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ABSTRACT

Volume image analysis provides a number of methods for the characterization of the microstructure of open
foams. Mean values of characteristics of the edge system are measured directly from the volume image.
Further characteristics like the intensity and mean size of the cells are obtained using model assumptions
where the edge system of the foam is interpreted as a realization of a random closed set. Macroscopically
homogeneous random tessellations provide a suitable model for foam structures. However, their cells often
lack the degree of regularity observed in real data. In this respect some deterministic models seem to be
closer to realistic structures, although they do not capture the microscopic heterogeneity of real foams. In
this paper, the influence of the model choice on the obtained mean values is studied. Moreover, a method for
reconstruction of the cells of an open foam from its edge system is described and tested for the tessellations
under consideration.

Keywords: foam structures, image analysis, Minkowski functionals, random tessellations, volume images,
Voronoi tessellation.

INTRODUCTION

Foams (polymer, ceramic or metal) are new
materials of high interest in a wide range of application
areas. Due to high porosity, stiffness, and compliance,
they are useful for construction e.g., of filters or crash
absorbers. Foams are characterized by polyhedral cells
forming a space-filling structure. They are classified
as either “open-cell” with a strut-like morphology
forming a continuous network, or as “closed-cell”
with solid membrane-like faces. As the properties
of a foam depend on the geometric characteristics
of its cells, one is interested in measuring those
quantities. Classical metallographic methods using
two-dimensional images of cross sections are less
suitable for foams. Due to their high porosity, the
preparation of sections is extremely complicated and
can destroy the features of the microstructure. On
the other hand, computer micro-tomography (µCT)
provides high quality three-dimensional images of
foam structures. Reconstructed topological images of
typical foam structures are shown in Fig. 1. Various
tools for deriving the desired values from these images
have been developed during the last years.

In Lautensack and Sych (2005) two methods for
obtaining cell characteristics of an open foam using
a three-dimensional image of its edge system have
been considered. One of these is based on measuring
the Minkowski functionals of the edge system.

Using model assumptions, these measurements can
be used to compute the mean values of the cell
characteristics of the open foam. However, in many
cases one is not only interested in information on
the mean values but also on the distribution of cell
characteristics. Therefore, image processing tools are
used for reconstruction of the cells. Distributions
of cell characteristics can then be determined by
measuring the desired properties of each of the
reconstructed cells.

In this paper, the dependency of the results on
the model choice as well as the geometric structure
(e.g., the degree of regularity of the cells) of the
analyzed foam is studied. To this end, both methods
are applied to three-dimensional images of realizations
of the model structures under consideration.

The text is organized as follows. First, three
models for open foams are introduced. It is explained
how these models can be used to derive cell
characteristics of open foams from three dimensional
images of the edge system of the foam. Then the
procedure of cell reconstruction is described and
information on the simulation methods is given.
Finally, results from both simulation studies are given
and discussed. In conclusion, some suggestions for
further work are given.
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GEOMETRIC MODELS FOR
OPEN FOAMS

Open foams can be interpreted as the edge system
of a spatial tessellation. To reproduce properties of
real foams, this tessellation should be macroscopically
homogeneous but microscopically heterogeneous and
feature mainly pentagonal faces. Three models are
studied here, two of which are stochastic and one is
deterministic. The two stochastic models both belong
to the class of Voronoi tessellations. Randomly placed
seeds start to grow at the same time and at uniform
rate. The growth stops when two cells meet (Okabe
et al., 2000, Chapter 2). The easiest and best known
model is the Voronoi tessellation with respect to a
homogeneous Poisson point process (Stoyan et al.,
1995, Section 2.4.). It is achieved using independently
uniformly distributed seeds. However, the cells of a
Poisson Voronoi tessellation do not show the degree of
regularity (measured for example by the coefficient of
variation of cell volumes or shapes) and the tendency
to pentagonal faces observed in real data. More regular
cells are obtained if the seeds satisfy some hard
core condition, i.e., there are no points closer than
a fixed distance from each other. Here, the Voronoi
tessellation with respect to a Matérn hard core point
process (Stoyan et al., 1995, Section 5.4.) is used.
However, it does not overcome this problem to a
satisfying degree.

Some deterministic models seem to be more
suitable for capturing the regularity of open foams.
We use the Weaire-Phelan foam (Weaire, 1996) whose
cells are pentagonal dodecahedra and tetradecahedra
having two hexagonal and 12 pentagonal faces.
However, the regularity of this model is paid for by
the complete loss of microscopic heterogeneity.

ANALYSIS USING MINKOWSKI
FUNCTIONALS

For analysis of foam structures, a basic set
of characteristics from integral geometry is used -
the Minkowski functionals (or quermass integrals
or intrinsic volumes). In three-dimensional space,
these are volume, surface area, integral of mean
curvature, and integral of total curvature, also called
Gaussian curvature. For homogeneous structures,
these functionals are completely determined by their
densities, which are

(a) (b)

(c)

Fig. 1. Reconstructed tomographic images of a
polymer foam (resolution 5 µm) (a) and an open nickel
foam (resolution 10 µm) (b), visualization of the edge
system of a Poisson Voronoi tessellation (c).

– VV - the volume density (the volume fraction or the
specific volume)

– SV - the surface density (the specific surface area)

– MV - the density of the integral of mean curvature
(the specific integral of mean curvature)

– KV - the density of the integral of total curvature
(the specific integral of total curvature).

Details can be found in Ohser and Mücklich (2000),
Schneider and Weil (2000) or Stoyan et al. (1995).

Segmentation of a three-dimensional image of
a foam structure results in a black-and-white-image
of the edge system of the foam. Using methods
described in Lang et al. (2001), the densities of the
Minkowski functionals can then be estimated from this
image. From these values, other characteristics can be
deduced. For open foams, the length density of the
edge system LV = MV /(π(1 −VV )) is of particular
interest.

To obtain further interesting characteristics, such
as the intensity or the mean size (e.g., volume or
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diameter) of the cells, model assumptions have to be
introduced. Knowing the geometry of the typical cell
of the foam model under consideration, these mean
values can then be calculated from the measured value
of LV . For the Voronoi tessellations this is shown in
Ohser and Mücklich (2000, Section 10.3.2), for the
Weaire-Phelan foam see Sych (2004). In the present
work, the dependency of the obtained mean values on
the choice of the model assumptions is studied.

RECONSTRUCTION OF CELLS

In order to derive empirical distributions of size,
shape or other features of the cells, the cells have to
be reconstructed using image analysis tools. Again,
the edge system of the foam is segmented. To the
resulting black-and-white image, a Euclidean distance
transform is applied assigning each background pixel
its distance to the edge system (Cuisenaire, 1999).
Ideally, this yields local maxima exactly at the
cell centers. In practice, superfluous local maxima
have to be removed using filters or morphological
transformations. Finally, the watershed algorithm
(Vincent and Soille, 1991) divides the inverted distance
image into cells. This algorithm can be imagined
as flooding the topographic representation of a gray
value image with water. The water flows down the
steepest slope path until reaching a local minimum. All
points whose steepest slope path reaches a given local
minimum form the catchment basin (cell) associated
with this minimum. Neighboring catchment basins
are separated by a watershed which represents the
boundary of the cells. A discussion of this method,
which is state-of-the-art in 2d image processing, can
be found in the book by Soille (1999). The processing
chain has been applied to 3D µCT-images of solid
foams e.g., by Thieme et al. (2003), Brunke et al.
(2004), and Godehardt et al. (2004). We applied it to
3D images of the edge system of a Poisson Voronoi
tessellation and the Weaire-Phelan foam. Sections of
the resulting 3D images are shown in Figs. 2 and 3.

SIMULATION METHODS

Samples of each of the three model structures
under consideration (Poisson Voronoi (PV), hard core
Voronoi (HCV) and Weaire-Phelan (WP)) with an
intensity of 216 cells in a cube of side length s = 1
are created. Periodic boundary conditions are used in
order to avoid boundary effects. 30 realizations of a
Poisson Voronoi tessellation are calculated analytically
using the Qhull software package (Barber et al.,
1996). Discretized versions of the edge system of

the tessellation are drawn to a three-dimensional
binary image of size 5123. The characteristics of the
edge system are estimated with the MAVI software
package (MAVI, 2005) using each of the three
model assumptions. Since the sufficient conditions for
unbiased estimation are not met (Ohser and Nagel,
1996), the resolution correction introduced in Ohser
and Mücklich (2000, Section 10.3.2) is used. For an
evaluation of the method, the values are compared to
the ones calculated from the analytic representation
of the structure. The same is done for the Voronoi
tessellation with respect to a Matérn hard core process
with hard core parameter r = 0.051. For the choice of r
see Ohser and Mücklich (2000, Section 10.3.2). Since
the Weaire-Phelan partition is deterministic, only one
image has to be analyzed for this model. Again, the
edge system is drawn to a 5123 binary image. Then
we proceed as described above. For comparison, the
theoretical values of the cell characteristics are used.

In order to test the reconstruction method, it is
applied to the images of the edge systems of one of the
Poisson Voronoi realizations and of the Weaire-Phelan
foam. Since we already start with binary images,
there is no need for a binarization step. To avoid
oversegmentation, superfluous local minima have to
be removed from the inverted distance image. This
is particularly important for irregular structures like
the Poisson Voronoi tessellation. Smoothing filters
are a fast and simple possibility. However, their
disadvantage is that, up to a certain degree, they
remove all local minima, including relevant ones.
Geodesic transformations are better adapted to this
problem. Here, the h-minima function (Soille, 1999,
Section 6.4.4) is used. This transformation fills basins
containing local minima until either the value of the
minimum is increased by a given value h or the value
of the closest local maximum is reached. Thus, by
the parameter h, the suppression of superfluous local
minima can be controlled without influence on relevant
local extrema. The value of h is chosen according to the
expected distance of the cell centers to the boundaries.
We used h = 1400 (65536 gray values) for the Poisson
Voronoi tessellation and h = 25 (256 gray values) for
the Weaire-Phelan foam.

All algorithms are performed in three dimensions
and use periodic boundary conditions to avoid
boundary effects. Volume and diameter (i.e., mean
breadth) of each of the reconstructed cells are
determined using the MAVI software package.
While the measurement of the cell volumes is
straightforward, two methods are available to
determine the cell diameters. The first method is based
on measuring the integral of mean curvature MV of the
cells. Then the mean breadth is given by b̄ = MV /(2π).
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The other method uses the 13 directions given in a
cubic grid, namely three coordinate directions, six
face diagonals and four space diagonals of the unit
cell. The diameters of a given cell in each of these
13 directions are determined. Their mean is used
as an estimator for the mean breadth of the cell.
Usually, the first method is the better choice. Since
periodic boundary conditions are used, all cells can be
included in the statistics and there is no need for any
boundary corrections. Results are summarized in the
next section.

(a) (b)

(c) (d)

Fig. 2. 2D sections of the edge system of a Poisson
Voronoi tessellation (a), its cells (b), the distance
image (c) and the reconstructed cells (d).

RESULTS

The cell characteristics measured for the PV, HCV
resp. WP structures are shown in Tables 1, 2 and 3,
respectively. As expected, for the PV and the WP
model the best results are obtained using the correct
model assumptions. However, in the WP case the
deviations are higher than in the PV case. For the
HCV model the values obtained with the PV model
assumptions are closest to the true ones. This can be
explained as follows. A resolution correction has been
used to avoid underestimation of LV , which obviously
works well for the PV model. For more regular
structures such as the HCV and the WP model, this

correction tends to overcorrect the values. Therefore,
the value of LV is overestimated, but still closer to the
true value than without resolution correction. A choice
of a lower resolution of the images would have led to
better results in these cases. In simulations it turned
out that the error due to an inappropriate choice of
model assumptions is smaller than the error caused by
resolution effects.

(a) (b)

(c) (d)

Fig. 3. 2D sections of the edge system of a Weaire
Phelan foam (a), its cells (b), the distance image (c)
and the reconstructed cells (d).

Fig. 4. Volume distribution of original Poisson Voronoi
cells , volume unit is s3.
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Table 1. Results for Poisson Voronoi tessellation (PV) using PV, HCV and WP model assumptions. The mean
values of 30 realizations are given. The length unit s is the side length of the cubical observation window.

True
value PV Dev.

[%]
HCV Dev.

[%]
WP Dev.

[%]
Mean
number of
cells per
volume unit

216 214.70 -0.60 220.68 +2.17 244.34 +13.12

Mean cell
volume [(0.1s)3]

4.630 4.658 +0.60 4.532 -2.12 4.093 -11.60

Mean cell
diameter [s] 0.2431 0.2435 +0.16 0.2384 -1.93 0.2405 -1.07

Mean area
of faces [s2]

0.01042 0.01045 +0.29 0.01018 -2.30 0.01009 -3.17

Table 2. Results for hard core Voronoi tessellation (HCV) using PV, HCV and WP model assumptions. The mean
values of 30 realizations are given.

True
value PV Dev.

[%]
HCV Dev.

[%]
WP Dev.

[%]
Mean
number of
cells per
volume unit

215.83 214.56 -0.58 220.55 +2.19 244.19 +13.14

Mean cell
volume [(0.1s)3]

4.649 4.675 +0.56 4.548 -2.17 4.108 -11.64

Mean cell
diameter [s] 0.2431 0.2437 +0.25 0.2386 -1.85 0.2407 -0.99

Mean area
of faces [s2]

0.01044 0.01047 +0.29 0.01020 -2.30 0.01011 -3.16

Table 3. Results for Weaire-Phelan foam (WP) using PV, HCV and WP model assumptions.

Theor.
value PV Dev.

[%]
HCV Dev.

[%]
WP Dev.

[%]
Mean
number of
cells per
volume unit

216 195.82 -9.34 201.28 -6.81 222.85 +3.17

Mean cell
volume [(0.1s)3]

4.630 5.107 +10.30 4.968 +7.30 4.487 -3.09

Mean cell
diameter [s] 0.2506 0.2510 +0.16 0.2458 -1.92 0.2480 -0.04

Mean area
of faces [s2]

0.01095 0.01111 +1.46 0.01083 -1.10 0.01072 -2.1
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Fig. 5. Volume distribution of reconstructed Poisson
Voronoi cells, volume unit is s3.

Fig. 6. Diameter distribution of original Poisson
Voronoi cells, length unit is s.

Fig. 7. Diameter distribution of reconstructed Poisson
Voronoi cells, length unit is s.

Table 4. Results from 3D cell reconstruction of PV
tessellation compared to analysis using Minkowski
functionals.

True
value

Mink.
funct.

Cell
reconstr.

Mean cell
volume [s3]

0.0046 0.0046 0.0046

Mean cell
diameter [s] 0.2435 0.2425 0.2431

Table 5. Results from 3D cell reconstruction of Weaire-
Phelan foam compared to analysis using Minkowski
functionals.

Theor.
value

Mink.
funct.

Cell
reconstr.

Mean cell
volume [s3]

0.00463 0.00448 0.00462

Mean cell
diameter [s] 0.2506 0.2480 0.2514

The volume and diameter distributions of one
realization of the Poisson Voronoi tessellation are
given in Figs. 4 and 6. The distributions measured
from the reconstructed image are given in Figs. 5
and 7. The corresponding mean values can be found
in Tables 4 and 5. For comparison the true values
for the examined Poisson Voronoi tessellation resp.
the theoretical values for the Weaire-Phelan foam
are given. For both the Poisson Voronoi tessellation
and the Weaire-Phelan foam, the mean volume and
diameter obtained by cell reconstruction are close to
the values for the original structures. In the PV case,
similar results are also obtained using the Minkowski
functionals of the edge system. In the WP case, cell
reconstruction yields better results than computation of
the Minkowski functionals. This is again caused by the
use of the resolution correction. Furthermore, it turns
out that the diameters obtained by calculation of the
mean of the diameters in the 13 discrete directions
are closer to the true values than the ones obtained
from the integral of mean curvature. This is caused
by the reconstructed cells having a stronger curvature
than the polygonal cells of the original structure,
which leads to overestimation of the integral of mean
curvature. The histograms of both cell volumes and
diameters show a higher variance of cell sizes in the
reconstructed images. Cells larger or smaller than the
ones in the original image occur at a similar degree.
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Hence, this result can be considered optimal, since a
change of parameters in the reconstruction procedure
would increase the number of either smaller or bigger
cells. The spread of distributions is a natural effect of
cell reconstruction and has to be taken into account
when evaluating results.

DISCUSSION

Volume image analysis is a promising tool for
gaining insight into the microstructure of foams. In
this paper, methods for measuring cell characteristics
of an open foam from a three-dimensional image
have been described and evaluated. Both methods
yield satisfying results for the cell characteristics of
the model structures under consideration. However,
several fields for further research arise. As expected,
image resolution is an important factor for the quality
of the results. A better understanding of resolution
effects might lead to a recommendation concerning the
choice of resolution or even a refined method for error
correction. Since periodic boundary conditions have
been used throughout this paper, there was no need for
any further edge treatment. When working with real
data, one will have to provide an appropriate method
to avoid edge effects. Finally, the field of model choice
still holds several open questions. A model structure
combining microscopic heterogeneity and regularity of
the cells would be desirable. Possible candidates might
be a random version of the Weaire-Phelan foam or
random Laguerre tessellations. However, for the time
being, formulas for the cell characteristics of those
structures are not available.
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