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ABSTRACT

The paper reviews recent findings about geometric identities in integral geometry and geometric tomography,
and their statistical application to stereological particle analysis. Open questions are discussed. This survey
can also serve as an introduction to modern stereological particle analysis for readers who are interested in the
mathematical background of the new methods.
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INTRODUCTION

Many identities in integral geometry and geometric
tomography (Gardner, 1995) take the form

α(X) =
∫

β (X ∩T )dT , (1)

where X is a subset of some Euclidean space, α
and β are real valued functionals, T ranges over a
class of sets such as the k-dimensional planes, and
typically dT represents integration with respect to an
appropriate ‘uniform’ measure. The simplest example
is the representation of the volume α(X) = V (X) of a
three-dimensional solid X as the integral of the areas
β (X ∩T ) = A(X ∩T ) of its horizontal plane sections
X ∩T .

Such identities may be given a stochastic or
statistical interpretation, which is the basis of the
science of stereology (Baddeley and Jensen, 2005;
Weibel, 1979; 1980). For example, the representation
of volume in terms of the areas of plane sections was
used by 19th century geologist A.E. Delesse to obtain
a practical method for determining the composition
of rocks. Namely, the volume percentage (fraction of
volume of rock) occupied by a particular mineral of
interest can be estimated from the fraction of area
occupied by the same mineral in a single plane section
of the rock. Note that this is different from applications
to computed tomography, which require information
from all plane sections of the object.

Until the 1980’s, stereological techniques were
based mainly on the classical section formulae of
integral geometry, taking the form (Eq. 1), where α
and β are the intrinsic volumes or quermassintegrals
in R

d for d = 1,2,3, and T is a k-dimensional
plane, k < d. These formulae, and the stochastic

interpretations that were placed on them, make
it possible to statistically estimate volumes, areas
and lengths of three-dimensional structures using
information obtained from random plane sections of
the structure (Weibel, 1979; 1980).

Stereologists use the generic term ‘particles’
to describe solid objects that can be scientifically
interpreted as discrete individuals (such as biological
cells, mineral grains, or enclosed holes). A ‘particle
population’ is a finite or countable collection of
disjoint particles.

The ‘particle problem’ in stereology is the problem
of inferring the number, average size, and distribution
of sizes, of a population of particles, from a plane
section of the population. For example, given a
microscope image of a plane section of brain tissue,
we may wish to estimate the number of neurons in the
brain, their average size, and the distribution of their
sizes.

A general solution to the particle problem was not
found in classical stereology. The classical identities
of integral geometry (and their classical stochastic
interpretation) only allow us to estimate ‘aggregate’
quantities α(X) where X =

⋃
iYi is the union of all

the particles Yi in the population, and not ‘individual’
particle properties such as the distribution of particle
sizes α(Yi) .

Until the 1980’s, progress on the particle problem
was achieved mainly by assuming that the particles
have a common, simple, known shape such as spheres.
Swedish mathematical statistician S.D. Wicksell first
formulated the particle problem, and treated the case
of estimating the size distribution of spheres in
three dimensions from two-dimensional plane sections
(Wicksell, 1925). In R

n, the relation between the
distribution function F of the radii of the spheres
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and the distribution function F (n,k) of the radii of the
spheres sectioned with a k-dimensional plane is given
by, cf. Schneider and Weil (2000),

F(n,k)(x)

= 1−
(n− k)
Mn−k

∫ ∞

x
u(u2 − x2)

n−k−2
2 (1−F(u))du , (2)

where Mn−k is the (n− k)th moment of sphere radii
assumed positive and finite. Wicksell’s problem has
attracted considerable attention among mathematical
statisticians, one reason being that it is an ill-posed
problem implying that a small perturbation of the
data in the section may lead to a large change in the
estimated sphere size distribution.

Geometrical assumptions about particles – for
example that the particles are all spheres – are overly
simplistic for most applications. It is therefore a
major advance that with the introduction of new
sampling and measurement techniques such fragile
geometrical assumptions can be relaxed. An example
of these new techniques is ‘local’ sectioning of each
particle through a reference point in the particle.
Stereological methods based on such local sections
constitute the new field of local stereology which is
closely related to geometric tomography, cf. Gardner
et al. (2003). Moments of particle size (including mean
and variance) can be estimated stereologically without
specific shape assumptions, using information on such
local sections. (As a side remark, Wicksell’s problem
becomes trivial with such information at hand since the
radius of a sphere can be observed directly in a section
through the centre of the sphere.)

Prompted by the need to utilize the new
type of data, new geometric identities have been
discovered or rediscovered during the last couple of
decades and have been used to renew stereological
particle analysis. In the present paper we review
these geometric identities in integral geometry and
geometric tomography (Gardner, 1995) and point to
some missing ones.

The first section describes the key geometrical
identities. The second section discusses how the
geometric identities can be used in the stereological
analysis of particle populations. In section three we
discuss inference about the particle size distribution.
The fourth section describes approaches to modelling
shapes. Finally in the last section we discuss some
open problems.

An earlier review of stereology for geometers
can be found in Weil (1983). Subsequently the
development of three-dimensional microscopy,
confocal microscopy and other imaging modes

has led to a revolution in stereological sampling
and measuring techniques. This involves both
the development of new geometric identities, and
alternative interpretations of existing geometric
identities. A comprehensive treatment of stereology
for statisticians has recently appeared in Baddeley
and Jensen (2005), but for readers interested in the
geometric background there seems to be no up-to-date
review.

GEOMETRIC IDENTITIES

THE BLASCHKE-PETKANTSCHIN
FORMULAE
The Blaschke-Petkantschin formulae play a

fundamental role in modern stereological particle
analysis. They provide the mathematical tool
for estimating moments of particle volume from
information on local p-dimensional sections through
the particles.

The Blaschke-Petkantschin formulae are
geometric measure decompositions of the q-fold
product of Hausdorff measure in R

n. In the special
case of decomposition of one copy of n-dimensional
Lebesgue measure Vn, the Blaschke-Petkantschin
formula takes the following form for X ⊆ R

n compact
and p > r:

c(n−1− r, p−1− r)Vn(X)

=
∫

L n
p(r)

∫

X∩Lp

||πL⊥r
x||n−p dxp dLn

p(r) . (3)

The normalizing constant is given by c(n, p) =
(σnσn−1 · · ·σn−p+1)/(σpσp−1 · · ·σ1), where σn =

2(π)
n
2 Γ(n

2)−1 is the surface area of the unit ball in
R

n. Note that by conventioyn c(n,0) ≡ 1. The outer
integration in (Eq. 3) is over the set L n

p(r) of all
p-dimensional linear subspaces Lp (called for short
p-subspaces in the following) of R

n, containing a
fixed r-subspace Lr, say. Note that L n

p(0) = L n
p , the

set of p-subspaces in R
n. The differentials dxp and

dLn
p(r) are defined as dxp = H n

p (dx) and dLn
p(r) =

µn
p(r)(dLp), where H n

p is p-dimensional Hausdorff
measure in R

n and µn
p(r) is the unique measure on

L n
p(r) satisfying µn

p(r)(L
n
p(r)) = c(n − r, p − r) such

that µn
p(r) is invariant under rotations in SO(n,Lr) =

{B ∈ SO(n) : BLr = Lr}, the subgroup of rotations in
R

n, keeping the r-subspace Lr fixed. Furthermore, the
symbol || · || in (Eq. 3) denotes the Euclidean norm in
R

n and πL⊥r
is the orthogonal projection onto L⊥

r , the
orthogonal complement of Lr.
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More generally, suppose that X1,X2, . . . ,Xq are
compact subsets of R

n. For p ≥ q+ r, we have

c(n−q− r, p−q− r)Vn(X1) · · ·Vn(Xq)

=
∫

L n
p(r)

∫

X1∩Lp

· · ·
∫

Xq∩Lp

∇q(πL⊥r
x1, . . . ,πL⊥r

xq)
n−p×

×
q

∏
i=1

dxp
i dLn

p(r) ,

where ∇q(x1, . . . ,xq) = q!H n
q (conv{O,x1, . . . ,xq})

and conv{O,x1, . . . ,xq} denotes the convex hull of the
set {O,x1, . . . ,xq}. Here, the point O ∈ R

n is the origin
of R

n.

Early versions of the Blaschke-Petkantschin
formulae for decomposition of Lebesgue measures are
due to Blaschke (1935a;b) and Petkantschin (1936).
The one presented above has been derived in Miles
(1979). The general decomposition of the q-fold
product of d-dimensional Hausdorff measure in R

n has
been established in Zähle (1990) and Jensen and Kiêu
(1992). For d = n the decomposition reduces to the
one presented above while for d < n it involves the
so-called G-factors which contain information about
the angle between the boundary of the sets Xi and the
intersecting p-subspace.

The formula for decomposition of Lebesgue
measures has been proved by invariant measure theory
(Møller, 1987) while the general formula for d-
dimensional Hausdorff measures has been established
using geometric measure theory, see Zähle (1990)
and Jensen and Kiêu (1992). A simplified proof, also
utilizing induction in the dimension of the spaces
involved, can be found in Jensen (1998, Ch. 5.4).

A LOCAL SLICE FORMULA
For d < n, the Blaschke-Petkantschin formulae

depend on angles defined in R
n which cannot

be determined only from information on lower-
dimensional sections X ∩ Lp. Also in the case d = 0
the decomposition is trivial so it is not possible to
get information about number using the Blaschke-
Petkantschin formulae. This has been the motivation
for deriving geometric identities for p-dimensional
slices centred at a reference point. Such slices are p-
subspaces with some thickness.

The local slice formula gives a geometric
decomposition of d-dimensional Hausdorff measure in
R

n for d = 0,1, . . . ,n. A p-slice Tp of thickness 2t is
a set of the form Lp +Bn(O, t), where Bn(O, t) = {x ∈
R

n : ||x||< t} is the open ball in R
n with centre O ∈R

n

and radius t > 0. With T n
p(r) we denote the set of p-

slices Lp + Bn(O, t) for which Lp ⊇ Lr, where Lr is a

fixed r-subspace. Similar as in the subsection before
the differential dT n

p(r) is defined as dT n
p(r) = νn

p(r)(dTp),
where νn

p(r) is the unique measure on T n
p(r) satisfying

νn
p(r)(T

n
p(r)) = c(n−r, p−r) such that νn

p(r) is invariant
under rotations in SO(n,Lr). Let X be a d-dimensional
differentiable and bounded manifold in R

n. Then, for
arbitrary p,r satisfying 0 ≤ r < p < n, the local slice
formula takes the form

c(n− r, p− r)V d
n (X)

=
∫

T n
p(r)

∫

X∩Tp

h(n)
p(r)(x,Lr)

−1dxddT n
p(r) ,

where

h(n)
p(r)(x,Lr) = Fn−p,p−r(t2/‖πL⊥r

x‖2)

and Fa,b is the distribution function of the Beta
distribution with parameters (a/2,b/2).

An early version of this geometric identity can be
found in Jensen and Kiêu (1994). The proof of the slice
identity uses the following reasoning that holds for any
x ∈ R

n:
∫

T n
p(r)

1{x ∈ Tp}dT n
p(r)

=
∫

L n
p(r)

1{‖πL⊥p
x‖ < t}dLn

p(r)

= c(n− r, p− r)Fn−p,p−r(t2/‖πL⊥r
x‖2) .

At the last equality sign it is used that the length
of the isotropic projection of a line segment is
Beta distributed. The more general issue of isotropic
projections of simplices has been studied in Nielsen
(1999). Here the distribution becomes that of a product
of independent Beta-distributed random variables.

A GEOMETRIC IDENTITY INVOLVING
VERTICAL SECTIONS

Vertical sections are hyperplanes parallel to a fixed
axis. Such sections are often used in microscopy
to reveal structural information or for practical
convenience. In the 1980s, Baddeley (1984; 1985;
1987) and collaborators (Baddeley et al., 1986)
showed how a rotation invariant line in R

n can
be generated via a vertical section. The important
consequence is that results based on rotation invariant
lines can be transformed into results for lines generated
on vertical sections. We will in this subsection present
this key result and show how it can be used to derive
an alternative local geometric identity for volume. The
main application of Baddeley’s result has, however,
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been in the development of a stereological estimator
for surface area. This estimator has also relevance
for stereological particle analysis, as shown in section
two. Another important issue are vertical probes,
which have been developed to vertical projections by
Gokhale (1990). We do not consider vertical probes in
this paper but for the interested reader we refer to a
survey in Beneš and Rataj (2004).

Let L n
n−1(1) be the set of hyperplanes through O

containing v∈ Sn−1, where Sn−1 = {x∈R
n : ||x||= 1}.

Then, the key result proved by Baddeley can be stated
as follows:

∫

L n
1

h(L1)dLn
1

=
∫

L n
n−1(1)

∫

L1⊆Ln−1

h(L1)gn−2
1 (L1,v)dLn−1

1 dLn
n−1(1), (4)

where g1(L,v) = |sin∠(L,v)|. In Beneš and Rataj
(2004, Ch. 4.1.3), (Eq. 4) has been proved by first
establishing the following identity, using the coarea
formula and spherical coordinates,

∫

Sn−1
f (u)dun−1

=
∫

Sn−2(v⊥)

∫

S1
+(span{l,v})

f (u)gn−2
2 (u,v)du1dln−2, (5)

where Sn−2(v⊥) is the unit ball in the hyperplane v⊥

through the origin, perpendicular to v, span{l,v} is the
linear subspace of R

n, spanned by l and v, S1
+ = {ω =

(ω1,ω2) ∈ S1 : ω2 > 0}, and g2(u,v) = |sin∠(u,v)|.
See Fig. 1 for an illustration in 3D. Note that (Eq. 4) is
indeed implied by (Eq. 5) since

∫

L n
1

h(L1)dLn
1

=
1
2

∫

Sn−1
h(span{u})dun−1

=
1
2

∫

Sn−2(v⊥)

∫

S1
+(span{l,v})

h(span{u})gn−2
2 (u,v)du1dln−2

=
∫

Sn−2
+ (v⊥)

∫

S1
+(span{l,v})

h(span{u})gn−2
2 (u,v)du1dln−2

=
∫

L n
n−1(1)

∫

L1⊆Ln−1

h(L1)gn−2
2 (u,v)dLn−1

1 dLn
n−1(1) .

v
u
l

v⊥

S1
+(span{l,v})

S1(v⊥)

Fig. 1. Illustration relevant for the identity (Eq. 5),
relating to vertical sectioning.

As announced in the beginning of this subsection,
Eq. 4 has been used to derive a local identity for
volume. Combining with the Blaschke-Petkantschin
formula (Eq. 3) with p = 1 and r = 0, we get

Vn(X) =
∫

L1

∫

X∩L1

‖x‖n−1dx1dLn
1

=
∫

L n
n−1(1)

β (X ∩Ln−1)dLn
n−1(1) ,

where

β (X ∩Ln−1)

=
∫

L1⊆Ln−1

∫

X∩L1

‖x‖n−1gn−2
1 (L1,v)dx1dLn−1

1 .

A GEOMETRIC IDENTITY FOR
SURFACE AREA

The Blaschke-Petkantschin formulae depend for
d < n on angles in R

n which cannot be determined
on a lower dimensional section. As an example, for an
(n−1)-dimensional manifold X we have

c(n−1, p−1)Sn(X)

=
∫

L n
p

∫

X∩Lp

‖x‖n−p/G(Tan[X ,x],Lp)dLn
p ,

where Sn = H n
n−1 denotes surface area in R

n,
G(Ld ,Lp) = |sinαd,p| and αd,p is a generalized angle
between the subspaces Ld and Lp. Furthermore,
Tan[X ,x] is the tangent space of X at x ∈ X . In Jensen
(1998, Ch. 5.6), it is shown that the geometric identity
can be modified such that only lower-dimensional
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angular information is used. The modified geometric
identity is of the following form:

c(n−1, p−1)Sn(X) =
∫

L n
p

β (X ∩Lp)dLn
p ,

where

β (X ∩Lp) =
∫

L
p

1
∑

x∈X∩L1

‖x‖n−1h(tanβL1(x))dLp
1 ,

βL1(x) is the angle between L1 and the unit normal
vector of the tangent space of X ∩ Lp at x, and h can
be expressed as a hypergeometric function

h(u) = F(− 1
2 , 1

2(n−1); 1
2(p−1);−u2) .

Very recently, an alternative approach to estimate
surface area has been suggested by Cruz-Orive (2005).
The method is based on a new principle to generate
isotropic uniform random test lines hitting a particle.

STEREOLOGICAL PARTICLE
ANALYSIS

We will now discuss how the geometric identities
can be used in the stereological analysis of particle
populations.

STOCHASTIC MODEL
A ‘particle’ is a compact, nonempty subset of R

n.
For instance, the cells in a biological tissue or the
inclusions in steel may be modelled as a collection
of particles in R

3. To study the particle problem we
must consider the intersection between a collection of
particles and a ‘probe’ T such as a plane or a line.
Either T is randomly positioned (a “design-based”
approach) or the collection of particles is random (a
“model-based” approach). In this review we focus on
the model-based approach.

D. Stoyan, J. Mecke and collaborators (Hanisch
and Stoyan, 1981; Mecke and Stoyan, 1980; Stoyan,
1979; 1982; 1990; 1996; Stoyan and Mecke, 1983)
formulated the particle problem using the theory of
point processes (Daley and Vere-Jones, 1988). First
consider the very simple case of a collection of spheres
B(xi,ri) in R

3 with random centres xi ∈R
3 and random

radii ri > 0. The collection of pairs (xi,ri) can be
treated as a point process in R

3×R+. Equivalently this
is a ‘marked point process’ in R

3 with marks in R+.

A marked point process in R
n with marks in some

space M can be defined formally as a point process in
R

n ×M satisfying certain conditions. It is interpreted

as a point process in R
n where each point xi ∈ R

n of
the process carries additional information in the form
of a mark mi ∈ M . For details see e.g., Stoyan et al.
(1987).

The class K of all particles is a complete
separable metric space, so a random particle (a random
element of K ) can be defined in a straightforward
manner (Matheron, 1975). A random collection of
particles is most conveniently modelled as a marked
point process in R

n with marks in K .

The particles are regarded as a realization of a
marked point process Ψ = {[xi;Ξi]} in R

n, where the
xi’s are points in R

n and the marks Ξi are compact
subsets of R

n. The ith particle of the process is
represented by the set Xi = xi + Ξi. In this framework,
xi is called the nucleus of the ith particle and Ξi
the ‘primary’ or ‘centred’ particle. The corresponding
process of nuclei is denoted by Ψn = {xi}.

The marked point process Ψ is assumed to be
stationary, i.e., for all x ∈ R

n we have Ψx ∼ Ψ, where
Ψx = {[xi + x;Ξi]}. Furthermore, in some cases we
assume that Ψ is isotropic, i.e., the distribution of Ψ
is invariant under rotations A, meaning that AΨ =
{[Axi;AΞi]} coincides in distribution with Ψ.

Since Ψ is stationary, the intensity measure of Ψ
can be written as

Λ(B×K)

= E ∑
i

1{xi ∈ B, Ξi ∈ K} = Vn(B)NV (K) , (6)

for B ∈ B(Rn) and K ∈ K . Here B(Rn) is the Borel
σ -algebra in R

n and NV (K) is the mean number of
particles per unit volume with marks in K. The mark
distribution is defined as

Pm(K) =
NV (K)

NV
, K ∈ K , (7)

where NV ∈ (0,∞) is the intensity of Ψn. Using
Eq. 6 and Eq. 7 it can be shown for any measurable
nonnegative function h defined on R

n ×K ,

E∑
i

h(xi,Ξi) = NV

∫

Rn

∫

K

h(x,K)Pm(dK)dx . (8)

In what follows, we let Ξ0 be a random compact set
with distribution Pm. If Ψ is isotropic, then AΞ0 ∼ Ξ0
for all rotations A.
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GEOMETRIC SAMPLING EFFECTS
When a population of particles is sectioned by a

plane, two ‘sampling effects’ occur. First there is size-
dependent sampling bias: the probability that a given
particle is hit by the section plane depends on the size
of the particle. Second, there is random reduction in
size: a plane section of a particle is smaller than the
particle itself.

These effects were first explained by Wicksell
(1925) in the case of spherical particles. Consider a
stationary process of spheres in R

3, intersected by
a fixed two-dimensional plane. The plane section is
a stationary process of circles in R

2. Size-dependent
sampling bias occurs because, roughly speaking, the
probability that a given sphere is intersected by the
section plane is proportional to the sphere’s radius. Let
NV denote the expected number of sphere centres per
unit volume in the population, and NA the expected
number of circle centres per unit area in the plane
section. Then NV and NA are not equal, but instead are
related by

NA = NV ED , (9)

where ED is the mean sphere diameter in the original
particle process. If the sphere radii have cumulative
distribution function F , then the spheres selected by
a random section plane have radii with distribution
function

F1(r) =
1

ER

∫ r

0
sds , (10)

the size-biased counterpart of F . Here, ER denotes the
mean sphere radius in the original particle process.

For particles of more general shape, it was
established by DeHoff and Rhines (1961) and others,
then in complete generality by Stoyan (1979), that

NV = NA EH , (11)

Fig. 2. An explanation that Q must depend on the
mean particle height EH. The two boxes contain equal
numbers of particles. The particles on the left are
smaller than those on the right. A typical section plane
cuts fewer particles in the left box than it does on the
right.

where NV is the intensity of the particle process
(expected number of particle centres xi per unit
volume), NA is the intensity of the process of section
profiles (the expected number of particle profiles per
unit area in the plane section) and EH is the mean
particle height. The height H of a particle is the
length of its projection onto the subspace normal
to the section plane. Relation (Eq. 11) is known
as the ‘Rhines-DeHoff equation’. See Fig. 2 for an
illustration in 3D.

PARTICLE NUMBER

An important task in stereology is the estimation
of NV , the mean number of particles per unit volume
of the material of interest. Unfortunately, it is not
possible to estimate NV , in complete generality, from
a plane section alone. This can be seen from the
Rhines-DeHoff relation (Eq. 11). The population
average height of the particles EH cannot generally be
determined from a plane section. The problem can be
circumvented only when we have extra information,
for example when we have some knowledge about the
particle shape, or when particle height measurements
are available.

In order to construct an unbiased estimator for
NV in a situation where the particles are of general
shape, we need a different sampling scheme. Consider
a sampling scheme with the property that for any fixed
sampling window W ∈ K with positive volume and
any particle X ∈ K ,

Vn({u ∈ R
n : X sampled in u+W}) = Vn(W ) . (12)

Let
S = {i : Xi sampled in W} .

Then, using Eq. 8 and Eq. 12, we conclude that

EN(S ) = E∑
i

1{Xi sampled in W}

= NV

∫

Rn

∫

K

1{x+K sampled in W}Pm(dK)dx

= NV

∫

K

∫

Rn
1{K sampled in W − x}dxPm(dK)

= NV Vn(W ) .

Therefore an unbiased estimator for NV is given by

N̂V =
N(S )

Vn(W )
.

In practice Miles’ associated point rule (Miles, 1974)
and Gundersen’s tiling rule (Gundersen, 1977; 1978)
satisfy the basic requirement (Eq. 12). See Fig. 3 for
an illustration in 2D of these two sampling rules.
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W W

Fig. 3. Left: associated point rule, profiles with
associated point in the window are sampled. Right:
tiling rule, profiles intersecting W but not the thick
lines extending to infinity are sampled.

MOMENTS OF PARTICLE SIZE
The geometric identities presented in the first

section can be used to derive estimators of moments
of particle size Eϕ(Ξ0)

q, q ≥ 1, where ϕ is a selected
size parameter. Below we give two examples of such
estimators.

Estimators based on the Blaschke-
Petkantschin formula
Suppose that the distribution of Ξ0 is invariant

under the action of SO(n,Lr). Using Eq. 3, we get

c(n−1− r, p−1− r)EVn(Ξ0)

=
∫

L n
p(r)

[
E

∫

Ξ0∩Lp

||πL⊥r
x||n−p dxp

]
dLn

p(r) . (13)

Since the distribution of Ξ0 is invariant under rotations
around Lr, the inner integral of the right-hand side
of (Eq. 13) does not depend on Lp and we get for a
particular p-subspace Lp0 ∈ L n

p(r),

EVn(Ξ0) =
σn−r

σp−r
E

∫

Ξ0∩Lp0

||πL⊥r
x||n−p dxp .

It follows that

σn−r

σp−r

∫

Ξ0∩Lp0

||πL⊥r
x||n−p dxp

is an unbiased estimator of EVn(Ξ0).

In practice, a sample of particles {xi +Ξi : xi ∈W}
is collected in a sampling window W and a central
section

(xi +Ξi)∩ (xi +Lp0)

is determined through each particle. An illustration of
this sampling scheme for n = 2 and p = 1 is shown in
Fig. 4. For each sampled particle, we determine

h(xi,Ξi) =
σn−r

σp−r

∫

(xi+Ξi)∩(xi+Lp0)
||πL⊥r

(x− xi)||
n−p dxp .

Using Eq. 8, we find that

E ∑
{i:xi∈W}

h(xi,Ξi)

= NVVn(W )
σn−r

σp−r
E

∫

Ξ0∩Lp0

||πL⊥r
x||n−p dxp

= NVVn(W )EVn(Ξ0) .

We can thereby construct an unbiased estimator of
EVn(Ξ0) if an estimate of NV can be constructed.

W

xi

xi +Ki

xi +L10

Fig. 4. Local sampling scheme. Particles xi + Ξi
satisfying xi ∈W are sampled using a fixed line L10.

Estimators based on vertical sections

In the same way, other identities from the
first section can be used to construct estimators of
EVn(Ξ0)

q or ESn(Ξ0).

The identity (Eq. 4) involving vertical sections
provides an alternative for estimating ESn(Ξ0) if the
distribution of Ξ0 is invariant under rotations around
the vertical axis v. The identity is used in combination
with the classical Crofton formula. Let us suppose that
the particles are non-overlapping and let

Z =
⋃

i

(xi +Ξi) .

Then, using (Eq. 8) we find that

ESn(Z ∩W ) = NVVn(W )ESn(Ξ0) . (14)
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We now use one of the Crofton formulae for Hausdorff
rectifiable closed sets, stating that

Sn(Z ∩W )

=
1

ωn−1

∫

L n
1

∫

L⊥1
N(Z ∩W ∩ (L1 + t))dtn−1dLn

1 ,

where ωn−1 = π n−1
2 Γ(n−1

2 + 1)−1 is the Lebesgue
measure of the unit ball in R

n−1 and N(·) = H n
0 (·)

denotes counting measure. The stationarity of Z
implies

EN(Z ∩W ∩ (L1 + t)) = NL(L1)Ln(W ∩ (L1 + t)) ,

where NL(L1) is the average number of intersection
points per unit length of test lines in direction L1 and
Ln(·) = H n

1 (·) denotes length in R
n. Hence, using

Fubini’s theorem and (Eq. 4), we conclude that

ESn(Z ∩W )

=
1

ωn−1

∫

L n
1

NL(L1)
∫

L⊥1
Ln(W ∩ (L1 + t))dtn−1dLn

1

=
1

ωn−1
Vn(W )

∫

L n
1

NL(L1)dLn
1

=
1

ωn−1
Vn(W )

∫

L n
n−1(1)

(v)

∫

L1⊆Ln−1

NL(L1)×

× gn−2
1 (L1,v)dLn−1

1 dLn
n−1(1) . (15)

Because of the rotational invariance of Z around the
vertical axis v, NL(L1) only depends on ∠(L1,v),
NL(L1) = NL(∠(L1,v)), say, and the inner integral
of Eq. 15 does not depend on Ln

n−1(1). Choosing a
particular vertical plane Ln−1,0 we get, using Eq. 14,

ESn(Ξ0) = E
Sn(Z ∩W )

NVVn(W )

=
1

NV

σn−1

ωn−1

∫

L1⊆Ln−1,0

NL(∠(L1,v))gn−2
1 (L1,v)dLn−1

1 .

After normalization, the integral can be interpreted as
the mean number of intersection points per unit length
of test line for a random line L1 with a density with
respect to dLn−1

1 proportional to |sin∠(L1,v)|n−2.

INFERENCE ON THE PARTICLE
SIZE DISTRIBUTION

At present, there exists no method of obtaining the
entire particle size distribution from sections without
assumptions about particle shape.

If the particles are spheres, Eq. 2 gives the relation
between the distribution function F of sphere radii and
the distribution function F (n,k) of radii of sectioned
spheres on a k-dimensional affine subspace. A proof
of Eq. 2 can be found in Schneider and Weil (2000,
p. 144-145) for a stationary marked point process of
spheres, intersected by a fixed k-dimensional affine
subspace. Note that the point process of spheres
centres need not follow a Poisson process.

For particles of varying and general shape, Eϕ(Ξ0)
and Eϕ(Ξ0)

2 can be estimated from sections as
explained in the second section for selected size
parameters ϕ . The variance of ϕ(Ξ0) can therefore
be estimated. If the variance in the distribution
of estimated sizes is close to the variance in
the distribution of true sizes, then the distribution
of estimated sizes will be close to the true size
distribution. The potential of this reasoning is
investigated in Jensen and Pawlas (2005).

In recent years, there has been an increasing
interest in estimating stereologically the tail of the
particle size distribution. From a practical point of
view, this is clearly of interest since the property
of a material may be related to the extreme particle
sizes rather than the mean particle size. For example,
in the production of clean steels the occurrence of
imperfections – so-called inclusions – cannot be
avoided. Furthermore, the fatigue strength of a block
of clean steel is largely dependent on the size of
the largest inclusions it contains, so inference on
extreme inclusion size forms an important part of
quality control. The data is usually collected on planar
slices which leads to an extreme value version of a
stereological problem: how to predict extremal size
from measurements on planar slices. In the following
we give a brief introduction into this relatively new
field of stereology of extremes; see also Beneš and
Rataj (2004) for a more detailed survey.

Extreme value theory has been used to get
information about the tail of the particle size
distribution in the case of spherical particles, under
the assumption that the radii of the spheres are i.i.d.
and independent of the process of sphere centres.
Let {Yi, i ≥ 1} be the sequence of independent
and identically distributed sphere radii with common
distribution function F . Denote the sample maximum
by

Zn = max(Y1, . . . ,Yn) , n ≥ 1 .

If there are sequences of normalizing constants an > 0
and bn ∈ R such that the normalized maxima (Zn −
bn)/an converge in distribution to a nondegenerate
distribution function M, then F lies in the domain of
attraction of M. We then write F ∈ D(M). There are

70



Image Anal Stereol 2006;25:63-74

only three types of possible limiting distributions M
(de Haan, 1975; Galambos, 1987), namely

Mi,α(x) =

{
exp(−x−α) x ≥ 0 , i = 1 ,

exp(−(−x)α) x ≤ 0 , i = 2 ,
α > 0 ,

and
M3(x) = exp(−e−x) , x ∈ R .

M1,α , M2,α and M3 are called Fréchet, Weibull and
Gumbel distributions respectively.

For spherical particles, Eq. 2 has been used to show
that

F ∈ D(M1,α) , α > n− k =⇒ F (n,k) ∈ D(M1,α−(n−k)) ,

F ∈ D(M2,α) , α > 0 =⇒ F (n,k) ∈ D(M2,α+ n−k
2

) ,

F ∈ D(M3) =⇒ F(n,k) ∈ D(M3) .

A proof of these results for n − k = 1 can be found
in Drees and Reiss (1992). The proof for n− k ≥ 2 is
similar.

These stability properties can be used to estimate
the normalizing constants of F (n,k) from data in the
section plane Lk and the aim is then to get back to the
normalizing constants of F and predict its extremes. In
a series of papers this was done in the spherical case,
using a generalized gamma model for the distribution
function F (Takahashi and Sibuya, 1996; 1998; 2001;
2002).

A slight extension of this approach was recently
obtained for spheroidal particles in R

3 (Hlubinka,
2003a;b). Suppose the particles are ellipsoidal with
two equal major semiaxes whose length is X . Denote
the minor semiaxis by W . Then a particle is completely
determined (up to position) by the bivariate variable
(X ,T ), where

T =
X2

W 2 −1 (16)

is called a shape factor. Note that the spherical case
is obtained for T = 0 and deviation from spherical
shape increases with T . Under certain isotropy and
independence assumptions the observed ellipses in the
section plane can be described by a size-shape variable
(Y,Z), where Y is the length of the major semiaxis of
the ellipse and Z is a shape factor similarly defined
as in (Eq. 16). Assuming that (X ,T ) has a density
f (x, t), one can derive a relation between f (x, t) and
the density g(y,z) of (Y,Z), see Cruz-Orive (1976).
Using this relationship it is possible to prove stability
properties as in the spherical case assuming a fixed
size or fixed shape for the spheroidal particles. A
simulation study where f (x, t) follows a continuous

Farlie-Gumbel-Morgenstern type of distribution can
be found in Beneš et al. (2003).

Instead of considering maxima one could also be
interested in minima. Stability properties for minimal
radii in the spherical Wicksell corpuscle problem has
been proved recently in Kötzer and Molchanov (2006).

SHAPE MODELLING

Shape modelling of planar and spatial objects with
no obvious landmarks has attracted much attention
in the last ten years. One approach in this direction
uses the normal deformation of a sphere, which is
defined via the spherical-harmonic basis on the unit
sphere, see e.g., Grenander and Miller (1994); Hobolth
(2003); Hobolth and Jensen (2002). This shape model
can easily be generalized to higher dimensions. Thus,
let Ξ0 ⊆ R

n be star-shaped relative to z ∈ Ξ0. The
boundary of Ξ0 is determined by

{z+ r(ω)ω : ω ∈ Sn−1} ,

where r(ω) is the distance from z to the boundary of
Ξ0 in direction ω . We can express the radius-vector
function r(ω) in terms of the spherical harmonics

{S(n)
k,m(ω) : k ∈ N0, m = 1, . . . ,N(n,k)} ,

which constitute an orthonormal basis on Sn−1

(Groemer, 1996; Mueller, 1966). Here N(n,k)
denotes the number of linearly independent spherical
harmonics of degree k in n variables. The Fourier-
Legendre series expansion of the radius-vector
function is given by

r(ω) =
∞

∑
k=0

N(n,k)

∑
m=1

a(n)
k,mS(n)

k,m(ω) ,

where
a(n)

k,m =
∫

Sn−1
r(ω)S(n)

k,m(ω)dω .

For modelling shape variability, the coefficients a(n)
k,m

are chosen to be random and are modelled as
independent Gaussian random variables with common
mean zero and variances λ (n)

k,m,

a(n)
k,m ∼ N(0,λ (n)

k,m) , k ∈ N0 , m = 1, . . . ,N(n,k) .

Assuming moreover that

λ (n)
k,m = λ (n)

k , k ∈ N0 , m = 1, . . . ,N(n,k) , (17)

71
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we get, using the addition theorem for spherical
harmonics,

Cov(r(ω1),r(ω2))

=
∞

∑
k=0

λ (n)
k

N(n,k)

∑
m=1

S(n)
k,m(ω1)S

(n)
k,m(ω2)

=
1

σn

∞

∑
k=0

λ (n)
k N(n,k)P(n)

k (ω1 ·ω2) , (18)

where ω1,ω2 ∈ Sn−1 and P(n)
k (·) denotes the Legendre

polynomial of degree k in n variables. ¿From (Eq. 18)
we see that assumption (Eq. 17) implies stationarity
on the sphere, in the sense that the covariance between
two points on the sphere depends only on the angle
between these points. Since in (Eq. 18) σn, N(n,k)
and P(n)

k (·) are known, the covariance is completely

determined by the variances λ (n)
k . Parametric models

for the variances λ (n)
k in the planar and spatial case

(n = 2,3) are discussed in Grenander and Miller (1994;
1998); Hobolth and Jensen (2002).

OPEN PROBLEMS

The list of geometric identities presented in this
paper is not complete in the sense that it would be of
great practical interest in stereological particle analysis
if identities of the type (Eq. 1) could be derived
for functionals α other than powers of volume and
surface area. Such an identity is, however, only of
interest in applications if it is possible to determine
β (X ∩ T ) from information inside the section T . In
particular, it is important to derive identities of this
type with α equal to squared surface area. Another
class of identities still missing are those with α equal
to intrinsic volumes in R

n or β equal to intrinsic
volumes on the sections. Some progress on the second
problem has been made in Jensen and Rataj (2005)
but the first problem remains open. In fact, the first
problem is the one with most practical interest.

Prediction of extreme particle sizes in the case
of spherical or spheroidal particles is the first step
in creating a theory of “Stereology of extremes”,
but having applications in mind it is clearly of great
importance to develop methods for particles with more
complicated shape. A major problem is that only
for simple particle shapes is it possible to derive
relationships between the particle sizes of interest such
as (Eq. 2). For example, Cruz-Orive (1976) has shown
that the size distribution of ellipsoidal particles in
R

3 with three different semiaxes cannot be uniquely
determined using information from plane sections.
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tomography and local stereology. Adv in Appl Math
30:397–423.

Gokhale AM (1990). Unbiased estimation of curve length
in 3-d using vertical slices. J Microsc 159:133–43.

Grenander U, Miller MI (1994). Representations of
knowledge in complex systems (with discussion). J Roy
Statist Soc Ser B 56:549–603.

Grenander U, Miller MI (1998). Computational anatomy:
An emerging discipline. Quart Appl Math 5:617–94.

Groemer H (1996). Geometric applications of Fourier series
and spherical harmonics. Cambridge University Press:
Encyclopedia of Mathematics and its Applications, 61.

Gundersen HJG (1977). Notes on the estimation of the
numerical density of arbitrary profiles: the edge effect.
J Microsc 111:219–23.

Gundersen HJG (1978). Estimators of the number of objects
per area unbiased by edge effects. Microscopica Acta
81:107–17.

Hanisch KH, Stoyan D (1981). Stereological estimation of
the radial distribution function of centres of spheres. J
Microsc 122:131–41.

Hlubinka D (2003a). Stereology of extremes; shape factor
of spheroids. Extremes 6:5–24.

Hlubinka D (2003b). Stereology of extremes; size of
spheroids. Mathematica Bohemica 128:419–38.

Hobolth A (2003). The spherical deformation model.
Biostatistics 4:583–95.

Hobolth A, Jensen EBV (2002). Stereological analysis of
shape. Image Anal Stereol 21:23–9.

Jensen EBV (1998). Local Stereology. Singapore. World
Scientific Publishing.
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