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ABSTRACT

In a random stacking of particles, the coordination number is defined as the mean number of particles
touching a given one. A classical measurement by image analysis is directly based on this definition. It can
be applied in the theoretical case of a global analysis but some problems occur for practical applications. We
propose here a new measurement method based on the contribution to the Euler-Poincaré characteristic. A
single measurement is performed both on the initial structure (particles linked by contacts) and on the
segmented structure (isolated particles). The proposed method is robust w.r.t. the shape of the particles and
their contacts.

Keywords: coordination number of particles, Euler-Poincaré characteristic, granular media, local
measurements.

INTRODUCTION

The concept of coordination number arises in
various contexts, sometimes along with different
acceptations:

– in a monoatomic structure, the coordination number
is nothing but the number of neighbours of each
atom (cf. Fig. 1a)

– in a random stacking of particles, different particles
may have different numbers of neighbours; in this
case, it is more appropriate to call «coordination
number» the average number of neighbours per
particle.

The coordination number plays an important role
in the description of granular media. It can be related
to the microstructural evolution of a powder during
sintering (cf. Fig. 1b) and to several physical or
mechanical properties of sintered materials (Artz,
1982; Jernot, 1991; Tancret et al., 1997). It has been
estimated in the past by using several methods
(German, 1989; Guyon and Troadec, 1994). We will
focus here on its direct measurement by image
analysis without any assumption about the particle
shape.

a)

b)

Fig. 1. Contacts in granular media: a) punctual
contacts in a periodical arrangement of particles, b)
necks between sintered bronze particles.
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GLOBAL MEASUREMENTS
The coordination number cannot be obtained using

stereological relationships because it is a topological
parameter. As such, it must be measured directly in
the space of interest (e.g., mostly 3D space in
materials science). The coordination number is defined
as the mean number of particles touching a given one.
Touching particles are called neighbours. In what
follows, two global measurement methods are
presented.

Sequential analysis
This method directly derives from the definition

of neighbours. It starts with a segmentation by
watershed of the population of particles (Lantuéjoul
and Beucher, 1981). Then, a sequential analysis is
performed on this segmented set. At first, one particle
is selected and reconstructed by geodesic dilation
(Fig. 2a). Then, after dilation, this particle is
intersected with the segmented set and its number of
neighbours is counted (Fig. 2b). This procedure is
repeated for each particle up to a complete examination
of the initial set (note that it is time-consuming). The
coordination number is the mean number of neighbours
measured for all the particles (Fig. 2c).

Parallel analysis
This method is based on the measurement of the

Euler-Poincaré characteristic (Hadwiger, 1957; Serra,
1982; Stoyan et al., 1995; Ohser and Nagel, 1996)
further denoted by EPC. In 2D space, this topological
parameter is simply the number of connected
components minus the number of holes within them.
In 3D space, it is equal to the number of distinct
surfaces minus their genus.

Consider a finite population of particles {Pi, i∈I}
satisfying the following two conditions:

a) each particle is convex;

b) pairs of particles can touch each other but triplets
cannot.

Assume that one can construct (for instance by
erosion or segmentation of the population of particles)
another population of particles {Qi, i∈I} such that:

c) each Qi is non empty, convex and contained
within Pi; therefore the Qi’s can be referred to as
subparticles;

d) distinct subparticles are pairwise disjoint.

From both populations, one defines the sets
U
i

iPX =  and U
i

iQY = . The EPC is denoted by N.

Let NC(Pi) be the coordination number of particle
Pi: ( ) ( )∑

≠
=

i j
jiiC PPN  PN I .

a)

b)

c)

Fig. 2. Sequential analysis of particles: a) segmentation
and selection of one particle, b) counting of the
neighbouring particles, c) coordination number:

2.31548NC == .
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The coordination number of the population can be
written
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Because of b), the inclusion-exclusion formula
for the EPC yields
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On the other hand, because of d), we have
( ) ( ) ( )YNQNPN
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Finally:

( )
( )






−=

YN
XN1 2    NC . (1)

This formula is illustrated on Fig. 3 with the two
measurements on the initial connected set X and on
the disconnected set Y.

LOCAL MEASUREMENTS
The two previous methods provide exact results

only when the structure is globally explored. They
must be adapted when the structure has to be
analysed locally, which arises when the set of interest
cannot be examined at one go.

Sequential analysis
In order to be applicable, this method requires the

neighbourhood of each particle to be totally contained
within the measurement field. Equivalently, any
particle that has its neighbourhood hitting the edges
of the field cannot be properly measured and
therefore must be discarded (cf. Figs. 4 and 5).
Moreover, the biggest particles have the largest
propensity of hitting the edges of the frame. The
«bias» incurred can be compensated by the Miles-
Lantuéjoul correction (Miles, 1974; Lantuéjoul, 1980).
It consists of assigning each particle a weight that is
proportional to the chance it has to be contained
within the measurement field.

N(X) = 1 - 10 = - 9 N(Y) = 15
( )[ ] 2.3 1591  2NC =−−=

Fig. 3. Global measurement of the coordination number.

Fig. 4. Local measurement by sequential analysis: the global value of the coordination number (4/3) is out of
reach with this method.
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Fig. 5. Local measurements on the previous set of
Fig. 2. The coordination number calculated by
summing up the results from each measurement field
is 91.21132NC ≈= .

Parallel analysis
As will be seen in the following sections, the

parallel analysis can be easily adapted to the local case.

Local contribution to the Euler-Poincaré
characteristic
In a recent paper (Jernot et al., 2004), it has been

established that the EPC of a bounded set X of Rd can
be obtained by superimposing arbitrarily a tessellation
on X (i.e., a partition of Rd into convex polyhedral
cells), measuring the contribution of each cell to the
EPC of X and summing all contributions.

The local contribution of a cell Z to the EPC of X
is a weighted sum of the EPC of X within each facet
F§ of the tessellation contained in Z. The weights are
chosen to compensate for the fact that facets belong
to several cells. It is explicitly defined by the formula:

( ) ( )FX N
ordF
)1(   Z;XC

dimFd

 Z F 
∩

−
=

−

⊂
∑

in which dimF denotes the dimension of F (0, 1, 2, ..., d)

and ordF stands for its multiplicity order, i.e., the
number of cells sharing F as a facet. In the case of a
2D square tessellation of the space the orders of the
facets are 4 (vertices), 2 (edges) and 1 (face). The
measurement is illustrated in Fig. 6 on a 2D example:
in the left field of this figure, the EPC values 1, 2 and
2 come respectively from the non-empty intersections
of X with one vertex, two edges and one face.

Local measurement of the coordination
number for a finite family of particles
In terms of local contributions, since

( ) ( )∑=
Z

ZX;C  XN , the coordination number can be

expressed as:
( )

( )















−=
∑
∑

Z

Z
C ZY;C

ZX;C
1  2    N , (2)

or, equivalently, as a ratio of expectations obtained
by selecting one cell at random among all the cells
hitting X:

( ){ }
( ){ }






−=

 ZY;C  E
 ZX;C  E1  2    NC . (3)

The set presented in Fig. 4 can be analysed using
this method: the contributions are equal in both
measurement fields, C(X;Z) = 1/2 and C(Y;Z) = 3/2,
which gives 34NC =  by applying Eq. 2. In Fig. 7,
the population of particles presented in Figs. 2 and 3
is analysed through four adjacent fields Z1, ... , Z4.
Because this population is bounded, both local and
global analyses lead exactly to the same result:

2.3  
421411417411
41545411451  2  NC =







+++
−−−−

−=

C(X;Z) = 1/4 - 2/2 + 2 = 5/4 C(X;Z) = 0 - 5/2 + 3 = 1/2

Fig. 6. Examples of local contributions to the Euler-Poincaré characteristic of a set.

§ In this paper, as in Jernot et al. 2004, a facet of a tessellation is not necessarily a face of a polyhedral cell. A facet is defined as an
intersection between cells.



Image Anal Stereol 2006;25:55-61

59

C(X;Z1) = - 5/4
C(Y;Z1) = 11/4

C(X;Z3) = - 5/4
C(Y;Z3) = 11/4

C(X;Z2) = - 11/4
C(Y;Z2) = 17/4

C(X;Z4) = - 15/4
C(Y;Z4) = 21/4

Fig. 7. Local measurement of the coordination number for a finite structure.

Local measurement of the coordination
number for an infinite family of particles
At this stage, only finite populations of

deterministic particles have been considered. Now we
may wonder whether the definition of the
coordination number can be extended to random,
stationary and locally finite populations of particles.

Let X&  (resp. Y& ) be the random set made up of
the union of all particles (resp. all subparticles). To
define the coordination number, a natural idea is to
replace in Eq. 1 the connectivity numbers by their
corresponding specific values. Namely we put

( )
( ) 






−=

∗

∗  
YN
XN1 2    NC &

&
, (4)

where ( )XN &
∗  and ( )YN &

∗  are the specific connectivity
numbers of X&  and Y& . These are defined as
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whatever the convex domain D with nonempty interior
(Stoyan et al., 1995).

In practice, Eq. 4 is not directly applicable because
both specific connectivity numbers are unknown.
Various estimators are available for ( )XN &

∗  and ( )YN &
∗

depending on the domain where the realizations of
X&  and Y& are known:

- if the domain consists of two parallel section
planes separated by a known distance, the disector
technique can be used (Sterio, 1984).

- if the domain is a cell of a regular tessellation (i.e.,
all cells are identical up to a shift to a reference
cell Z) the contribution technique can also be
effective. It yields the intuitive but nontrivial fact
that

( ){ }
( )

( ){ }
( )Zvol

 Z;YC E)Y(N 

   and
Zvol

 Z;XC E  )X(N

&
&

&
&

=

=

∗

∗

, (5)

the proof of which is left in a forthcoming paper.
Starting from (5), unbiased estimators for ( )XN &

∗  and
( )YN &

∗  can be obtained, either by averaging the
contributions of different cells or by assigning them
different weights provided by a Kriging exercise
(Chilès and Delfiner, 1999), which makes it possible
to integrate the spatial structure of the random set
under study.

It should be pointed out that the knowledge of
one realization X of X&  in two parallel section planes
is insufficient to properly determine the corresponding
realization Y of Y& . A close look at Fig. 9 will easily
convince the reader that the determination of Y
requires X to be known in a full-dimensional domain.
For the sake of consistency, it is deemed preferable to
estimate both connectivity numbers also in a full-
dimensional domain, thus resorting to the contribution
technique rather than to the disector technique.

From Eqs. 4 and 5, it comes

( ){ }
( ){ } 






−=  

 Z;YC  E
 Z;XC  E1  2    NC &

&
. (6)

This is basically the same formula as Eq. 3,
except that the expectations have different interpre-
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tations. They are taken over all cells hitting X in Eq.
3 and over all realizations of X&  in Eq. 6.

As a consequence, suppose that the contributions
of the realizations X and Y have been measured on
the cells J)j,Z( j ∈ , then we propose to use

( )
( )
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jj

J  j
jj
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as an estimate of the coordination number. In this
formula, both sets of coefficients J)j,( j ∈λ  and

J)j,( j ∈µ  are either constant weights (equal to
1/Card J) or Kriging weights. They add up to one.

A PRACTICAL EXAMPLE
The population of particles displayed in Fig. 8 is

a simulation of a disc packing (Bideau, 1983). It has
been chosen because its coordination number is
explicitly known to be equal to 4 as a consequence of
the underlying physical process (gravity) that governs
its construction. On this population of particles both
analyses, sequential and parallel, were performed. As
can be seen in Fig. 8, both results (4.095 and 4.109)
are quite similar even if 28 traces of particles have
been discarded during the sequential analysis.

It should be pointed out that sequential analysis
gives valuable results only when many particles have

their whole neighbourhood accessible. For example,
examining the population of particles through the
fields of Fig. 9 cannot yield any relevant result. In
contrast to this, the parallel analysis can cope with
this limitation. On each field the contributions for X and
Y were determined. The sums of all contributions,

( ) 85ZX;C
j

j −=∑  and ( ) 55ZY;C
j

j =∑ , are nothing

else but the values of Fig. 8. Then, application of Eq.
7 using equal weights J) j  J, 1/Card( jj ∈∀=µ=λ
gives an estimated value of the coordination number
equal to 4.109. On the other hand, it is also
interesting to estimate the coordination number on
each field (see Fig. 9). The average of these estimates
is equal to 4.113 which is not very far from the
theoretical value 4. This probably comes from the
fact that all the particles have the same size and the
distribution of the number of neighbours per particle
is tight.

This 2D example may look somewhat academic
but it stresses the limitations of the sequential
analysis. It turns out that these limitations are even
more severe in 3D space. At the outset, there is a
problem in the choice of the resolution that creates a
conflict between the size of the particles and that of
the measurement field. A high resolution leads to a
good definition of contacts but to a small number of
particles, whereas a low resolution allows a large
number of particles to be analysed but the contacts
are poorly defined.

   C(X;Z) = 4/4 - 24/2 - 47 = - 58

( ) 095.44254  438Nc ≈×+×=
∧    C(Y;Z) = 4/4 - 32/2 + 70 = 55

   ( )( ) 109.4 55581  2Nc ≈−−=
∧

Fig. 8. Local estimation of the coordination number for an infinite structure: comparison between sequential
and parallel analyses.
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C(X;Zj) -5.25 -7.00 -4.25 -7.00 -4.25 -6.50 -5.25 -7.50 -5.25 -5.75

C(Y;Zj) 5.75 5.50 5.25 5.50 5.25 6.00 4.75 6.00 6.25 4.75

CN
∧

3.826 4.545 3.619 4.545 3.619 4.167 4.211 4.500 3.680 4.421

Fig. 9. The sequential analysis is impossible when the population of particles of Fig. 8 is examined through ten
narrow fields. In this case, only the parallel analysis is operatory.

CONCLUSION

In order to estimate the coordination number of
particles in a powder stacking, a new method, based
on the Euler-Poincaré characteristic, has been proposed.
This method is independent from the workspace
dimension. It is easy to implement and fast. It has
been extended to the case of a local analysis using the
local contribution to the Euler-Poincaré charac-
teristic. This method is robust w.r.t. the nature of
contacts (punctual or not) and the particle shape.
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