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ABSTRACT

We consider a data set of locations where people in Central Bohemia have been infected by tick-borne
encephalitis (TBE), and where population census data and covariates concerning vegetation and altitude are
available. The aims are to estimate the risk map of the disease and to study the dependence of the risk on the
covariates. Instead of using the common area level approaches we base the analysis on a Bayesian approach
for a log Gaussian Cox point process with covariates. Posterior characteristics for a discretized version of
the log Gaussian Cox process are computed using Markov chain Monte Carlo methods. A particular problem
which is thoroughly discussed is to determine a model for the background population density. The risk map
shows a clear dependency with the population intensity models and the basic model which is adopted for the
population intensity determines what covariates influence the risk of TBE. Model validation is based on the
posterior predictive distribution of various summary statistics.

Keywords: background intensity, Bayesian estimation, L-function, log Gaussian Cox spatial point process.

INTRODUCTION

The aims of statistical disease mapping are
to characterize the spatial variation of cases of a
disease and to investigate connections with possible
covariates. In particular it is of interest to identify areas
with an elevated disease risk. The data may be a point
pattern showing e.g., home residences of diseased
people or locations where people have acquired an
infection. Often, the data are aggregated so that only
counts of diseased people within subregions of the
study region are available. Indeed, most statistical
analyses reported in the literature are based on a
so-called area level approach, where a model for
aggregated data is used after an initial aggregation.
However, if a spatial point pattern is available, it is
more natural to use a spatial point process model.
Recent surveys of both the area level approach
and point process modelling in disease mapping are
given by Diggle (2000), Richardson (2003), and the
accompanying discussion by Knorr-Held (2003) and
Møller (2003). For a discussion of statistical analysis
of disease mapping in general, see Lawson et al.
(2001), Lawson (2001), and the references therein.

In this paper, we consider a point process
approach to the analysis of a data set of positions of
locations where people in Central Bohemia have been
infected by tick-borne encephalitis (TBE). Specifically
we consider a log Gaussian Cox point process

(LGCP), where covariates concerning occurrence of
different forest types, altitude, and the population
density are used in the modelling of the spatially
varying intensity of TBE infections. LGCPs were
independently introduced in astronomy by Coles and
Jones (1991) and in statistics by Møller et al. (1998);
see also Møller and Waagepetersen (2002). To the best
of our knowledge we here for the first time consider a
Bayesian approach to inference for LGCPs with non-
aggregated data.

A particular problem is the determination of the
’background intensity’ of humans being at risk, cf.
Diggle (2000) and Lawson (2001). Raw geographical
population data connects population numbers to home
locations, but typically people get infected during
visits to more or less distant surroundings of their
homes. This is an additional complication compared
with spatial analysis of chronic diseases like cancer,
where the objective may be to study association
between disease incidence and risk factors at the
home locations. We consider various approaches to
smoothing of population data, where the smoothing to
some extent is connected to the movement of people
around their homes.

The data and previous analyses in Zeman (1997)
and other papers are described in more detail in Section
Data and background. Section Bayesian analysis
using LGCP considers estimation of the background
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intensity, modelling of the risk function in terms of
a LGCP depending on covariates, and our Bayesian
approach to inference using Markov chain Monte
Carlo methods. The results for different models of the
background intensity are discussed in the last Section.

DATA AND BACKGROUND

DESCRIPTION OF DATA AND PROBLEM
SETTING
TBE is an infectious debilitating illness which is

transmitted by parasitic ticks and which occasionally
afflicts humans. Epidemiologists and medical
practitioners making decisions on prophylactic
measures deal with the problem of estimating the
risk that a human gets infected by TBE at a specific
location, cf. Zeman (1997). Since field studies of
potential animal hosts are expensive, usually the data
for statistical analysis consist of case locations and
a population map. Moreover, explanatory variables
of geographical nature which may influence the risk
of infection are often available from geographical
information systems.

Fig. 1. Locations of infection of 446 cases of tick-borne
encephalitis in Central Bohemia. For each distinct
location the number of cases associated with the
location is shown (a plus corresponds to one case).

a) b)

c) d)

Fig. 2. a) Locations of small forests (10-50 ha) (independent of the forest type). b) Locations of medium forests
(50-150 ha). c) Three types of forest. Conifer: black; mixed: dark grey; foliate: light grey. d) Map of altitudes
(in metres).

160



Image Anal Stereol 2005;24:159-168

Fig. 1 shows the point pattern of locations of 446
reported cases of TBE in Central Bohemia during
1971-93. The empty space in the middle of the
figure corresponds to the capital Prague, and the total
area of Central Bohemia is about 11860 km2. This
data set was first studied in Zeman (1997). Only
255 distinct points are visible due to ties in the
data caused by positional error where several cases
in an area have been associated with a common
representative point. The distinct points in Fig. 1 are
marked with the number of cases associated with each
point. Information concerning the magnitude of the
positional error is not available.

Different covariates are shown in Fig. 2a–d. Fig. 2a
and Fig. 2b shows the locations of forests of areas
between 10-50 and 50-150 ha, respectively. This
covariate information is possibly relevant since ticks
can be transmitted by deers and other animals living
in small forest areas. Fig. 2c shows the subareas of
three different forest types (conifer, foliate, and mixed
forest). Fig. 2b and Fig. 2c are obtained from satellite
images of LANDSAT-5 MSS with resolution power of
80×80 m2. Finally, Fig. 2d shows a map of altitudes
obtained from the Institute of Military Topography,
Dobruska. Some other candidates, e.g. a covariate
indicating the vicinity of a river, were not included in
the analysis.

Fig. 3. Population at 3582 administrative units in
Central Bohemia represented by discs (see the text
in the subsection Description of data and problem
setting).

Finally, population data from the National Census
Bureau, Prague, are available. For the Central
Bohemia they consist of the number of inhabitants
in 3582 administrative units. In Fig. 3 each unit is
represented by a disc with center at a census point
and radius given by 0.02

√
#inhabitants in the unit km

(chosen to get good resolution outside cities). Clusters

of discs correspond to larger towns and cities. The total
number of inhabitants is 1,112,717 and the largest city
has about 74,000 inhabitants.

PREVIOUS DATA ANALYSIS

Zeman (1997) considers both the point pattern
of TBE cases and another point pattern of cases for
a related disease, Lyme borreliosis (LB). The LB
data consist of paired data: 866 reported locations
of infection during 1987-91 in Central Bohemia and
the home location of each infected person. Zeman
(1997) uses the distances between cases of infection
and home location to obtain a kernel for smoothing the
population map. Apart from this smoothed population
map no other covariates are included in Zeman’s
analysis where the intensity functions of TBE and
LB cases (each considered as a realization of a point
process) are estimated by kernel methods. For each
disease, Zeman (1997) obtains a risk map by the ratio
of the estimated intensity function and the smoothed
population map (Bithell, 1990).

A similar ratio estimator of the risk map is
suggested by Krejčı́ř (2000) where again both the
TBE and the LB data are analyzed, using only the
population data as an explanatory variable. He
assumes that each point pattern of cases is a realization
of an inhomogeneous Poisson point process with
an intensity function constructed from beta splines,
where the coefficients are estimated by a maximum
likelihood method.

Incorporating the other explanatory variables in the
model has so far only been studied in connection to two
area level approaches for the TBE data. Mašata (1999)
divides Central Bohemia into 41 irregular subregions,
and he includes three covariates (the area in percentage
of conifer, mixed, and foliate forests in each subregion)
in a Bayesian Gaussian-Gaussian model (Stern and
Cressie, 1999). Jiruše et al. (2004) use a subdivison of
141 squares of 10×10 km2, and include the same types
of covariates as Mašata (1999) together with the mean
altitude and the proportion covered by small forests in
each square. They use first a generalized linear model
and the Akaike Information Criterion to optimize the
set of parameters, and second an empirical Bayesian
approach to estimate the risk. Jiruše et al. (2004)
compare the credibility intervals for risk estimators
obtained by their method with that of Mašata (1999),
and conclude that rather similar results are obtained in
subregions with a large risk for infection, although it
is only the model in Mašata (1999) which incorporates
spatial dependence.

The results of the above-mentioned papers are
further discussed in final Section.
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BAYESIAN ANALYSIS USING LOG
GAUSSIAN COX PROCESSES

Let S denote the region of Central Bohemia and
x the locations of observed tick cases. Below we
describe a hierarchical model. At the first level, x
is assumed to be a realization of a Poisson process
X with an intensity function which is a product of a
background intensity and a risk function as described
in the first subsection of this section. Estimation of
the background intensity is discussed in the second
subsection. At the next level a log linear model for
the risk function is proposed in the third subsection,
incorporating the covariate information and a Gaussian
process so that the uncertainty of the estimated
background intensity is taken into account. At the
final stage hyper priors on the unknown parameters
for the covariates and the Gaussian field are imposed,
whereby a posterior is obtained in the last subsection
of this section. For computational reasons certain
approximations of the posterior are required.

Strictly speaking, the multiple points in x can
not occur under the proposed model. However, our
approximate approach only utilizes counts of locations
within certain small cells and this makes the results
less sensitive to the presence of ties in x.

A SIMPLIFIED MODEL

Our modelling of the TBE data is motivated by
the following simplifying considerations, which are
similar to one of the steps in the construction of
a Neyman-Scott process (Neyman and Scott, 1958;
Diggle, 1983).

In the observation period 1971-93 a number m =
1,112,717 of persons are living at home locations
h1, . . . ,hm ∈ S, and the ith person makes a number Ni of
visits to the surroundings of hi, i = 1,2, . . . ,m. The Ni’s
are assumed to be independent and Poisson distributed
with mean λ > 0 independent of i. Given the Ni, the
location of each visit of the ith person is distributed
according to some density ghi , and the locations of
visits of all persons are assumed to be independent.
For a visit to a location s ∈ S, there is associated a
probability π(s) for getting an infection during the
visit. The random set of locations where persons have
been infected is then a Poisson process with intensity
function of the form

Λ(s) = ρ(s)π(s), s ∈ S (1)

where ρ(s) = λ ∑m
i=1 ghi(s) is the background intensity

of humans visiting s.

ESTIMATION OF BACKGROUND
INTENSITY
The background intensity ρ(s) is a crucial

component of the modelling. As it is unknown, we
discuss below how it may be estimated.

For the LB data both locations of infection and
home are available. Under the crude assumption that
the densities ghi are of the form ghi(s) = g(‖s− hi‖)
one may as in Zeman (1997) try to estimate g from the
LB data. Recall that if f denotes the density of ‖Z‖ for
a two-dimensional random variable Z with isotropic
density gh(z) = g(‖z− h‖), then g and f are related
by

g(‖z‖) = f (‖z‖)/(2π‖z‖), z ∈ R
2. (2)

Zeman (1997) fits a power regression to a histogram
for the log distances between home and place of
infection. He then obtains an expression f̃ (h) = ahb

for the density of the distances and uses this as a kernel
for smoothing of the population data. Strictly speaking
f̃ is not a proper density on R+, and apparently Zeman
(1997) is not using the correct transformation Eq. 2 to
obtain a density on R

2.

We try another approach where we fit a non-
parametric kernel density estimate f̂ to the distances
between home and place of infection in the LB data.
The density f̂ is subsequently transformed by Eq. 2
into a density ĝ. The kernel estimate of the background
intensity is finally

ρ̂(s) = λ ∑
j∈U

K jĝ(‖s−u j‖) (3)

where U is the index set of the administrative units, K j
is the number of persons associated with the jth unit,
and u j is the census point of the unit, cf. Fig. 3. Here λ
is for the moment left unspecified as it is absorbed into
another parameter introduced in the next subsection.
Note that we are ignoring the fact that people in the
jth unit live in the vicinity of u j and not exactly at u j.

The kernel estimate and alternative models for the
background intensity are further discussed in the last
subsection of this Section.

PRIOR DISTRIBUTIONS AND
LIKELIHOOD USING A LGCP
We model π in Eq. 1 by a log linear model,

π(s) = exp
(

β Td(s)+Y (s)
)

(4)

where Y (s) is a zero-mean Gaussian process, β =
(β0, . . . ,β6)

T is a regression parameter, and d(s) =
(1,d1(s), . . . ,d6(s))T. Here β0 is an intercept, and
d1(s), . . . ,d6(s) are the 6 covariates associated with
the location s ∈ S, where the index corresponds to the
following:
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1 ∼ forest 10-50 ha,
2 ∼ forest 50-150 ha,
3 ∼ conifer,
4 ∼ mixed forest,
5 ∼ foliate,
6 ∼ altitude.

That means d1(s), . . . ,d5(s) are zero-one variables
corresponding to absence-presence of the attribute at
location s. The role of exp(Y (s)) is partly to model
deviations of ρ(s)/ρ̂(s) from one. Therefore we do
not constrain Eq. 4 to be less than one. Actually, in
the previous section, λ is absorbed in exp(β0) and we
replace the unknown ρ by the estimate Eq. 3 with
λ = 1. Then π(s) is more precisely a relative risk
function, since for s1,s2 ∈ S, π(s1)/π(s2) is the ratio
of risk functions at the locations s1 and s2.

We assume that Y is second-order stationary and
isotropic with exponential covariance function, i.e.,

Cov(Y (s1),Y (s2)) = c(‖s1 − s2‖;σ 2,α) =

σ 2 exp(−‖s1 − s2‖/α) , (5)

where σ 2 > 0 is the variance and α > 0 is
the correlation parameter. A log Gaussian Cox
process (LGCP) is then obtained by assuming that
conditionally on Y = (Y (s))s∈S and θ = (β ,σ ,α), the
TBE cases form a Poisson process X with intensity
function ρ̂(s)π(s).

We view the Gaussian distribution for Y as a prior
and the conditional distribution of X given (Y,θ) as the
likelihood. Furthermore, a hyper prior density p(θ)
for θ is imposed; specific hyper priors are considered
in the next Section. Notice that the likelihood depends
on θ only through β , and it has density

p(x|Y,β ) =

exp
(

|S|−
∫

S
ρ̂(s)exp

(

β Td(s)+Y (s)
)

ds
)

×

× ∏
ξ∈x

ρ̂(ξ )exp
(

β Td(ξ )+Y (ξ )
)

(6)

with respect to the unit rate Poisson process on S where
| · | denotes area.

POSTERIOR AND DISCRETIZATION

The posterior, that is, the conditional distribution
of (Y,θ) given X = x, can be specified as follows.

Suppose that p(θ) is proper and let Eθ denote
expectation conditionally on θ . For n ≥ 1 and pairwise
distinct s1, . . . ,sn ∈ S, let f(s1,...,sn)(·|θ) denote the
conditional density of (Y (s1), . . . ,Y (sn)) given θ . The

posterior density of (Y (s1), . . . ,Y (sn),θ) given X = x
is defined by

f(s1,...,sn)(y1, . . . ,yn,θ |x) ∝
Eθ [p(x|Y,β )|Y (s1) = y1, . . . ,Y (sn) = yn]×

× f(s1,...,sn)(y1, . . . ,yn|θ)p(θ) . (7)

The posterior of the process (Y,θ) given X = x is
then given by the consistent set of finite-dimensional
posterior distributions with densities of the form Eq. 7
for n ≥ 1 and pairwise distinct s1, . . . ,sn ∈ S. If p(θ)
is improper we define the posterior similarly provided
it is well-defined; i.e., provided

∫

Eθ [p(x|Y,β )]p(θ)dθ < ∞ .

The integral in Eq. 6 depends on the continuous
random field Y which cannot be represented on a
computer. In practice the integral is approximated
by a Riemann sum. The region S is appropriately
translated and embedded in a rectangular region, say a
square [0,b]2 of side length b > 0. For an integer M the
square is divided into a lattice of M2 subsquares CM

η ,
η ∈ IM = {1, . . . ,M2}, and in each subsquare indexed
by η the covariate value is constant, represented
by an average value d̃M(η) =

∫

CM
η

d(s)ds/|CM
η |. In

Waagepetersen (2003) the approximate posterior based
on the discretization is described and it is proved that
under certain conditions, expectations computed with
respect to the approximate posterior converges to the
corresponding expectations with respect to Eq. 7 when
M tends to infinity.

RESULTS

In this section we discuss the results for the TBE
data obtained by the Bayesian approach described
above. Details concerning estimation of population
intensity are given in the first subsection together
with specification of priors, and posterior results are
discussed in the second subsection. Model selection
is adressed in the third subsection. The estimated
relative risk map is discussed in the fourth subsection.
Concluding remarks are given in last subsection of this
section.

SPECIFICATION OF POPULATION
INTENSITY MODEL AND PRIOR
DISTRIBUTIONS
For the discretized LGCP, S is rescaled and

embedded in a unit square which is divided into a grid
of square cells CM

η , η ∈ IM where M = 65. Thereby
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Central Bohemia is covered by 2166 cells, and S
occupies about 51% of the unit square. Other values
M = 17 and M = 33 considered yielded too coarse
discretizations while M = 129 was computationally
too demanding.

The following models of the population intensity
are considered, setting λ = 1.

– Model W (constant ρ): ρ̂const(s) = ∑ j∈U K j/|S| is
constant.

– Model P (kernel based on paired data): ρ̂pair(s) =
∑ j∈U K jĝ(‖s− u j‖) is estimated as in Eq. 3 using
the paired LB data.

– Models B,D, and E (Gaussian kernel): ρ̂τ(s) =
∑ j∈U K jg(‖s− u j‖;τ) where g(;τ) : R+ → R+ is
given by g(h;τ) = φ(s;τ) for s ∈ R

2 with ‖s‖ = h
and where φ is the density for a two-dimensional
radially symmetric Gaussian distribution with zero
mean and standard deviation τ . Model B: τ =
0.7km. D: τ = 2.5km. E: τ = 5km.

For the corresponding LGCPs, model W is equivalent
to the limiting case τ →∞ for a Gaussian kernel. Fig. 4
shows a selection of the different kernels g(·). Note
that the tail for P falls between the tails of D and E.

For all the population intensity models we use
independent hyper priors for β , σ , and α given by

p1(β ) ∝ 1, β ∈ R
7,

p2(σ) ∝ exp(−10−6/σ)/σ , σ > 0,

p3(α) ∝ 1/α, −6.91 < logα < −1.10.

The improper prior p1 is completely flat and the
improper p2 yields an essentially flat prior for logσ .
The limits for the log uniform prior p3 are chosen
subjectively in order to accomodate a reasonable range
of strengths of correlation. By similar arguments as in
the proof of Proposition 1 in Christensen et al. (2001),
a proper posterior is obtained for the discretized LGCP.

POSTERIOR RESULTS AND
COMPARISON OF MODELS

The posterior means and posterior probabilities
reported in this section are computed using a Markov
chain Monte Carlo (MCMC) algorithm discussed in
Waagepetersen (2003). Posterior means for βi and
for the different models are shown in Table 1. The
numbers in parentheses are the probabilities pi =
P(βi > 0|x). Under model B, p4 and p5 indicate
that the presence of mixed forest (β4) or foliate forest
(β5) increases the risk of infection; in Jiruše et al.
(2004) the presence of mixed forest is concluded to
be a significant covariate. For all the population
intensity models there is evidence that the presence of
coniferous forest decreases the risk of infection and,
except for B, that a high altitude increases the risk
of infection. The posterior means are rather sensitive
to the choice of population intensity. The qualitative
results based on the posterior probabilities pi are on the
other hand rather similar for all population intensity
models except model B.

The posterior means and standard deviations for
σ and logα are rather comparable for the different
models. The posterior means for σ ranges between
2.0 (model W) and 2.4 (B), and the standard deviation
between 0.1 (W) and 0.2 (model D). The posterior
means for logα are between -3.8 (B) and -3.3 (D),
while the standard deviations take the value 0.2. The
posterior mean of the empirical mean of Y is close
to zero for all models, and the posterior mean of its
empirical standard deviation is a bit larger than 2 and
close to the posterior mean of σ for all models. Notice
that Y is playing an important role in the model since
the posterior for σ is concentrated on an interval far
from zero.

Fig. 4. Kernels for models P, B, D, and E.
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β0 β1 β2 β3 β4 β5 β6
W -10.1 (.0) -1.2 (.3) -.5 (.4) -4.5 (.0) .1 (.6) .2 (.6) 1.5 (1.0)
P -9.7 (.0) -1.0 (.4) -.1 (.5) -3.3 (.0) .2 (.6) .4 (.7) 1.0 (1.0)
B -9.8 (.0) -1.6 (.3) -.0 (.5) -1.8 (.1) 2.2 (1.0) 2.2 (1.0) -0.1 (.5)
D -9.6 (.0) -2.1 (.2) -.2 (.5) -3.4 (.0) -.2 (.4) .3 (.6) 1.0 (1.0)
E -9.8 (.0) -1.6 (.3) -.4 (.4) -4.0 (.0) -.3 (.3) .0 (.5) 1.3 (1.0)

Table 1. Posterior means for βi and pi = P(βi > 0 |x) (in parentheses), i = 0, . . . ,6, under models W, P, B, D,
and E.

For the exponential correlation function with logα =
−3.8, the correlation is bigger than 0.01 for distances
less than 15 km on the physical scale. Finally, let

ΛM(s) = ρ̂(η)exp
(

β Td̃M(η)+Y (η)
)

, s ∈CM
η , (8)

denote the intensity function of the discretized LGCP.
The posterior mean

E[
∫

S
ΛM(s)ds |x]

of the intensity function integrated over Central
Bohemia is between 445.5 and 446.1 (close to the
number of observed cases) for the different models.

MODEL SELECTION
As the posterior results depend much on the

choice of population map, one may naturally ask from
which model conclusions should be drawn. In the
Bayesian framework there exist several tools for model
selection including Bayes factors, posterior predictive
distributions, and, of course, an extended Bayesian
analysis where prior probabilities are also assigned to
the different models in question.

We restrict attention to the consideration of
posterior predictive distributions, basically because
this is supported by our present software. Consider
a summary statistic U(x) computed from the data
x. The idea is to assess the fit of a posterior
model by comparing U(x) with the posterior predictive
distribution; i.e., in our case the distribution of U(X)
where X is a Cox process with random intensity
surface distributed as [ΛM|x], see Eq. 8. Below we
consider two types of summary statistics: the counts
nM(η), η ∈ IM , (number of points of X in subsquare
CM

η ) and a variant of the K-function.

For the counts nM(η), η ∈ IM , we just compare
nM(η) with the posterior predictive mean λ̂η =
|CM

η |E[ΛM(η)|x] and compute discrepancy statistics

χ2
1 = ∑

η∈IM∩S

(nM(η)− λ̂η)2

and
χ2

2 = ∑
η∈IM∩S

(nM(η)− λ̂η)2/λ̂η .

The values of these χ2-statistics can be used to rank
the different models according to their predictive
performance. Note that χ2

2 is more tolerant towards
deviations between nM(η) and the posterior predictive
mean λ̂η when λ̂η is large. The values of χ2

1 under the
different models are B: 120, W: 171, E: 179, P: 184,
D: 192. However, the picture is different for χ2

2 where
we have W: 1054, P: 1096, E: 1112, D: 1133, B: 1344.
This is consistent with the degree of smoothness of the
population maps employed so that the smallest values
of χ2

2 are obtained for the models with the smoothest
population maps. Another approach for using the cell
counts nM(η) would be to consider so-called cross-
validation predictive densities (Gelfand, 1996), but this
is computationally quite demanding in our setting. In
the following, we restrict attention to models B and W.

Our LGCP X can be extended to a so-called
second-order intensity-reweighted stationary point
process on R

2 for which an extension of the K-
function can be defined; for details see Baddeley et al.
(2000). If λ (·) denotes the intensity function for X , the
inhomogeneous K-function denoted Kinhom is given by

Kinhom(t) =
1
|A|E

[

∑
ξ∈X∩A

∑
η∈X :
ξ 6=η

1(‖ξ −η‖ < t)
λ (ξ )λ (η)

]

(9)

for t > 0 and an arbitrary A⊂R
2 with 0 < |A|< ∞, 1(.)

is the indicator function of the event in brackets. It is
common practice to transform Kinhom into Linhom(t) =
√

Kinhom/π which is equal to t for a Poisson process.
From Eq. 9 we obtain an estimate of Kinhom by
omitting the expectation, letting A = S, and replacing
X with the observed data x; here we ignore the edge
effects caused by unobserved tick infections outside
S. Furthermore, the unknown λ (·) is replaced by the
maximum likelihood estimate under the Poisson model
corresponding to model W without Y (or equivalently
with σ 2 = 0).
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Fig. 5. Estimated Linhom(t)− t (solid line) versus t (measured in km) under models B and model W.

Fig. 5 shows the estimated Linhom(t)− t. Notice
that the estimate is bigger than zero which indicates
clustering — this is in accordance with the results
which showed that Y was not a negligible part of
the model. Theoretically, Linhom(0) = 0, while the
behaviour of the estimate for small values of t is an
artifact due to the multiple points in the data. The
dashed curves in Fig. 5 are envelopes, i.e. pointwise
minima and maxima for estimates of Linhom(t) − t
computed from 39 point patterns simulated under
the posterior predictive distributions corresponding to
models B and W, respectively. If the observed data
were generated by one of the posterior predictive
distributions, then for each t > 0, there is 5%
probability that the estimate of Linhom(t)− t from the
data falls outside the envelopes. If we disregard the
small t-values (t < 1 for model B, t < 2 for model W),
then neither of the posterior predictive distributions
seem to be in conflict with the observed data.

RELATIVE RISK MAP

The posterior means of the relative risk function
under models B and W are shown in Fig. 6 on a log
scale. More precisely, in order to compare the results
for models W and B we plot

logE
[

exp(β T d̃M(η)+Y (η)−
max

ξ∈IM∩S
{β T d̃M(ξ )+Y (ξ )})|x] , η ∈ IM ∩S ,

for each model. The relative risk function is less
varying under model W than under model B; for model
B the smallest and the largest value are exp(−11.06),
exp(−0.13), respectively and for the model W the
values exp(−9.18) and exp(−0.05).

Jiruše et al. (2004) compare their results with those
of Mašata (1999) in a plot showing the credibility
intervals of the relative risk function evaluated
separately for each cell (ordered with increasing risk)
in the irregular division of 41 cells used in Mašata

(1999). Fig. 7 shows 2.5% and 97.5% posterior
quantiles for the log relative risk function. The
uncertainty is large; for model B and the cell with
the largest mean posterior relative risk the 2.5% and
97.5% quantiles are −1.32 and 0, respectively; for
model W the corresponding numbers are −0.48 and
−0.01, respectively. The oscillations of the quantiles
are smaller for model W than model B due to the
constant population intensity for model W.

Fig. 6. Maps of the logarithm of the posterior mean of
the relative risk function divided by its maximal value.
Top: model B. Bottom: model W.
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Fig. 7. The log mean posterior relative risk function
divided by its maximal value for all 2166 cells in
ascending order of the mean posterior relative risk.
The lower and upper curves are 2.5% and 97.5%
posterior quantiles. Top: model B. Bottom: model W.

DISCUSSION

Comparing Fig. 6 with the maps in Zeman (1997),
Mašata (1999), and Krejčı́ř (2000), the overall features
are rather similar (no such map is shown in Jiruše
et al., 2004). However, our analysis appears to
be more detailed than those in Zeman (1997) and
Krejčı́ř (2000), since they do not include the covariate
information and because of larger flexibility in our
approach. Jiruše et al. (2004) and Mašata (1999)
deal with covariates but using an area level approach.
Thanks to the point process setting used in the present
paper, we have provided a more detailed modelling and
analysis of the spatial dependence (recall that Mašata
(1999) uses only 41 irregular cells and Jiruše et al.
(2004) only 141 cells of size 10 × 10 km2, and it
is only in Mašata (1999) that spatial dependence is
incorporated).

The results concerning which covariates are
important for predicting tick infections depend much
on which population map is used. The best fit
is according to the statistic χ2

2 obtained with the
population intensity model W. A uniform population
intensity is on the other hand not realistic. Model P

is obtained empirically from paired data, but under
very crude assumptions. With the data available
it seems hard to make a definite choice between
the different population intensity models considered.
One should therefore consider either of the two
following possibilities: 1) collect more data from
which a satisfactory population intensity map could be
constructed, or 2) include uncertainty concerning the
population map in the analysis e.g., by introducing a
prior for the various maps, or perhaps just on τ if one
restricts attention to the Gaussian smoothing kernels.

In many examples of disease mapping one fixed
population map is regarded as the truth, but our
results suggest that such an approach can easily be
misleading. In fact, the estimation of background
rates in disease mapping has been an issue since
1990 when first Diggle (1990) used a plug-in
estimator and subsequently Lawson and Williams
(1994) demonstrated that use of different estimators
for the background intensity can critically affect the
relative risk surface estimation.
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