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ABSTRACT

A method is presented for fast interpolation between medical images. The method is intended for both
slice and projective interpolation. It allows offline interpolation between neighboring slices in tomographic
data. Spatial correspondence between adjacent images is established using a block matching algorithm.
Interpolation of image intensities is then carried out by morphing between the images. The morphing-based
method is compared to standard linear interpolation, block-matching-based interpolation and registration-
based interpolation in 3D tomographic data sets. Results show that the proposed method scored similar
performance in comparison to registration-based interpolation, and significantly outperforms both linear and
block-matching-based interpolation. This method is applied in the context of conformal radiotherapy for
online projective interpolation between Digitally Reconstructed Radiographs (DRRs).
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INTRODUCTION

Conformal radiotherapy is a cancer treatment
protocol that allows to deliver escalating X-ray
doses with minimal exposure to surrounding healthy
tissues. In order to achieve such goal, the protocol
combines state of art technologies allowing the precise
anatomical definition and targeting of tumors, as well
as the elaboration of dosage goals with input from
Computerized Tomography (CT) facilities.

The medical process begins by acquiring a
reference CT of a patient, and by computing an
irradiation procedure. During several weeks, the
patient comes every day for an irradiation session.
In order to have a safe and efficient irradiation,
the patient must be perfectly positioned, so that the
position of the patient at initial CT scan acquisition
is reproducible throughout the treatment session.
At present, physicians have to accurately estimate
patient positioning errors by visual inspection only.
However, this is likely to be responsible for limited
accuracy and unnecessary loss of time. Therefore,
an automated system to characterize and to estimate
the displacement of the patient as compared to the
reference position has been proposed (Clippe et al.,
2003; Sarrut and Clippe, 2001). The method involves
the use of portal images generated by Electronic
Portal Imaging Devices (EPID) (Fig. 1). Portal Images
(PI), which are projective images acquired before the
beginning of each treatment session, are compared

to the reference CT image through an intensitybased
registration between portal images and Digitally
Reconstructed Radiographs (DRRs) which are 2D
images generated by projection of the 3D CT scan
image. Experiments of the automated system leads to
a far better accuracy than the manual one, and requires
low computation times compatible with a clinical use
of the system. However, there are still some steps
within the system that need to be further optimized in
order to:

– assure smooth and fast interpolation between
the consecutive slices of the 3D CT volume
representation in order to provide an isotropic
volume image from which the 3D object of interest
is reconstructed and thus the irradiation ballistics is
accurately calculated.

– ensure accurate patient positioning so that the
position of the patient at initial CT scan acquisition
is reproducible throughout the treatment session
by applying the online intensity-based 2D/3D
registration between Portal Images and Digitally
Reconstructed Radiographs. However, the
computing of DRRs can be a time-consuming
procedure, especially in the case of intensive
use as required for 3D (scanner X) / 2D (PI)
image registration. The objective is to optimize
the process of DRR generation to fit the time
constraints imposed by the clinical application.
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Fig. 1. Generation of portal images using Electronic
Portal Imaging Devices (EPID)

Image interpolation is of great importance
in biomedical visualization and analysis. Three-
dimensional medical imaging devices usually deliver
cross-sectional images of the human body. Piecing
together sequences of adjacent images results in a
3D volume representation. The distance between
consecutive slices is usually larger than the distance
between neighboring pixels within a given slice,
the pixels between the slices must therefore be
interpolated.

Image interpolation creates a number of new
slices between known slices and provides an
isotropic volume image from which the 3D object
of interest is reconstructed. One example of
multidimensional image interpolation is the three-
dimensional reconstruction of bone geometry and
tissue density features.

Interpolation algorithms can broadly be divided
into two categories: scene-based (image-based) and
object-based (shape-based) algorithms. In scene-based
methods, the interpolation is determined only from
the image intensities. In object-based methods, some
object information extracted from the slices is used for
guiding the interpolation process.

The most commonly used scene-based methods
are nearest-neighbor and linear interpolations
(Goshtasby et al., 1992; Higgins and Ledell, 1994).
Although scene-based routines have received a lot
of attention (Lehmann et al., 1999; Thévenaz et al.,
2000), there has been repeated evidence in the
literature of the superior performance of object-based
over scene-based interpolation techniques (Barret and
Stringham, 1993; Grevera and Udupa, 1998; Herman
et al., 1992), especially when the in-plane position of
anatomical features is considerably modified between
slices.

Object-based interpolation methods have been
extended by allowing registration between slices.
Probably one of the main registration-based

interpolation methods was developed by Penney et al.
(2004), where the primary registration step allows
spatial correspondence between adjacent slices, then
interpolation is carried out between corresponding
positions in each slice.

However, despite the efficacy of such technique
(Penney et al., 2004), its rather high computational
cost can be considered as a serious drawback
for clinical applications like conformal radiotherapy
where offline-interpolation is not always needed
and even if it is, sometimes, it is not possible
due to the large number of patients treated at the
radiotherapy center. Therefore, our main motivation
is to develop an interpolation routine to work in
the context of conformal radiotherapy for both
slice and projective interpolation. In others words,
it allows offline slice interpolation for CT data,
and online projective interpolation between Digitally
Reconstructed Radiographs (DRRs). The method has
to be flexible, simple to implement and to evolve,
accurate but without the disadvantage of a more
expensive computation cost.

In a previous investigation, we presented some
early experiments of the method that showed its
usefulness for projective interpolation between DRRs
(Atoui et al., 2004). In this paper, we present and
assessed the method for slice interpolation of 3D CT
data. The method shares some of its philosophy from
registration-based methods but differs from them by
using a less costly mapping routine: correspondence is
established using a block matching process. It also uses
an image morphing algorithm to interpolate between
adjacent slices. This morphing-based interpolation will
be compared to standard linear interpolation, block-
matching-based interpolation and registration-based
interpolation in tomographic data sets.

METHODS

Interpolation between consecutive slices involves
a two-step formalism:

– The first step is matching, which is based on
establishing a correspondence between source and
target images via block matching.

– The second step is interpolation, which uses the
correspondence obtained in the first step, and
generates the in-between image through image
morphing.
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MATCHING STEP

In medical images, the pixels corresponding to soft
tissue contours and bone structures have high gradient
values and thus can be used as anatomical landmarks.
Using a block matching process, we can establish the
correspondence between two adjacent images, based
on the differences of pixel intensity and gradient.

The block matching algorithm operates as follows:

– Each image frame is divided into a fixed number
blocks.

– For each block in the source image, a search
is made over a limited area in the target image
to obtain the best matching block with the least
prediction error.

– A block is considered found if it matches another
block in the second image with a correlation higher
than a threshold T .

– The block matching algorithm results in two
meshes of control points: coordinates of the upper
right-hand corners of the blocks. The source image
is associated with a mesh MS which specifies the
coordinates of control points. A second mesh MD
specifies their corresponding positions in the target
image.

The efficacy of the matching depends on four
parameters: the block size B, the search region R,
the threshold T and the similarity criterion S. Values
of B = 16, R = 8 and T = 0.85 were found to
provide a reasonable compromise for the sequences
tested. Similarity was defined from the intensities and
gradients of the blocks. In other words, matching a
block in the target image to a block in the source image
is a normalized function of the intensity, the gradient
magnitude, and the gradient direction of the block as
follows:

S = |I(x,y)− I′(x′,y′)|
+ |M(x,y)−M′(x′,y′)|
+ |D(x,y)−D′(x′,y′)|

where I(x,y), M(x,y) and D(x,y) are, respectively, the
intensity, the gradient magnitude, and the gradient
direction of the block (x, y) in the source image (note
that x and y are the coordinates of the upper right-
hand corner of the block, and the similarity measure
is applied to the whole block); and I ′(x′,y′) M′(x′,y′)
D′(x′,y′) are, respectively, the intensity, the gradient
magnitude and the gradient direction of the block
(x′,y′) in the target image.

INTERPOLATION STEP

Morphing between two images involves the
deformation of reference images towards an
intermediate position. It consists in generating two
intermediate images, followed by the application of
a color blending technique (cross dissolve, which is
equivalent to linear interpolation) to compute the final
artificial image.

Image morphing provides flexibility for
accommodating local transformations between images
and makes it possible to generate continuous
deformations from source image to destination image.

Numerous morphing techniques (mesh warping,
field morphing, energy minimization, free-form
deformations, etc) (Wolberg, 1998) are available
for the generation of artificial intermediate images.
Generally, all these techniques follow similar
procedures, including establishing correspondences
between images (via points, segments, curves, etc),
calculating mapping functions, controlling transition
and finally pixel interpolation (cross-dissolve).
However, a simple, rapid, efficient and reliable
morphing technique was desirable to investigate the
feasibility of our approach. For this initial platform, we
have chosen to use the 2-pass mesh warping algorithm
(Wolberg, 1990).

The mesh-warping algorithm relates features with
the mesh of control points provided by the matching
process as follows:

– The algorithm accepts a source image (Fig. 2d),
a destination image (Fig. 2f) and two arrays
of coordinates. The first array, MS, specifies the
coordinates of control points in the source image
(Fig. 2a). The second array, MD, specifies their
corresponding positions in the destination image
(Fig. 2i). Both MS and MD must have the same
dimensions in order to establish a one-to-one
correspondence.

– Then two images are processed through a 2-pass
warping with 2 output intermediate images I1 (Fig.
2c) and I2 (Fig. 2g).

· The first pass is responsible for resampling
each row independently. It maps all initial
image points coordinates (u,v) to their (x,v)
coordinates in the intermediate image, thereby
positioning each input point into its proper
output column.

· The second pass then resamples each column
in the intermediate image, mapping every (x,v)
point to its final (x,y) position in I1 and I2.
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Fig. 2. Illustration of the 2-pass mesh warping. The algorithm allows the deformation of two reference images
towards an intermediate selection, thus generating two intermediate images, followed by the application of a
cross dissolve to compute the final in-between artificial image.

Cubic splines (Catmull-Rom) are used to
interpolate new pixel locations between warped
mesh vertices. Catmull-Rom spline interpolation
allows for smooth interpolation between two
different meshes to determine the correspondence
between pixels. Fant’s algorithm (Fant, 1986) is
used to resample the pixel color according to the
spatial mapping provided by Catmull-Rom spline
interpolation.

– After the landmarks of the source and target
images have been aligned through (I1 and I2), they
are cross-dissolved to generate a final in-between
image I (Fig. 2e). In other words, the intensity
value of the pixel u(x,y) in the middle image I
is the result of the linear interpolation between
u1(x,y) of I1 and u2(x,y) of I2.

RESULTS

The purpose of this section is to provide a
twofold analysis of the performance of the proposed
method: firstly, with a quantitative error analysis
and comparison with linear and block-matching-based
interpolation; secondly, with a visual evaluation of the
quality of interpolated images.

To determine how well the block matching is
doing, we conducted some experiments in terms of
landmark localization. The scenario was to consider
two consecutive slices in a 3D CT image, place several
anatomical landmark points on the first slice and
the corresponding points (determined visually) on the
second slice. Then the block matching algorithm used
the mesh of points of the first slice and determined the
corresponding mesh in the second slice. Finally, we
calculated the distance between the reference points
and the points obtained with the block matching
algorithm. As these experiments were not complete,
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Table 1. Summary of the image dimensions and voxel sizes for the two data set types

Data set In-plane In-plane No. slice
type grid sizes dimensions slices spacing

(mm2) (mm)
CT 512×512 0.94×0.94 53−75 5

abdomen
CT lungs 511×316 0.89×0.89 115 2.5

they were not included in the paper.

A series of tests were then conducted to evaluate
the quality of the images generated by morphing as
compared to reference images. For this study, 9 3D CT
abdomen and 2 3D CT lungs images were available.
Image dimensions and voxel sizes are summarized
in Table 1. All images were acquired from scanners
performed at Léon Bérard anti-cancer center.

We reused the framework for error analysis
proposed by Grevera and Udupa (1996). Our
approach was tested against three interpolation
techniques: linear interpolation, block-matching-based
interpolation and registration-based interpolation.

As with our method, the block-matching-based
interpolation has a matching step using block
matching. However, in the interpolation step, the
morphing is replaced by simple linear interpolation
between the corresponding blocks of pixels in source
and destination slices.

As for the registration-based interpolation, we used
a home-made implementation of a 2D deformable
registration algorithm (based on Sarrut et al., 2006)
to obtain a dense deformation field. Our method is
slightly different of Penney et al. (2004) registration-
based interpolation because 1) we used Sum of
Squared Differences (SSD) instead of Normalized
Mutual Information as similarity criterion, and 2)
we used Gaussian regularization instead of B-splines
parametrization. Moreover, the resulting vectors field
is linearly interpolated from a 3×3mm2 grid although,
in Penney et al. (2004), it was interpolated with Cubic
B-splines from 20 × 20mm2 and 10 × 10mm2 grid
resolution. Then, slices were interpolated using the bi-
linear interpolation proposed in Penney et al. (2004).

The assessment implies using sequences of three
images and interpolating an in-between image between
the first and the third one. The interpolated slice is then
compared with the second image, using three error
measures:

– Mean-squared difference (MSD):

MSD =
1

NS

NS

∑
i=1

1
NP

∑
u∈P

(Ii(u)− Ii(u)m)2
, (1)

where NS is the number of slices being interpolated
and NP the number of pixels per interpolated
slice. Ii(u) and Ii(u)m are respectively the original
density value and the density estimation obtained
using the interpolation method.

– Number of sites of disagreement (NSD):

NSD =
NS

∑
i=1

∑
u∈P

τ(||Ii(u)− Ii(u)m||) , (2)

where

τ(x)=

{

1, if x ≥ 0.05×maxi=1...NS,u∈P(Ii(u)m)
0, otherwise.

(3)

– Largest difference (LD):

LD = max
i=1...NS,u∈P

(||Ii(u)− Ii(u)m||) . (4)

In addition to these measurements, we used
another measure from Grevera and Udupa (1996),
called statistical relevance r. This parameter shows
the percentage difference between two interpolation
techniques (i.e. m1 and m2) for a given error measure
(i.e. err) as depicted in the following equation:

rm1,m2 =

{

+100× [1− err1
err2

], if err2 > err1 ,

−100× [1− err2
err1

], otherwise. (5)

Positive values of rm1,m2 indicate that the first
interpolation technique performs better than the
second interpolation technique. Negative values show
the opposite effect.

One final test to estimate the matching quality for
the interpolated slice in comparison to the original
slice, for linear, block-matching and morphing-based
interpolation methods, is the mean sum of absolute
difference (MSAD) as follows:

MSAD =
1

NS

NS

∑
i=1

1
NP

∑
u∈P

(|Ii(u)− Ii(u)m|) . (6)
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Error measurements provided by Eqs. 1–4 and 6
for linear interpolation (LIN), block-matching-based
interpolation (BLIN), registration-based interpolation
(REG) and morphing-based interpolation (MORPH)
are summarized in Table 2 and Table 3. The values are
computed from the 3D CT images as follows:

Table 2. Mean sum of absolute difference (MSAD)
between interpolated slices and corresponding
original slices in CT data sets, for linear (LIN), block-
matching (BLIN), registration (REG), and morphing
(MORPH) based interpolation methods

Data type Interpolation methods MSAD
LIN 17.3

CT BLIN 15
abdomen REG 14.4

MORPH 14.8
LIN 27.6

CT BLIN 25
lungs REG 24.7

MORPH 24.7

The results in Table 2 and Table 3 show that, in
average, our approach gives better estimates of original
density values than both linear and block-matching-
based interpolation. Moreover, similar performances
in terms of the used metrics were achieved between
registration-based interpolation and the proposed
morphed-based method.

We are aware that only limited datasets were used
to perform the experiments (in particular only CT
images were used) and that larger experiments should
be performed to compare registration-based and
morphed-based interpolation (for example with MR
images). However, with more than 800 interpolated
slices, computed criteria were very similar between the
two methods and significantly different from the linear
(LIN) or BLIN ones

Fig. 3 illustrates the differences between the
interpolation techniques. The problem with linear
interpolation is that if features do not line up exactly,
interpolation results in a blurred image. In morphing-
based interpolation, features from source and target
images have already been aligned using block
matching. Also, comparing to block-matching-based
interpolation, the morphing step in our method allows
for smoother transition between images. Visually,
morphing-based interpolated images are therefore
much similar to the original images.

DISCUSSION

COMPUTATIONAL COST
When comparing the computation times between

our morphing-based interpolation approach, and
the registration-based method, we noticed that
interpolation between two 512 × 512 slices using our
approach took about 15 sec in comparison to about
1 minute for the registration-based interpolation, as
measured on a Pentium IV, 2 GHz computer.

However, a quality-based comparison using the
same CT database is needed to make sure that our
method delivers as accurate images as the registration-
based methods.

The computation time of our method is clearly
dominated by the matching step. In other words, the
total timing strongly depends on the block matching
parameters (block size, search region . . . ). One of the
possible speedup options for reducing the computation
time would be the use of an optimized block matching
algorithm as in Salari and Li (1995).

EXISTING ROUTINES
When compared to both shape-based and linear

interpolation, registration-based interpolation allows
for a statistically better synthesized images Penney
et al. (2004). However, while in some cases, images
can be interpolated off-line, in other cases, online
interpolation is a necessity. In conformal radiotherapy
context, to determine the patient positioning before
radiation, the whole process: from acquiring the portal
images, to conducting the registration between PI
and DRRs, to adjusting the patient positioning has
to be done in few minutes. Therefore, a simple, easy
to deploy, flexible and fast reconstruction routine is
preferred especially in a clinical context as conformal
radiotherapy.

FUTURE WORKS
In the context of conformal radiotherapy, the

success of an automatic repositioning system is closely
related not only the accuracy of repositioning the
patient, but also to computation time needed to conduct
the process so it can compatible with a clinical use of
the system.

Basically, to calculate the positioning of the
patient at the beginning of the treatment session in
order to adapt the treatment process, a solution is to
apply an online intensity-based 2D/3D registration
(Clippe et al., 2003, Fig. 4) between Portal Images
representative of the patient positioning at the
treatment session, and Digitally Reconstructed
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Fig. 3. Illustration of a CT slice generated through morphing-based interpolation (upper left), registration-based
interpolation (upper right), block-matching-based interpolation (lower left), and linear interpolation (lower
right) vs reference original slice (middle).

Radiographs representative of the patient positioning
at the reference CT scan session.

DRRs are computed from the patient CT data with
volume rendering (Li and Miguet, 1992; Lacroute,
1995), thus permitting to produce a virtual patient
model. DRRs being digitalized, they can easily be
managed by means of computer systems.

However, the computing of images can be a
time-consuming procedure, especially in the case of
intensive use as required for 3D (scanner X) / 2D
(PI) image registration. For example, to cover a
displacement interval of [−5◦,+5◦] and a half-degree
precision, it is necessary to generate 900 DRRs per

view per patient. It is therefore crucial to devise a
solution for the optimization of the generation process.

One possible solution would be to generate a set of
DRRs off-line representative of a large displacement
interval but with an average precision, then at the
beginning of every treatment to conduct the following
procedure:

– conduct a first 3D/2D registration between the
DRRs and the PI images. The registration will
indicate the area of interest, in terms of best match
between the portal image and the set of DRRs.

– locally, at the area of interest, generate artificial in-
between DRRs via our interpolation method.
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Table 3. Error measurements for the linear interpolation (LIN), the block-matching-based interpolation (BLIN),
the registration-based interpolation (REG), and the morphing based interpolation (MORPH). A dash indicates
that the difference between the two techniques was not statistically significant (t-test ≤ 0.01)

Interpolation Data statistical relevance r
methods type MSD NSD LD

BLIN/LIN CT abdomen 19.2 12.6 −

BLIN/LIN CT lungs 21.3 12.4 −12.1
REG/LIN CT abdomen 28 15.5 −
REG/LIN CT lungs 22.4 13.4 −

MORPH/LIN CT abdomen 27.5 11.3 −

MORPH/LIN CT lungs 27.7 11.2 −

MORPH/BLIN CT abdomen 10.3 −1.5 −
MORPH/BLIN CT Lungs 8.5 −1.6 −

MORPH/REG CT abdomen − −4.7 −

MORPH/REG CT Lungs 7.8 −2.7 −

– conduct a second registration between the portal
image and the DRRs within the area of interest
after adding the newly generated in-between DRRs
through morphing.

This provides a high degree of accuracy locally
with a reasonable number of DRRs to be generated
offline and online comparing to an exponentially
growing amount of costly DRRs that had to be
computed offline to allow a high degree of precision
for the whole displacement interval to apply a one step
registration.

Therefore, apart the usefulness of our method
in slice interpolation, a second use is projective
interpolation where image morphing allows the
creation of new artificial in-between images from
relatively less similar images like DRRs. In fact, in
a previous investigation, we presented some early
experiments of the method that showed its usefulness
for projective interpolation between DRRs (Atoui
et al., 2004).

Fig. 4. The patient displacement error is calculated by
comparing 2 PIs with the 3D CT scan.

CONCLUSION

This paper introduces a simple, fast, and flexible
morphing-based interpolation algorithm of grey-scale
tomographic data by 2D deformation. We compared
the performance of our method to linear, block-
matching and registration based interpolation methods
for 3D CT images and concluded that our method
scored similar performance to registration-based
interpolation, and significantly outperforms both linear
and block-matching-based interpolation.

The main strength of our method lies in the
simplicity of implementation, using well established,
easily understandable and optimized techniques (block
matching, mesh warping, . . . ). Another advantage of
the method is its usefulness in both slice and projective
interpolation.

Studies are ongoing to compare the method
with state-of-the-art routines (registration-based
interpolation. . . ), to improve our method by using a
more accurate and more optimized matching process,
and to assess the method within the overall scenario of
patient positioning in conformal radiotherapy.
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