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ABSTRACT

The growth of planar and spatial objects is often modelled using one-dimensional size parameters, e.g., volume,
area or average width. We take a more detailed approach and model how the boundary of a growing object
expands in time. We mainly consider star-shaped planar objects. The model can be regarded as a dynamic
deformable template model. The limiting shape of the object may be circular but this is only one possibility
among a range of limiting shapes. An application to tumour growth is presented. A 3D version of the model
is presented and an extension of the model, involving time series, is briefly touched upon.

Keywords: Fourier expansion, Gaussian process, growth pattern, periodic stationary, radius vector function,
shape, star-shaped objects, transformation.

INTRODUCTION

Modelling of biological growth patterns is a
rapidly developing field of mathematical biology.
Its state-of-the-art was explored at the successful
conference On Growth and Form, held in 1998
in honour of D’Arcy Thompson (1860–1948) and
his famous book, cf. Thompson (1917). Out of
the conference grew a monograph which contains
substantial biological material and an overview of
mathematical modelling of spatio-temporal systems,
cf. Chaplain et al. (1999). Examples of growth
mechanisms studied are growth of capillary networks,
skeletal growth and tumour growth.

Modelling of tumour growth has attracted
particular interest in recent years. Tumour growth
was one of the high priority topics of the recent
multidisciplinary conference arranged by the European
Society for Mathematical and Theoretical Biology
in July 2002. More than 500 scientists from a wide
range of disciplines participated. One of the subjects
discussed was pattern formation problems, relating to
tumour formation and progression, in particular the
question of tumour shape.

The models suggested for tumour growth are
either continuous or discrete. In Murray (2003),
the continuous approach is explained in relation to
brain tumours. The simplest models involve only
total number of cells in the tumour, with growth
of the tumour usually assumed to be exponential,
Gompertzian or logistic (Swan, 1987; Marusic et al.,
1994). More powerful deterministic models describe
the change of the spatial arrangement of the cells under
tumour growth. The discrete models are most often

cellular automaton models, cf. Qi et al. (1993) and
Kansal et al. (2000).

The growth literature contains very few examples
of statistical modelling and analysis of growth patterns.
An exception is the paper by Cressie and Hulting
(1992). Growth of a planar star-shaped object is here
modelled, using a sequence of Boolean models. The
object Yt+1 at time t + 1 is the union of independent
random compact sets placed at uniform random
positions inside the object Yt at time t. More formally,

Yt+1 = ∪{Z(xi) : xi ∈ Yt} ,

where {xi} is a homogeneous Poisson point process
in the plane and Z(xi) is a random compact set
with position xi. Note that this model is Markov
since Yt+1 only depends on the previous objects via
Yt . The model is applied to describe the growth
pattern of human breast cancer cell islands. Practical
methods of estimating the model parameters, using
the information of the complete growth pattern, are
devised. A related continuous model has recently
been discussed in Deijfen (2003). The object Yt is
here a connected union of randomly sized Euclidean
balls, emerging at exponentially distributed times. It is
shown that the asymptotic shape is spherical.

In the present paper, we propose a Gaussian radial
growth model for star-shaped planar objects. The
model is a dynamic version of the p−order shape
model introduced in Hobolth et al. (2003). The object
at time t +1 is a stochastic transformation of the object
at time t such that the radius vector function of the
object fulfils

Rt+1(θ) = Rt(θ)+Zt(θ) , θ ∈ [0,2π) ,
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where Zt is a cyclic Gaussian process. The coefficients
of the Fourier series of Zt

Zt(θ) = µt +
∞

∑
k=1

[At,k cos(kθ)+Bt,k sin(kθ)] , (1)

θ ∈ [0,2π), have important geometric interpretations
relating to the growth process. The overall growth from
time t to t + 1 is determined by the parameter µt . The
coefficients At,1 and Bt,1 determine the asymmetry of
growth from time t to t + 1, while At,k and Bt,k affect
how the growth appears globally for small k ≥ 2 and
locally for large k ≥ 2. Under the proposed p-order
growth model

At,k ∼ Bt,k ∼ N(0,λt,k), k = 2,3, . . . ,

At,k, Bt,k, k = 2,3, . . . , independent, where the
variances satisfy the following regression model

λ−1
t,k = αt +βt(k2p −22p), k = 2,3, . . . .

The organization of the paper is as follows: in the
first section, we introduce the Gaussian radial growth
model. Then, we study the induced distributions
of object size and shape under the radial growth
model. After that, an application to tumour growth is
discussed and a statistical analysis of a growth pattern
is presented. An extension of the model, involving time
series, is then briefly described. Finally, a 3D version
of the model is presented.

THE GAUSSIAN RADIAL GROWTH
MODEL

Consider a planar bounded and topologically
closed object with size and shape changing over time.
The object at time t is denoted by Yt ⊂ R

2, t =
0,1,2, . . . . We suppose that Yt is star-shaped with
respect to a point z ∈ R

2 for all t. Then, the boundary
of Yt can be determined by its radius vector function
Rt = {Rt(θ) : θ ∈ [0,2π)} with respect to z, where

Rt(θ) = max{r : z+ r(cosθ ,sinθ) ∈ Yt} ,

θ ∈ [0,2π). In Hobolth et al. (2003), a deformable
template model is introduced, describing a random
planar object as a stochastic deformation of a known
star-shaped template, see also the closely related
models described in Hobolth and Jensen (2000), Kent
et al. (2000) and Hobolth et al. (2002). We use this
approach here and describe the object at time t + 1 as
a stochastic transformation of the object at time t, such
that

Rt+1(θ) = Rt(θ)+Zt(θ) , θ ∈ [0,2π) . (2)

Here, {Zt} is a series of independent stationary cyclic
Gaussian processes with Zt short for {Zt(θ) : θ ∈
[0,2π)}. The process Zt is stationary if the distribution
of Zt(θ +θ0)−Zt(θ) does not depend on θ , while the
process is said to be cyclic if Zt(θ + 2πk) = Zt(θ),
for all k ∈ Z. The initial value R0 of the radius vector
function is assumed to be known.

Note that Yt is used as a template in the stochastic
transformation, resulting in Yt+1. The increment
process Zt can be written as

Zt(θ) = µt +Ut(θ) , θ ∈ [0,2π) ,

where µt ∈ R represents a constant radial addition at
time t and Ut a stochastic deformation with mean zero
of the expanded object with radius vector function
Rt + µt , cf. Fig. 1. (The object with radius vector
function Rt + µt is in geometric tomography known as
the radial sum of Yt and a circular disc of radius µt , cf.
Gardner (1995).)

Fig. 1. The object Yt+1 is a stochastic transformation
of the object Yt (grey), using a constant radial addition
(shown stippled) followed by a deformation.

Because of the independence of the Zts, the model
is Markov in time, in the sense that it uses information
about the object at the immediate past to describe
the object at the present time. More specifically,
under Eq. 2 the conditional distribution of Rt+1 given
Rt , . . . ,R0 depends only on Rt . The model suggested in
Cressie and Hulting (1992) possesses a similar Markov
property.

If Yt is non-circular, it can be natural to extend
the model (Eq. 2), using an increasing time change
function Γt : [0,2π] → [0,1] such that Zt ◦ Γ−1

t is a
stationary stochastic process on [0,1]. If the boundary
length of Yt is finite, one possibility is to choose

Γt(θ) =
Lt(θ)

Lt(2π)
, (3)

where Lt(θ) is the distance travelled along the
boundary of Yt between the points indexed by 0 and
θ . Note, however, that if R0 ≡ 0, then the boundary
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of Yt is expected to be approximately circular, since
E(Zt(θ)) = µt does not depend on θ ∈ [0,2π).

The following result is important for the
construction of parametric models in the framework
of model (Eq. 2). The result also implies a simple
simulation procedure for a stationary cyclic Gaussian
process on [0,2π).

Proposition 2.1 The process Zt is a stationary cyclic
Gaussian process on [0,2π) with mean µt ∈ R if and
only if there exist λt,k ≥ 0,k = 0,1,2, . . . , such that
∑∞

k=0 λt,k < ∞ and

Zt(θ) = At,0 +
∞

∑
k=1

[At,k cos(kθ)+Bt,k sin(kθ)] ,

θ ∈ [0,2π), where At,0, At,k, Bt,k, k = 1,2, . . . , are
all independent, At,0 ∼ N(µt ,λt,0) and At,k ∼ Bt,k ∼
N(0,λt,k).

The proof of Proposition 2.1 is not complicated. Given
a stationary cyclic Gaussian process Zt on [0,2π) with
mean µt , consider the stochastic Fourier expansion of
Zt . Then, simple calculations involving the stochastic
Fourier coefficients give the result. The other assertion
is trivial.

Note that in Proposition 2.1, the λt,ks are allowed
to be zero, meaning that At,k ≡ 0, almost surely.

The Fourier coefficients

At,0 =
1

2π

∫ 2π

0
Zt(θ)dθ ,

At,k =
1
π

∫ 2π

0
Zt(θ)cos(kθ)dθ , (4)

Bt,k =
1
π

∫ 2π

0
Zt(θ)sin(θk)dθ , (5)

k = 1,2, . . ., have interesting geometric interpretations
relating to the growth process. It is clear that the
coefficient At,0 determines the overall growth from
Yt to Yt+1. The Fourier coefficients At,1 and Bt,1
play also a special role. Numerically large values
of the coefficients will imply an asymmetric growth
from Yt to Yt+1. In order to interpret geometrically
the remaining Fourier coefficients At,k and Bt,k, k =
2,3, . . ., let us consider an increment process for which
all Fourier coefficients except those of order 0 and k
are zero,

Zt(θ) = At,0 +At,k cos(kθ)+Bt,k sin(kθ) ,

θ ∈ [0,2π). Such a process exhibits k-fold symmetry,
i.e.,

Zt

(

θ +
2πi
k

)

, i = 0,1, . . . ,k−1 ,

θ ∈ [0,2π), does not depend on i. Therefore, At,k and
Bt,k affect how the growth appears globally for small k
and locally for large k. The variances λt,k control the
magnitude of the spread of the Fourier coefficients.

Since the zero- and first-order Fourier coefficients
play a special role in relation to the growth process
and may in applications well depend on explanatory
variables, we shall desist from specific modelling of
these coefficients. In the following we will assume that
At,0 = µt is deterministic. Furthermore, we suppose
that At,1 = Bt,1 = 0 or, equivalently, we concentrate on
modelling

Zt(θ)−At,1 cosθ −Bt,1 sinθ , θ ∈ [0,2π) .

A special case of the Gaussian radial growth
model is the p-order growth model. This model is
inspired by the p-order model described in Hobolth
et al. (2003), where the stochastic deformation process
is a stationary Gaussian process with an attractive
covariance structure, described below. The model is
called p-order because it can be derived as a limit of
discrete p-order Markov models defined on a finite,
systematic set of angles θ , cf. Hobolth et al. (2002).

Definition 2.2 A stochastic process Y = {Y (θ) : θ ∈
[0,2π)} follows a p-order model with p > 1

2 , if there
exist µ ∈ R, α,β > 0, such that

Y (θ) = µ +
∞

∑
k=2

[Ak cos(kθ)+Bk sin(kθ)] ,

θ ∈ [0,2π), where Ak ∼ Bk ∼ N(0,λk) are all
independent and

λ−1
k = α +β (k2p −22p) , k = 2,3, . . . .

If Y follows a p−order model, we will write Y ∼
Gp(µ,α,β ). Clearly, µ is the mean of Y . Furthermore,
the covariance function of Y is of the form

σ(θ) = Cov(Y (0),Y (θ)) =
∞

∑
k=2

λk cos(kθ)

=
∞

∑
k=2

cos(kθ)

α +β (k2p −22p)
,

θ ∈ [0,2π). The parameters α and β determine the
variance of lower order and higher order Fourier
coefficients, respectively. Furthermore, p determines
the smoothness of the curve Y . In fact, the curve Y is
k− 1 times continuously differentiable where k is the
unique integer satisfying p ∈ (k − 1

2 ,k + 1
2 ] (Hobolth

et al., 2003). Note that the first Fourier coefficients of
Y are set to zero.

We can now give the definition of the p−order
growth model.
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Definition 2.3 The series Z = {Zt} follows a p−order
growth model if the Zts are independent and Zt ∼
Gp(µt ,αt ,βt) for all t.

The parameters αt and βt determine, respectively,
the global and local appearance of growth from Yt
to Yt+1. As before, p determines the smoothness of
the curves Zt . The overall growth pattern is specified
by the µts. Their actual form depends on the specific
application. Tumour growth has often been described
by a Gompertz growth pattern

κt = κ0 exp
[η

γ
(1− exp(−γt))

]

,

where κt is the average radius at time t and η and γ are
positive parameters determining the growth, implying
that

µt = κt

(

exp
[η

γ
exp(−γt)(1− exp(−γ))

]

−1
)

.

For more details, see e.g., Steel (1977).

Note that the p-order growth model allows for
negative values of Rt(θ). However, the parameters µt ,
αt and βt will be chosen such that this will practically
never occur.

Fig. 2 shows simulations of the increment process
Zt from time t to t + 1 for different values of αt and
βt under the second-order growth model, i.e., p = 2.
A large value of αt gives increments that are fairly
constant while a small value of αt provides a more
irregular growth on a global scale. The parameter βt
controls the local appearance of the increment process,
the smaller βt the more pronounced irregularity on a
local scale.

Fig. 2. Simulated objects under the second-order
growth model. The object at time t is fixed while the
object at time t + 1 is simulated under the indicated
values of αt and βt .

DISTRIBUTIONAL RESULTS

In this section, we study the induced distribution of
object size and shape under the p-order growth model.
The limiting shape may be circular but, as we shall see,
there is a whole range of possibilities.

Unless otherwise explicitly stated, we assume that
R0 ≡ 0. We then have for θ ∈ [0,2π)

RT (θ) = ρT +
∞

∑
k=2

[AT
k cos(kθ)+BT

k sin(kθ)] , (6)

where AT
k ∼ BT

k ∼ N(0,λ T
k ) are all independent,

ρT =
T−1

∑
t=0

µt , (7)

and

λ T
k =

T−1

∑
t=0

λt,k . (8)

The shape of the object at time T will be
represented by its normalized radius vector function

RT

E(RT (0))
=

RT

ρT
,

which can be regarded as a continuous analogue of
the standardized vertex transformation vector in shape
theory, cf. Hobolth et al. (2002).

Under the assumption of independent increments,
the distribution of the area of the object at time
T , A(YT ), is known, provided that the radius-vector
function RT is positive.

Proposition 3.1 Assume that the radius vector
function RT of the object YT is positive and that it
satisfies Eqs. 6–8. Then,

A(YT ) ∼ πρ2
T +π

∞

∑
k=2

λ T
k Vk ,

where Vk, k = 2,3, . . . , are mutually independent
exponentially distributed random variables with
mean 1.
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Proof. The area of the object at time T is

A(YT ) =
1
2

∫ 2π

0
RT (θ)2dθ .

Note that since
∞

∑
k=2

(AT
k )2 +(BT

k )2 < ∞ , almost surely,

we have that A(YT ) < ∞, almost surely. Using Eq. 6
and Parseval’s equation, we get that

A(YT ) = πρ2
T +

π
2

∞

∑
k=2

[(AT
k )2 +(BT

k )2]

= πρ2
T +π

∞

∑
k=2

λ T
k Vk ,

where Vk, k = 2,3, . . . , are mutually independent
exponentially distributed random variables with
mean 1. ¤

The distribution of the area of YT is thus a sum of
independent Gamma distributed random variables. The
saddlepoint approximation of such a distribution is
easily derived, cf. Jensen (1992).

It does not seem possible to get a correspondingly
simple result for the distribution of the boundary length
of YT . This seems apparent from the expression for the
boundary length of YT

∫ 2π

0

√

R′
T (θ)2 +RT (θ)2dθ ,

which is valid in the case where RT is differentiable.

As we shall see now, the class of p-order growth
models is quite rich in the sense that the shape of the
limiting object, represented by its normalized radius
vector function, may be distributed according to any p-
order model Gp(1,α,β ) with mean 1. For large values
of α and β , the shape is close to circular.

Let us consider the p-order growth model with
proportional parameters, i.e., αt = γβt . Equivalently,
we assume that there exists a sequence {τt} of positive
real numbers such that

Zt = µt + τtXt (9)

and {Xt} are independent and identically Gp(0,α,β )
distributed. If σ 2 = Var(Xt(θ)), then Zt(θ) ∼
N(µt ,τ2

t σ 2) under Eq. 9.

Examples of choices of τt are τt = 1,
√µt or ρt+1,

cf. Eq. 7. If τt = 1, the variance of the increment Zt(θ)
is constant in time. If τt =

√µt , we obviously need

that µt ≥ 0 for all t and we have that Var(Zt(θ)) ∝
E(Zt(θ)) such that the variance of the increment Zt(θ)
is proportional to the average increase in the radius at
time t. If τt = ρt+1, then the distribution of the shape
of the object defined by the radius vector function

{ρt +Zt(θ) : θ ∈ [0,2π)}

is constant in time, i.e., the distribution of

ρt +Zt(θ)

E(ρt +Zt(θ))

does not depend on t.

In the proposition below, we show that under Eq. 9
the shape of Yt is distributed according to a p-order
model.

Proposition 3.2 Suppose that Z = {Zt} satisfies
Eq. 9 where Xt , t = 0,1,2, . . . , are independent
and identically Gp(0,α,β )−distributed. Then, the
normalized radius vector function of YT is distributed
as

RT

E(RT (0))
∼ Gp(1, ᾱT , β̄T )

where

ᾱT = αρ2
T /

T−1

∑
t=0

τ2
t , β̄T = βρ2

T /
T−1

∑
t=0

τ2
t .

Proof. It suffices to show that

Cov(RT (0),RT (θ))

[E(RT (0))]2
=

∞

∑
k=2

cos(kθ)

ᾱT + β̄T (k2p −22p)
.

Using Eq. 6 and Eq. 9, we find

Cov(RT (0),RT (θ))

[E(RT (0)]2]

=
1

ρ2
T

∞

∑
k=2

λ T
k cos(kθ)

=
1

ρ2
T

∞

∑
k=2

T−1

∑
t=0

τ2
t

cos(kθ)

α +β (k2p −22p)

=
∞

∑
k=2

cos(kθ)

ᾱT + β̄T (k2p −22p)
.

¤

Below, we study examples of different limiting
shapes under the model (Eq. 9).
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Example 3.3 (Constant increment growth) Let the
situation be as in Proposition 3.2 with µt = µ and
τt = 1 in Eq. 9. The increment processes Zt are thereby
independent and identically distributed. It follows
from Proposition 3.2 that

RT

ERT (0)
∼ Gp(1, ᾱT , β̄T ) ,

where ᾱT = T µ2α and β̄T = T µ2β . Since ᾱT → ∞
and β̄T → ∞ for T → ∞, the boundary of the object
becomes more circular and smooth as T increases. An
example is shown in Fig. 4. The limiting object has
circular shape.

Example 3.4 (Wiener growth) Let the situation be
as in Proposition 3.2 with µt arbitrary and τt =

√µt
in Eq. 9. This special case is called a Wiener growth
model since Var(RT ) ∝ E(RT ). If µt = µ such that
ρT = T µ , the process is called a Wiener process with
linear drift. If ρT = δT ψ for some δ ,ψ > 0, then
RT −ρT satisfies

Rat −ρat ∼ aH(Rt −ρt), a ≥ 0 , (10)

with parameter H = ψ
2 , which is a discrete analogue of

self-similarity, cf. Sato (1999). Notice that

RT

ERT (0)
∼ Gp(1,αρT ,βρT ) .

If ρT → ρ < ∞, the limiting object can have any
stochastic shape determined by Gp(1,αρ,βρ).

Example 3.5 Let the situation be as in Proposition 3.2
with µt arbitrary and τt = ρt+1 in Eq. 9. The
normalized radius vector function is distributed as

RT

ERT (0)
∼ Gp

(

1,α
ρ2

T

∑T
t=1 ρ2

t
,β

ρ2
T

∑T
t=1 ρ2

t

)

.

If ρ2
T /∑T

t=1 ρ2
t → 0 as T →∞, the objects become more

irregular both globally and locally as T increases. An
example is shown in Fig. 4.

AN APPLICATION

For illustrative purposes, we consider a data set
consisting of human breast cancer cell islands, which
have been observed in vitro in a nutrient medium on
a flat dish. This data set has earlier been analysed in
Cressie and Hulting (1992). Three profiles of cancer
cell islands are available. The data set is presented in
the upper left corner of Fig. 5.

Fig. 3. Top: Simulated growth pattern under the
constant increment second-order growth model.
Bottom: The corresponding normalized profiles,
representing the shape of the object.

Fig. 4. Top: Simulated growth pattern under the model
described in Example 3.5. Bottom: The corresponding
normalized profiles, representing the shape of the
object.
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Fig. 5. The tumour growth data (upper left corner) and simulations under the second-order growth model with
µt , αt and βt replaced by the maximum likelihood estimates.

The centre of mass of Y0 is used as reference point.
The data consist of increments

zt

(2πi
nt

)

, i = 0,1, . . . ,nt −1 ,

in nt directions, equidistant in angle, t = 0,1. For
convenience, zt is normalized with the average radius
of Y0. Only digitized images are available. As nt , we
have used approximately 25% of the number of pixels
on the boundary of the digitized image of Yt , t = 0,1.

Under the p-order growth model, the mean value
parameters µt can be estimated by the average
observed increment at time t. The variance parameters
can be estimated using the likelihood function

L(α0,β0,α1,β1) = ∏
t=0,1

Lt(αt ,βt) ,

where Lt(αt ,βt) is the likelihood function based on the
Fourier coefficients At,k and Bt,k of Zt of order k ≤ Kt ,
say. Since At,k ∼ Bt,k ∼ N(0,λt,k) are all independent
and

λ−1
t,k = αt +βt(k2p −22p), k = 2,3, . . . ,

the likelihood becomes

Lt(αt ,βt) =
Kt

∏
k=2

[αt +βt(k2p −22p)]

× exp(−ct,k[αt +βt(k2p −22p)]) , (11)

where ct,k = [a2
t,k + b2

t,k]/2 are the observed phase
amplitudes. In applications, at,k and bt,k are replaced
by discrete versions of the integrals in Eq. 4.

The choice of the cut-off value Kt is very
important. Clearly, Kt must not be too large in order

to avoid that the estimates are influenced by the
digitization effects. On the other hand, if the cut-
off value Kt is too small information about the
growth pattern is lost. The choice of Kt should be
an intermediate value for which the estimate of the
local parameter βt is stable. Whether a specific choice
of Kt is appropriate can also be judged from visual
inspection of simulated growth patterns under the
estimated model.

For the two increments z0 and z1, we used
(n0,K0) = (60,25) and (n1,K1) = (120,30),
respectively. The maximum likelihood estimates under
the second-order growth model are

µ̂0 = 1.04, log(α̂0) = 5.29, log(β̂0) = −1.88 ,

µ̂1 = 2.53, log(α̂1) = 3.18, log(β̂1) = −3.54 .

The estimated regression curves

λ̂t,k =
1

α̂t + β̂t(k4 −24)
, t = 0,1 k = 2,3, . . .

are shown in Fig. 6, together with 95% confidence
limits for the logarithm of the phase amplitudes. The
model fits the data well which can also be seen from
the fractile diagrams (QQ plots) for the normalized
Fourier coefficients, also shown in Fig. 6.

Simulations under the second-order growth model
with µt , αt and βt replaced by the maximum likelihood
estimates are shown in Fig. 5.

Since the data set only contains two increments,
it is not meaningful to try to evaluate the Markov
assumption. Note also that the Zts are assumed
independent but not necessarily identically distributed.
If

αt = γβt , (12)
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Fig. 6. The two upper figures show the observed phase amplitudes (full-drawn lines) together with the estimated
regression curves (stippled) and 95% confidence limits, t = 0,1. The two lower figures show fractile diagrams

(QQ plots) for the normalized Fourier coefficients at,k/
√

λ̂t,k, bt,k/
√

λ̂t,k together with 95% confidence limits,
t = 0,1.

we have that
√

βt(Zt −µt) ∼ Gp(0,γ,1)

are independent and identically distributed. Thus,
under the assumption (Eq. 12) of proportionality and
with sufficient number T of time points, we can
examine the independence of

√

βt(Zt(θ)−µt) , t = 0,1, . . . ,T −1 ,

for selected values of θ ∈ [0,2π), using a runs test, for
instance.

A TIME SERIES EXTENSION

Let us suppose that

Zt = µt + τtXt ,

where X = {Xt} is a stationary time series of
cyclic Gaussian processes satisfying the ARMA model
equation

Xt −φ1Xt−1 −·· ·−φrXt−r

= Wt −ψ1Wt−1 −·· ·−ψsWt−s . (13)

We assume that W = {Wt} is a sequence of i.i.d.
stationary cyclic Gaussian processes on [0,2π) with

Wt ∼ Gp(0,α,β ) .

If φi = 0, i = 1, . . . ,r, and ψ j = 0, j = 1, . . . ,s, Z
follows the p-order growth model with independent
increments, treated in the previous sections.

Under the general ARMA model (Eq. 13), the
Fourier coefficients of X and W of a given order follow
a one-dimensional ARMA model. Furthermore, for
fixed θ ∈ [0,2π), Xt(θ) follows a one-dimensional
ARMA model. Aspects of this time series approach
has earlier been discussed in Alt (1999). An early
example concerning year ring widths is discussed in
Kronborg (1981).

Note that in the special case of a MA model (φ1 =
· · · = φr = 0), the marginal distribution of Zt belongs
to the class of p-order models

Zt ∼ Gp(µt ,αt ,βt) ,
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where

αt =
α

τ2
t [1+ψ2

1 + · · ·+ψ2
s ]

,

βt =
β

τ2
t [1+ψ2

1 + · · ·+ψ2
s ]

.

Note also that in this case Zt and Zt ′ are independent if
|t − t ′| > s.

EXTENSION TO THREE
DIMENSIONS

The p-order growth model for planar objects can
easily be extended to three dimensions. Consider a
spatial bounded and topologically closed object Yt ⊂
R

3 which is star-shaped for all t with respect to z ∈R
3.

Clearly the boundary of the object can be determined
by

{z+Rt(θ ,ϕ) : θ ∈ [0,2π), ϕ ∈ [0,π]} ,

where Rt(θ ,ϕ) is the distance from z to the boundary
of Yt in direction

ω(θ ,ϕ) = (sinϕ cosθ ,sinϕ sinθ ,cosϕ) .

In the same way as in the planar case we let the object
Yt+1 be a stochastic transformation of the object Yt ,
such that

Rt+1(θ ,ϕ) = Rt(θ ,ϕ)+Zt(θ ,ϕ) ,

θ ∈ [0,2π), ϕ ∈ [0,π], where {Zt} is a time series
of Gaussian procesess on [0,2π)× [0,π]. Writing the
stochastic process Zt in terms of its Fourier-Legendre
series expansion we get, cf. Hobolth (2003),

Zt(θ ,ϕ) =
∞

∑
n=0

m=n

∑
m=−n

At,n,mφn,m(θ ,ϕ) ,

where φn,m are the spherical harmonics and At,n,m are
random coefficients. Using a similar reasoning as in
Hobolth (2003) it can be seen that At,0,0 determines the
overall growth from Yt to Yt+1. The coefficients At,1,m,
m =−1,0,1, control the asymmetry of growth, and the
remaining coefficients At,n,m for n ≥ 2, m = −n, . . . ,n,
affect how the growth appears globally for small n
and locally for large n. A p-order growth model can
be defined by assuming that At,0,0 = µt , At,1,m = 0 for
m = −1,0,1 and

At,n,m ∼ N(0,λt,n) ,

n = 2,3, . . . , m = −n, . . . ,n, independent, where

λ−1
t,n = αt +βt(n2p −22p) .

As in the planar case, the increment processes may
be chosen to be normal after a transformation. A
simulation from such a model, where {Zt} is a series
of log-Gaussian processes, is shown in Fig. 6.

Fig. 7. Simulation from a 3D log-Gaussian radial
growth model.

DISCUSSION

The p−order growth model has mainly been
suggested as a general tool for analyzing observed
radial growth patterns. The model may, however, also
be of interest as a building block in other modelling
situations, for instance in models for tessellations
where cells are created by radial growth from each
point of a point process.

The p−order growth model can be extended
in various ways. It is obviously easy to modify
the model such that the increments are Gaussian
after a transformation. An example is log-Gaussian
increments. If the number of increments observed is
not too small it is also of interest to try to model the
dependency in the series Z = {Zt}. We have discussed
a time series approach. Another alternative is to look
at Lévy based models,

Zt(θ) =
∫

At(θ)
ht(a;θ)Z(da) ,

At(θ) ∈ B, where B is the Borel field of [0,2π)×R

and Z is a Lévy basis on [0,2π)×R. A detailed study
of the Lévy based growth models is ongoing research
in our group, cf. Schmiegel et al. (in preparation).
These models can also be formulated in continuous
time.

The likelihood used in the application is correct
if the increments are independent. If the marginal
distributions of the Zts belong to the class of p-order
models but the Zts are dependent, the likelihood may
still be used as a pseudo-likelihood.

In relation to tumour growth in particular, it will
also be of interest in the future to try to embed specific
mathematical models in a stochastic framework. A
starting point could here be a study of dynamic
point process models with a specified time-dependent
intensity function.
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