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ABSTRACT

Morphological characterization of wood based fibrous materials is carried out using X-ray tomography. This
technique allows the non destructive observation at the scales of a fibre (microscopic scale) and of a network
of fibres (mesoscopic scale). The 3D images are processed using classical tools of mathematical morphology.
Measures of porosities and estimations of the size distributions of fibres and pores are carried out and compared
to other results. An alternative method for the calculation of the local orientation of the fibres is also described
to quantify the anisotropy of the fibres network. Finally, the individualization of the fibres is obtained from the
representation of the fibrous network as a 3D skeleton, making possible further measurements on the isolated
fibres.
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INTRODUCTION

Natural fibres, and in particular wood fibres,
occupy a considerable place in the sector of
composites (1700 million tons of wood fibres produced
every year in the world). Wood based fibrous
materials cover a wide range of usual products
such as papers, insulators or furniture elements.
Some important factors affecting their physical and
mechanical properties are the effective density, the
geometry of the fibres, the nature of the contacts
between the fibres and the architecture of the fibres
network (Delisée et al., 2001; Faessel et al., 2005).

Conventional industrial processes allow
manufacturing thin boards with fibres oriented in
planes parallel to the faces. If we consider the short
term market requirements for such materials, this type
of architecture is restrictive in particular from the
point of view of thickness and density: indeed, thick
insulating fibre boards may not be obtained without
pasting and reducted density results in a decrease of the
material cohesion. Prior to improve the performance
of these materials and to design new ones, presenting a
real 3D architecture, the interactions between process,
structure and properties must be first understood.

An essential step is the observation and the
quantification of the microstructure of individual fibres
and of the fibres network. To this end, this paper
capitalizes on classical tools which can be used
for describing the 3D structure of fibrous materials.
Information about fibres, pores and the fibres network

is extracted from 3D images obtained by X-ray
tomography. It must be stressed that the structure of
this fibrous material is rather complex and ‘confusing’.
This is due to the random and very connected structure
of the fibres network, and to the nature of the individual
fibres. Indeed, wood fibres cover a wide range of
sizes, shapes and internal porosities, which can be
furthermore modified by the defibration process or
during consolidation.

In the first part of the paper, 3D measurements
are realised on binary images obtained from the
original grey level images after cleaning and simple
tresholding of the phases (i.e., void and fibres). Tools
coming from classical mathematical morphology are
used to provide 3D information on fibres and on
the pores: granulometries, porosities, global and local
orientations. Such measurements may be related to the
manufacturing processes of the materials. Moreover,
they allow computing of the macroscopic properties
of the materials directly from 3D images or using
3D network models and estimating the size of a
representative elementary volume (REV) with respect
to the measured properties. See for example Lux
et al. (2006) for the prediction of the effective thermal
conductivity of wood insulators.

The second part of this paper focuses on the
individual segmentation (i.e., individualization) of
the fibres, an important but not yet resolved step
in the study of wood fibrous materials. Indeed,
the variability of wood fibres and the complexity
of the microstructure make the segmentation a
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very difficult task. It is here realised from a 3D
skeleton, viewed as a simpler representation of the
actual structure. Measurements on isolated fibres are
both complementary to those previously realised on
the network and essential for the quantification of
the microstructure. Indeed, experimental distributions
of fibres length, number of contacts, tortuosity
or orientation may constrain theoretical models of
structures (Jeulin, 1998; Faessel et al., 2005) that
can serve as support for the numerical calculation of
effective properties.

MATERIALS AND METHODS

Wood-based fibrous composites used for thermal
insulation are obtained through very different
manufacturing processes governing their final density
and the architecture of the microstructure. In this
study, we concentrate on ultra light density fibre
boards,1 elaborated industrially through a wet process,
similar to the process used in papers production. The
boards are constituted of maritime pine fibres (without
glue), oriented in planes parallel to the faces. The
fibres are composed of both isolated fibres and sticks
(aggregation of several fibres) and they show a variable
internal porosity referred to as the lumen. The effective
density of the fibre boards is about 170 kg m−3.

This study benefits from X-ray synchrotron
computed microtomography to characterize the
microstructure of the fibrous media. Data acquisition
is performed at the European Synchrotron Radiation
Facility (ESRF) on the ID19 beam line. A description
of this experimental technique may be found in Coles
(1999). A monochromatic coherent beam is used to get
sample radiographies for 1500 angular sample position
equally spaced from 0 to 180 degree. An X-ray of 12
keV (wavelength 1.03 Angstrom) was chosen to ensure
high enough signal to noise ratio. The energy selection
is realized by a classical double mono-crystal (Si 111)
device. The exposure time is 2 sec by projection. A
typical acquisition is 60 min long. A thin scintillation
layer deposit on a glass converts X-ray to visible light.
Light optics magnify the image of the scintillation
screen and project it onto the CCD. This CCD is
the key of the fast readout low noise charge couples
device (FReLoN CCD). Camera developed by the
ESRF detector group (2048x2048 elements, 14 bits
dynamic). With such a setup the resolution is 4.91
microns by pixel. A filtered back-projection algorithm
(Herman, 1980; Natterer, 1986) is used to compute
the three dimensional mapping of linear absorption
coefficient in the sample.

To fit the microtomograph setup, cylindrical
samples of diameter and height up to 10 mm are
carefully cut in the raw media with a rotary punch, so
that the microstructure of the materials is preserved.
After reconstruction, the size of the 3D grey level
images obtained is 20483 voxels, giving files of
size 8 Go. Smaller volumes are then extracted in
the core of the sample, both to reduce the size of
the file for its exploitation and to avoid the surface
modifications induced by the material cutting. The
fibres are composed of a ‘succession’ of lumens and
wood-cell walls, which are as small as noise. Alternate
sequential or median filters are then not suitable
to suppress the noise and one may use a filter by
reconstruction (Serra and Vincent, 1992) in order to
preserve the fibres contours. Fig. 1 shows the 3D
rendering of a thin sample of wood insulator.

Classical image analysis tools derived from
mathematical morphology (Matheron, 1967; Serra,
1982) are then used to process 3D images obtained and
to recover information on the pores and the fibres.

Fig. 1. 3D visualization of a sample of size 2.5×2.5×
0.2 mm3.

MORPHOLOGICAL ANALYSIS

In this part, morphological operations are used
to characterize the fibrous materials in different
ways. Particularly, we propose a new algorithm
for the detection of local orientations and the
quantification of anisotropy. It is also shown that there
exist representative elementary volumes (REV) for
every measured property. Furthermore the obtained
information can be useful for simulating of fibre
materials (Jeulin, 1998; Wang and Shaler, 1998;
Faessel et al., 2005), or for identifying local physical
properties of wood fibres.

1Industrial fibre boards THERMISOREL elaborated by ISOROY, France.
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POROSITIES

Two porosities must be considered that correspond
to different spatial scale. The first, referred to as
the fibre porosity, is related to the volume fraction
of the lumens. It is expressed for convenience in
percentage of the volume of filled fibre (volume of
the fibre walls added to the volume of the lumens).
The second is the volume fraction of air lying
outside of the fibres; it is referred simply as the
porosity. This distinction is useful as it is easier and
sometimes necessary to consider homogenized fibre,
especially at low resolutions where lumens may not be
distinguished anymore. Furthermore, from an image
analysis standpoint, the distribution of fibre diameters
or the skeleton have a sense only when computed on
filled fibres.

The process to segment the lumen from the
background is straightforward; first a dilation of small
size disconnects the lumen from the outer porosity.
Then a closing by reconstruction fills the lumen
without modifying the fibres contours. Finally, an
erosion is performed to end the closing process. Fig. 2
illustrates the filling process on a longitudinal section
of the material. An estimate of the fibre porosity is
computed by a simple measure of the image volume
before and after lumens filling.

(a) (b)

Fig. 2. Longitudinal section (2.5×2.5 mm2) before (a)
and after (b) the filling of lumens.

Fig. 3 shows the evolution of the porosity and
fibre porosity versus the size of the treated volume.
The stabilization of these two parameters occurs from
a volume over 0.5 mm3 (1.26×1.26×0.31). The
porosity of the tested sample is around 76% and the
mean value of the fibre porosity, around 28%, is in
agreement with values given in Castéra et al. (2000).

GRANULOMETRY

In this section, information about the size of fibres
and pores is obtained from binary images relying on
classical tools from mathematical morphology.

Fig. 3. Evolution of the porosity and fibre porosity versus the size of the measurement volume.
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The size distribution of the grains of a set X can
be assessed through successive openings (Serra, 1982)
by a structuring element (i.e., an arbitrary set of voxel)
of growing size. This is referred to as granulometry
by openings and it consists in measuring the volume
fraction of the set X which is smaller than the chosen
structuring element. The cumulated size distribution
G(X ,λ ) of a set X is defined as (Matheron, 1967;
Serra, 1982):

G(X ,λ ) = 1−
V
(

γBλ (X)
)

V (X)
, (1)

where Bλ is the structuring element of size λ , V (X) is
the volume of the set X and γBλ (X) the opening of X
by Bλ .

If X is the set of fibres and Bλ the Euclidean
ball of radius λ , the granulometry carries information
about the distribution of the diameter of the fibres.
The results in Fig. 4 show granulometries computed
on different volume sizes. The stabilization of
the distribution occurs at volumes of 1.68 mm3

(1.89×1.89×0.47). The mean diameter of the
stabilized distribution is 37.6 µm and the standard
deviation is 8.2 µm. Wang and Shaler (1998) fitted the
distribution in number (i.e., the count of the number of
objects with a given mean radius) with a normal law,
but this is not the case of the distribution in measure
obtained here, according to the χ2 test. In other words,
some refinements (for exemple the segmentation of
the fibres) are obviously required in order to further
approach the concept of fibre diameter. However,
the measured mean value of fibres diameter is in

agreement with a previous characterization realised on
the same population of fibres2 in wood based insulators
(see also Delisée et al., 2001), where a mean diameter
of 31.7 µm was observed (not accounting for sticks).

Granulometric curves are computed similarly on
the pore space. However, due to the high connectivity
of the pores and to their highly variable shape, the
granulometry is not representative of an actual pore
size distribution. It shall rather be related to the
minimal distance between the fibres. The results in
Fig. 5 show the stabilization of the distribution at a
volume of 1.68 mm3 (1.89× 1.89× 0.47). The mean
size of the pores is 41.5 µm and the standard deviation
is 22.8 µm. The distribution can be fitted by a gamma
law widely used to model pore size distribution in
papers (Dodson and Sampson, 1996). There is a close
relation between the manufacturing process and the
inter fibre distance distribution. Indeed, for a process
other than papers process, a gaussian distribution has
been observed in an other insulating fibre board (Lux
et al., 2006).

Although granulometries performed on binary
images cannot be straightforwardly related to actual
fibre (resp. pore) size distribution, they provide some
quite useful information:

– The mean size of the fibres compares well to values
obtained with different methods. It is accordingly
a good indicator of the size of the fibres. The
comparison with object-based measures shall be
possible relying on segmented images. This is
addressed further in this paper.

Fig. 4. Evolution of the distribution of the diameter of fibres with the size of the treated volume.

2Industrial project ADEME/ISOROY “Wood based thick insulator”
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Fig. 5. Evolution of the distribution of the size of the pores with the size of the treated volume.

– The inter-fibre distance distribution is related to the
manufacturing process,

– REV of a size of about 1.68 mm3

(1.89×1.89×0.47) has been determined for the
measured properties.

AN ALTERNATIVE DEFINITION FOR
THE LOCAL ORIENTATION

The local orientation of fibres is an important
parameter since the physical properties of fibres are
often orthotropic. This is the case for the mechanical
and thermal properties of wood fibres (Siau, 1984).
The computation of the local orientation field thus
allows determining the local physical properties. It
is also interesting because it is an indicator of
the medium anisotropy complementing other global
methods, like the rose of directions or covariograms
analysis.

Previous definition

The original definition is due to Soille and Talbot
(2001) in the case of grey level image analysis. Let x
be a pixel that belongs to a structure brighter than the
background in an image noted f . Its local orientation,
noted DS

λ ( f )(x), is the direction α of the segment Lλ ,α
of length λ minimizing the difference of grey level
between the original image f and the opened image
by Lλ ,α , denoted as γλ ,α ( f ), at the same location. It
may be written as:

DS
λ ( f )(x) = αi if γλ ,αi ( f )(x) ≥ γλ ,α j ( f )(x) , ∀i 6= j ,

(2)

where γλ ,αi ( f )(x) is the grey level of voxel x
belonging to the opened image.

The segment length λ has to be chosen accordingly
to the size of the objects in the image. If different scales
coexist in the same image, this definition may therefore
not be able to give good results. This is particularly
pronounced in the case of binary images even with
objects of very similar sizes, as γλ ,αi ( f )(x) can only
take two values, 0 or 1. Fig. 6 illustrates this on a
simple binary 2D image, where the four directions
of the square grid are tested only. The length of the
segment was chosen to be of 19 pixels. The grey pixels
indicate that no orientation can be determined at this
location, due to that :

– either all the values of γλ ,αi ( f )(x) , ∀i are zero (λ
is too large),

– or there exist at least two directions αi for which
γλ ,αi ( f )(x) = 1 (λ is too small).

Fig. 6. Local orientation field obtained by the Soille’s
algorithm, with λ = 19 pixels.
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Extension to multi-scale binary images
In order to work on binary multi-scale images,

we propose a modified definition that consists in
increasing the length of the segment until one value
of γλ ,αi ( f )(x) = 1.

First a local direction noted Dγ
λ ( f )(x) of the pixel

x with respect to the segment of length λ is defined:

Dγ
λ ( f )(x)=

{

αi if γλ ,αi ( f )(x) > γλ ,α j ( f )(x) , ∀i 6= j
Ø otherwise

(3)

Then, beginning with the unitary segment, λ is
increased until Dγ

λ is defined. The local orientation
Dγ ( f )(x) may therefore be written as:

Dγ ( f )(x)=
{

α | Dγ
λ−1 ( f )(x) = Ø and Dγ

λ ( f )(x) = α
}

(4)
with α = {θ ,ϕ} (see Fig. 1).

The previous algorithm is applied to the test
image, but there remains pixels for which two or
more directions are equivalent. They are marked as
undetermined. Nonetheless, they may be provided with
an orientation corresponding to the most probable
orientation of their 3 × 3 neighbourhood. Fig. 7
presents the final local orientation field, after the
interpolating step. We may however notice that some
orientations do not correspond to the expected values,
especially nearly points of inflexion. The use of
openings indeed implies that the orientation of a pixel
is the orientation of the largest segment included in
the object and intersecting the considered point. The
orientation of a pixel thus does not always depend
on its close neighbourhood, but reflects a more global
directional property of the object.

Fig. 7. Local orientation field obtained by openings.

A variated definition using erosions
In order to retrieve a local directionnal property,

we propose the following definition for the local
orientation of a voxel in a binary image :

The orientation of a point x∈X is the orientation of
the largest segment that is included in X and centered
at x.

This definition is equivalent to the expressions
in Eqs. 3,4 but with erosion taking the place of
opening. The difference between the two approaches
is illustrated in Fig. 8.

Fig. 8. The orientation by opening (orientation of
segment 1) clearly depends on the morphology of the
whole object whereas the results of the orientation
by erosion (orientation of segment 2) depends on a
sufficiently large neighborhood of x.

The local direction by erosion, noted Dε
λ ( f )(x), of

a pixel x with respect to the segment of length λ , is
given by:

Dε
λ ( f )(x)=

{

αi if ελ ,αi ( f )(x) > ελ ,α j ( f )(x) , ∀i 6= j
Ø otherwise

(5)

In the same way as above, the local direction
Dε ( f )(x) is given by:

Dε ( f )(x)=
{

α | Dε
λ−1 ( f )(x) = Ø and Dε

λ ( f )(x) = α
}

(6)

The result of this algorithm applied to the test
image is presented in Fig. 9. We may notice that
the local orientation field by erosions is much more
realistic than the one previously obtained by openings.

Fig. 9. Local orientation field obtained by erosions.
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Finally, Fig. 10 presents the results of the detection
of the 13 unbiased directions of the cubic lattice on a
3D image of size 2.5×2.5×1.3 mm3. Fig. 11 shows
the distribution of the local orientation. These results
highlight the anisotropy of this type of insulating
materials. More than 70% of the voxels of the fibres
are oriented in the xOy plane (longitudinal planes)
while less than 1% of the voxels are oriented along the
Oz axis (transverse direction of the fibre board). This
result was expected since the material is compressed
along the Oz axis during the manufacturing process.

Fig. 10. Local orientation field on a 3D sample of the
fibrous medium.

The simple, yet efficient tool, presented here
allows to test the local directional properties of a
multi-scale binary image and provides a quantitative
characterization of the anisotropy of complex

materials. The directional informations may also be
used to compute the local physical properties of
the fibres. See Lux et al. (2006) for an exemple of
computation of the local thermal conductivity field of
wood based fibrous materials.

COVARIOGRAMS

To further investigate the concept of REV, we
may evaluate the correlation length with the help
of covariance. The covariance is the probability for
two points of distance h to belong to the same
phase. It provides useful informations about the state
of dispersion of the considered phase (Matheron,
1967; Serra, 1982) altogether as an estimation of
correlation length. Indeed, when the correlation
between the events {x ∈ X} and {x+h ∈ X} vanishes,
the covariance curve tends to an asymptote of equation
y = V 2

V (X), where VV (X) is the volume fraction
of set X . Fig. 12 shows the covariograms (i.e., the
representation of the covariance along one direction)
computed on a sufficiently large image, for each of the
13 directions of the cubic lattice. From these curves
the correlation length may be estimated as about 400
µm (longitudinal direction) and 100 µm (transverse
direction). The representative scales for porosity and
granulometry are thus compatible with an estimation
of a REV based on covariance analysis. The REV
determined previously contains about 4 correlation
lengths and its size is influenced by the anisotropy of
the fibrous network. The covariograms also indicate
a strong anisotropy of the fibre board. This is in
agreement with the observation coming from the local
orientation field.

Fig. 11. Distribution of local orientations.
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Fig. 12. Covariograms for all tested directions.

DISCUSSION

Our objective was to examine the informations
readily available by classical morphological
measurements realised on phase-segmented image.
This leads us in particular to introduce alternative
definitions of the local direction suited to multi-
scale binary images and based on simple operations
like erosion and opening. The direct measurement
of the porosity of the fibre board and of the
wood fibre is consistent with the expected values,
although a better accuracy (for fibres porosity)
could be achieved with a higher image resolution.
The granulometric information concerning the fibres
provides an estimation of the size of fibres and shows
that the mean value of the fibre diameter is consistent
with other results obtained by different methods.
Concerning the pore size distribution, the shape of the
curve (here a gamma law) shows the influence of the
manufacturing process on the structure as well as the
random nature of the material. Moreover, all of these
results reveal the existence of representative volumes
for the different properties.

All the information obtained above has been
measured on phase (void vs. solid) segmented images.
This information may be ultimately complemented
and/or refined by measurements on an ‘objects
basis’ segmented image, i.e., an image where
elementary components (fibres) are individualized.
The availability of such an object segmented image
allows to measure the number of fibres contacts, the
distribution of fibres length or the fibres tortuosity,

etc... Toward that end we briefly discuss hereafter an
example of approach leading to the individualization
of the fibres.

The complexity of the studied material makes
image segmentation a difficult task. Therefore, one
may opt for a segmentation process relying on a
simpler representation of the image. Here, the curve
skeleton is chosen as the basis for the segmentation.
The segmented skeleton is then used as a marker in the
original image.

The skeleton provides a compact representation of
an object, preserving its geometry (via the concept of
end-points) and topology. The skeleton is defined by
the centers of maximal balls (Serra, 1982). Generally
this definition leads to surface skeletons for 3D objects.
For this reason, the skeleton is accordingly commonly
searched as a set of desired properties. Here, we
follow Pudney (1998) and call skeleton of a set X an
object topologically equivalent to the original image,
thin in the sense of a line of 1 voxel thickness
(thinness) and centrally located in X (medialness). In
this work the curve skeleton is obtained through a
parallel algorithm based on the work of Palágyi and
Kuba (1998) (homotopic thinnig) and calling in the
concepts of simple and P−simple points (Bertrand and
Malandain, 1994; Bertrand, 1995). See Lux (2005) for
a complete description. Fig. 13 shows an exemple of a
computed skeleton.
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Fig. 13. Skeleton computed on an image of 2.5×2.5×
1.3 mm3.

The voxels of the skeleton are classified into
branches and nodes. To do so, we use the concept of
λ -adjacency (Liang et al., 2000) to prevent clustering
effect (Le Trong, 2003; Le Trong et al., 2005). A
branch is a set of λ -connected voxels having at
most 2 λ -neighbours and a node is a set of λ -
connected voxels having more than 2 λ -neighbours.
The local direction of branches adjacent to the same
node is computed in the manner of Le Trong (2003)
(see Fig. 14). This directional information allows
merging in a same fibre the branches showing the
most similar orientations among all possible pairs.
This segmentation process is here illustrated in a 2D
image (Fig. 16), highlighting that, at least from a visual
point of view, the segmentation is satisfying.

Fig. 14. Computation of the normal vectors of the
branches adjacent to an intersection

(a) (b) (c)
Fig. 15. Skeleton of a 2D simple image (a),
segmentation results with full merging of branches
adjacent to a 3-node (b) and with merging of only
two branches adjacent to a 3-node (c). The nodes are
coloured in red.

We present in Fig. 16 a first segmentation result
on a small 3D image of the insulating material of size
1.3 × 1.3 × 0.6 mm3, for visualization purpose. The
final segmented image (Fig. 16d) is simply obtained
by geodesic dilatation of the segmented skeleton
(Fig. 16c) inside the original image (Fig. 16a). This
result is quite encouraging, even though some fibres
appear to be over segmented.

(a) (b)

(c) (d)

Fig. 16. Example of the segmentation process. Original
image (a), skeleton (b), segmented skeleton (c) and
final segmented image (d).

The segmentation of a REV as defined in section
“Morphological analysis” yields an average fibre
length of 0.2 mm and a maximal length of 3.7
mm, which is consistent with results found elsewhere
(Delisée et al., 2001). We found the number of fibres
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to be around 253 per mm3. We may then compute the
mass of the ‘average fibre’ with the available value of
average fibre length, fibre porosity (28%) and wood
cell-wall density (1530 kg m−3). Knowing the number
of fibres per unit volume, it is then easy to calculate
the density of an equivalent material constitued only
with ‘average fibres’. Here we found a density of
172 kg m−3 which is close to the real density of the
fibre board (170 kg m−3). The same process was also
performed on another wood insulator with a lower
density. We calculated a density of 30 kg m−3 whereas
the real density is of 45 kg m−3.

The results above emphasize that the various
measures allow approaching the real density of
different fibre boards. This does not validate the
above segmentation method but this is clearly a good
indication that our results are consistent with a known
macroscopic property.

CONCLUSION

This paper presents a preliminary 3D
characterization of wood fibrous materials. The
tomography technique is used to observe the
microstructure in a non destructive way. Mathematical
morphology is used to process the 3D images.

Classical measurements such as porosity and
distributions of the fibre and pore sizes are computed.
An alternative definition for the local orientation (i.e.,
the orientation of each voxel of the fibres) is proposed,
allowing quantifying the anisotropy of a network in
simple way. Besides, an estimation of representative
volume is also provided and it is shown that the size
of this REV is consistent with a covariance based
estimation.

Towards complementing/refining the above
characterization, a segmentation method is proposed
in a more prospective discussion. The individual
fibres are reconstructed from the 3D segmented
skeleton of the structure. The proposed segmentation
process, although far from being perfect, is very
encouraging and allows in particular to retrieve the
density of different insulating fibre boards. Some
further improvements on skeleton computations, or
the addition of other constraints for the merging
of branches, for example based on granulometric
or distance map informations, should improve the
segmentation of 3D images of fibrous materials.

Extraction of the various information available
in segmented images of different fibrous materials
is currently pursued. We will next focus on the
construction of 3D models derived from real networks

which will serve as a support for numerical analysis of
effective thermal and mechanical properties.
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