real material: they do not fit a log-normal
law.
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The best results were obtained with the Johnson-
Mehl model as it integrates a sequential nucleation
and encompasses more parameters. All sets of dense
CeO2 sintered specimens were modelled based on a
nucleation rate obeying a law derived from “Gaussian
pattern”, and a constant growth rate.

Very good agreement was observed for the
granulometric characteristics of the sectioning of 3D
simulations and also those of real ceramographic
sections. An extension of the model is also proposed
for porous microstructures.

Compared to “granular models”, as described by
Horalèk (1988; 1990), and to results obtained from
other types of models already published by many
authors (for example computer-simulated grain
structure, discrete numerical modelling and packing
of spheres, models based on finite element methods,
etc.) as listed in the introduction, this work shows that
probabilistic models are admirably suited for the
simulation of ceramic and granular microstructures in
addition to concrete (Dequiedt et al., 2000), and require
only a few parameters to describe the morphology.
Moreover, many of them possess stereological
properties: this implies that you can measure morpho-
logical parameters on a 2D section and, for example,
obtain the number of objects per unit volume without
any hypothesis. Let us recall that this parameter can
only be measured experimentally by serial sectioning
unless you make an hypothesis. Experimentally, it is
very difficult to carry out correctly and it is very time
consuming.
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