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ABSTRACT

A theoretical approach to estimate the Minkowski functionals, i.e., area fraction, specific boundary length and
specific Euler number in 2D, and their asymptotic covariance matrix proposed by Spodarev and Schmidt (2005)
and Pantle et al. (2006a;b) is applied to real image data. These two-dimensional images show mammary gland
tissue and should be classified automatically as tumor-free or mammary cancer, respectively. The estimation
procedure is illustrated step-by-step and the calculations are described in detail. To reduce dependencies from
chosen parameters, a least-squares approach is considered as recommended by Klenk et al. (2006). Emphasis
is placed on the detailed description of the estimation procedure and the application of the theory to real image
data.

Keywords: asymptotic covariance matrix, breast cancer, mammary carcinoma, mammary gland tissue,
Minkowski functionals, random closed set, specific intrinsic volumes.

INTRODUCTION

Breast cancer is the most frequent malignant
tumor in women. In routine diagnostics, it is usual to
perform a histopathological grading, which is based
on a three-tiered scheme with grades I, II, and III
(Ellston and Ellis, 1991; Mattfeldt et al., 2004). As
the reproducibility of tumor grading is unknown for
individual cases, many attempts have been made to
arrive at an objective and quantitative grading of tumor
structure. Let us consider here the tumor texture, which
reflects the degree of differentiation of the tumor.
The tissue may be conceived as a random set with
different phases, which all possess a positive volume
fraction. This means consideration of the tumor tissue
as a volume process (Mattfeldt and Fleischer, 2005;
Mattfeldt et al., 2006). It consists of three phases:
tumor cells, stroma and lumina, which altogether
account for 100% of the tissue.

In diagnostic pathology we deal with histological
sections, i.e., very thin slices, onto which windows,
usually of rectangular or quadratic shape, are placed
for evaluation under microscopical view. Hence we are
faced in practice with random closed sets in 2D, which
may be quantified in terms of the three Minkowski
functionals: AA, the mean area of the interesting phase
per unit reference area (area fraction); BA, the mean
boundary length of the interesting phase per unit
reference area; and χA, the mean Euler number of
the interesting phase per unit reference area. Notably

all these quantities have a stereological interpretation,
hence they can be used for the estimation of
stereological model parameters:

VV = AA (1)

SV =
4
π

BA (2)

MV = 2πχA (3)

where VV is the volume fraction, SV is the mean surface
area per unit reference volume, and MV is the mean
curvature density (Stoyan et al., 1995). Eqs. 1–3 are
all fundamental stereological formulae and hold for
random closed sets under the conditions of isotropy
and stationarity for arbitrary sections. Recently a
new approach has been developed which allows a
joint estimation of all three Minkowski functionals
for a given image (Schmidt and Spodarev, 2005;
Spodarev and Schmidt, 2005). It provides not only
point estimates of VV , SV , and MV , but also estimates
of their asymptotic variances and covariances. Up
to now the aforementioned estimator has only been
applied to simulated images, but not yet to real image
material. As a first application to real images in a
simple situation, we decided to compare mammary
cancer tissue to normal (tumor-free) mammary tissue,
see also earlier publications of our group (Mattfeldt et
al., 1993; 1996; 2000; Mattfeldt and Stoyan, 2000).

The paper is organized as follows. In Section
‘Mathematical Methods’ the notation used throughout
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the paper is introduced. The specific intrinsic volumes
are defined by means of Steiner’s formula. The
method given in Spodarev and Schmidt (2005) and
Pantle et al. (2006a;b) to estimate these quantities
and their asymptotic covariance matrix is described
where some technical details are omitted. Section
‘Application to image data’ deals with the estimation
of specific intrinsic volumes from real image data
showing mammary tissue. The procedure for the two-
dimensional case is described in detail. With the
estimated quantities a statistical test is considered to
classify an image as tumor-free or as mammary cancer,
respectively. The paper ends with a discussion and an
outlook to further projects.

MATHEMATICAL METHODS

First we introduce some notation. For some fixed
d ≥ 2, denote the family of convex bodies, i.e.,
compact convex sets, in R

d by K and let R = {K ⊂
R

d : K = ∪n
i=1Ki, Ki ∈ K , n ∈ N} be the convex ring,

i.e., the family of all polyconvex sets in R
d . By S =

{M ⊂ R
d : M ∩ K ∈ R ∀K ∈ K } we denote the

extended convex ring. Then it holds K ⊂ R ⊂ S .
Let Br(x) be the closed ball in R

d with radius r > 0
centered at x and let o ∈ R

d be the origin. Further, k j
denotes the volume of the j-dimensional unit ball for
j = 0, . . . ,d. For two sets A,B ⊂ R

d the Minkowski
sum A ⊕ B and the Minkowski difference A ª B are
defined by A⊕B = {a+b : a ∈ A, b ∈ B} and AªB =
{x∈R

d : B̌+x⊂A}, respectively, where B̌ = {x∈R
d :

−x ∈ B} denotes the set B reflected at the origin.

For convex bodies K ∈ K it can be proven that
there exist d + 1 functionals V j : K → [0,∞) for j =
0, . . . ,d, such that the volume of the so called parallel
body K⊕Br(o) for r > 0 is given by Steiner’s formula

|K ⊕Br (o)| =
d

∑
j=0

rd− jkd− jVj (K) . (4)

A proof of this formula can be found, e.g., in chapter
2 of Schneider and Weil, 1992. The functionals V j
are called intrinsic volumes. They are related to
the Minkowski functionals W j : K → [0,∞) in the
following way: W j(K) = k j/

(d
j

)
Vd− j(K) for all j =

0, . . . ,d. The intrinsic volumes are not restricted to
convex bodies. There is a unique additive extension to
the convex ring R given by the inclusion-exclusion-
formula. For any polyconvex set K ∈ R, any n ∈ N

and any convex bodies K1, . . . ,Kn ∈ K with K = K1 ∪
. . .∪Kn it holds

Vj (K) =
n

∑
k=1

(−1)k−1 ∑
1≤i1<...<ik≤n

Vj
(
Ki1 ∩ . . .∩Kik

)

(5)

for j = 0, . . . ,d. Notice that the value of V j(K) does
not depend on the particular representation of K as
the union of convex sets Ki. The proof of existence
and uniqueness of this extension can be found in
Schneider, 1993. The formula itself can be shown by
induction using the fact that the intrinsic volumes are
additive, i.e., V j( /0) = 0 and for all K1,K2 ∈ K with
K1∪K2 ∈K it holds V j(K1∪K2) =V j(K1)+V j(K2)−
Vj(K1∩K2). Some of the intrinsic volumes have a nice
geometric interpretation: Vd(K) is the usual volume of
K, dVd−1(K) is the surface area of K and V0(K) is the
Euler-Poincaré characteristic of K.

In the following let Ξ be a stationary random
closed set in R

d with values in the extended convex
ring S almost surely. Let {Wn} be a monotonically
increasing sequence of compact convex observation
windows

Wn = nW (6)

with
W ∈ K , |W | > 0 and o ∈ int (W ) . (7)

Under appropriate assumptions, the expectation
EV j(Ξ∩Wn) is well defined and the limit

V j (Ξ) = lim
n→∞

EV j (Ξ∩Wn)

|Wn|
(8)

exists for all j = 0, . . . ,d, see, e.g., Schneider and
Weil, 2000. The functionals V j(Ξ) are called specific
intrinsic volumes of Ξ. In the two-dimensional case
they are well-known under the notation AA =V 2, BA =
2V 1 and χA =V 0 and are connected to the stereological
model parameters VV , SV and MV by Eqs. 1–3.

To estimate the specific intrinsic volumes from
a binary image we use a method developed in
Spodarev and Schmidt (2005). It makes use of the local
Euler-Poincaré characteristic, which is defined as the
expected Euler number of Ξ in a neighborhood of a
point x, i.e., as EV0(Ξ∩Br(x)). It can be shown that
for any r > 0 and for any x ∈ R

d it holds

EV0 (Ξ∩Br (x)) =
d

∑
j=0

rd− jkd− jV j (Ξ) . (9)

A proof of Eq. 9 can be found in chapter 5 of Schneider
and Weil (2000), see also Spodarev and Schmidt
(2005). Since this formula holds for any r > 0 we
can plug in d + 1 pairwise different radii 0 < r0 <
.. . < rd , where we have to take care that the edge-
corrected observation window W ªBr j(o) has positive
volume for j = 0, . . . ,d. Since the radii are numbered
in ascending order this holds if |W ªBrd (o)|> 0. From
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Eq. 9 we get the following system of d + 1 linear
equations

Av = y, (10)

where

A =




rd
0kd rd−1

0 kd−1 · · · r0k1 1
rd

1kd rd−1
1 kd−1 · · · r1k1 1

...
...

. . .
...

...
rd

dkd rd−1
d kd−1 · · · rdk1 1


 , (11)

v = (V 0(Ξ), . . . ,V d(Ξ))> and y = (EV0(Ξ ∩
Br0(0)), . . . ,EV0(Ξ ∩ Brd (0)))>. The matrix A is
regular because the radii r0, . . . ,rd are pairwise
different and it can be computed without problems.
With an appropriate estimator ŷ of y we now get an
estimator v̂ of v by

v̂ = A−1ŷ. (12)

Since the local Euler characteristic, i.e., the vector
y, can be estimated from one single image we also
can estimate the vector of specific intrinsic volumes,
i.e., the vector v, from one single image. To estimate
the vector y of local Euler characteristics for different
radii we consider the stationary random field Y j =

{Y j(x),x ∈ R
d} with

Y j (x) = V0
(
Ξ∩Br j (x)

)
(13)

for j = 0, . . . ,d. The stationarity of Y j follows directly
from the stationarity of Ξ. An unbiased estimator ŷ j of
y j = EY j(o) is given by

ŷ j =
∫

WªBrd (o)

Y j (x)µ (dx) , (14)

where µ is an arbitrary probability measure
concentrated on the reduced observation window
W ªBrd (o) to avoid edge effects. If µ is the normalized
Lebesgue measure, i.e.,

µ (·) =

∣∣·∩W ªBrd (o)
∣∣

∣∣W ªBrd (o)
∣∣ , (15)

the estimator ŷ j is given by

ŷ j =
1∣∣W ªBrd (o)

∣∣
∫

WªBrd (o)

Y j (x)dx. (16)

To study the variance of the estimator v̂
of the specific intrinsic volumes we consider a
sequence of observation windows {Wn}, which
satisfies condiditions Eq. 6 and Eq. 7. For each j =

0, . . . ,d and for each n ∈ N we can estimate y j on Wn
by

ŷn, j =
1∣∣Wn ªBrd (o)

∣∣
∫

WnªBrd (o)

Y j (x)dx. (17)

Under appropriate assumptions, the covariances

Covi j (x) = Cov(Yi (o) ,Y j (x)) (18)

exist for all i, j = 0, . . . ,d, see, e.g., Schmidt
and Spodarev (2005). If the covariances are
absolutely integrable and some further assumptions
are fulfilled (cf. Pantle et al., 2006a), then the
random vector

√
|Wn|(ŷ0,n − y0, . . . , ŷd,n − yd)

> is
asymptotically normally distributed with mean
vector o and covariance matrix Σ = (σi j)

d
i, j=0 with

σi j =
∫
Rd Covi j(x)dx. Therefore the random vector√

|Wn|(v̂0,n − v0, . . . ,vd,n − vd)
> is also asymptotically

normally distributed with zero mean vector and
covariance matrix Σv̂ = A−1Σ(A−1)>.

The values of these estimators v̂ j of the specific
intrinsic volumes depend heavily on the choice of the
radii r0, . . . ,rd , see also the discussion in Klenk et
al. (2006). To reduce this dependence a least-squares
approach is considered. Let 0 < r0 < .. . < rk−1 be
k > d +1 pairwise different radii. Similar to Eq. 10 we
get a system of k linear equations with the difference
that the vector y is k-dimensional and that A is not a
squared matrix any more because it has k rows and
d +1 columns. Anyhow, the minimization problem

|ŷ−Av∗| = min
x∈Rd+1

|ŷ−Ax| (19)

has a unique solution given by

v∗ =
(

A>A
)−1

A>ŷ. (20)

The estimator v∗ of the vector of specific intrinsic
volumes does not depend on the choice of radii as
much as the estimator v̂ in Eq. 12. Furthermore,
the random vector

√
|Wn|(v∗0,n − v0, . . . ,v∗d,n − vd)

> is
asymptotically normally distributed with zero mean
vector and covariance matrix Σv∗ = ÃΣ Ã> where Ã =
(A>A)−1A>.

The asymptotic covariance matrix Σ can be
estimated from the observation of the stationary
random fields Y j defined in Eq. 13. For each n ∈ N let
Wn0, . . . ,Wnk−1 ⊂ Wn. Let {Uni j} be a monotonously
increasing sequence of bounded sets with Uni j ⊂

Wni ⊕ W̌n j and |Uni j| > 0 for all n ∈ N and for
all i, j = 0, . . . ,k − 1. Additionally let limn→∞Uni j =
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supp(Covi j) and let the sets Uni j grow smaller in
comparison to Wni j, i.e.,

lim
n→∞

∣∣Uni j
∣∣2

∣∣Wni j
∣∣ = 0. (21)

Furthermore, assume that

lim
n→∞

minx∈Uni j

∣∣Wni j ∩ (Wni j + x)
∣∣

∣∣Wni j
∣∣ = 1. (22)

For each n ∈ N and i, j = 0, . . . ,k− 1 we consider the
estimator

σ̂ni j =
∫

Uni j

Ĉovni j (x)

∣∣Wni j ∩ (Wni j − x)
∣∣

∣∣Wni j
∣∣ dx (23)

of σi j with

Ĉovni j(x) =
∫

Wni j∩(Wni j−x)

Yi (y)Y j (x+ y)∣∣Wni j ∩ (Wni j − x)
∣∣dy− ŷi,nŷ j,n.

(24)
This sequence Σ̂n = (σni j) of estimators of Σ is
asymptotically unbiased, i.e., limn→∞ ‖EΣ̂n −Σ‖ = 0,
see, e.g., Schmidt and Spodarev (2005); Pantle et al.

(2006b), where ‖Σ‖ =
√

∑d
i, j=0 σ 2

i j denotes the matrix

norm. Under additional integrability conditions, Σ̂n is
L2 consistent for Σ, i.e., it holds limn→∞ E‖Σ̂n −Σ‖2 =
0. If Ξ is the Boolean model with primary grain M0
for example, the integrability conditions are fulfilled if
E|M0⊕Brd |

2 < ∞. From the estimators Σ̂n described in
Eq. 23 and Eq. 24 we get a sequence of estimators Σ̂∗

n
of the asymptotic covariance matrix Σv∗ by

Σ̂∗
n = Ã Σ̂n Ã> with Ã =

(
A>A

)−1
A>. (25)

APPLICATION TO IMAGE DATA

Now we are ready to apply the statistical approach
explained in the previous section to estimate the
specific intrinsic volumes of real image data showing
mammary tissue. There were ten cases of ductal
mammary cancer tissue and ten cases showing normal,
i.e., cancer-free, mammary tissue. From each case,
a sample of 3 × 3 = 9 contiguous quadratic images
was evaluated, where the first image was selected at
random. Each image had a size of 510× 510 pixels.
The concatenation led to a large quadratic image with
1530×1530 pixels, which is needed for the estimation
of the asymptotic variances. This means that the final
observation window is given by the rectangle

(a) Original image of tumour-free mammary tissue.

(b) Segmentation of Fig. 1(a) leads to this image,
which contains three phases: white—epithelial
cells, gray—lumen, black—stroma.

Fig. 1. Tumour-free mammary tissue. Haematoxylin-
Eosin stain (a) and segmented image (b), respectively.
The edgelength of the quadrat corresponds to 0.4 mm
at the scale of the specimen at this magnification.

[0,1529] × [0,1529]. Fig. 1a shows tumour-free
mammary tissue and Fig. 2a shows invasive ductal
mammary carcinoma. The edgelength of 510 pixels
corresponds to 0.4 mm at the scale of the specimen at
this magnification, i.e., Figs. 1a and 2a show only one
of the nine contiguous images. The same images are
shown in Figs. 1b and 2b, respectively, after interactive
segmentation of stroma, epithelium and lumina. The
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stroma is represented by the black phase, the grey
phase forms the lumina and the white phase stands for
the epithelium without the lumina, i.e., the tumor cells.

(a) Original image of invasive ductal mammary
carcinoma.

(b) Segmentation of Fig. 2a.

Fig. 2. Invasive ductal mammary carcinoma. In (a),
stain and magnification identical with Fig. 1a.  In (b),
segmentation identical with Fig. 1b.

These three phase images were converted into
three binary images by combining two phases. The
foreground of the resulting images may consist of one
of the three grey phases (e.g., the white phase) or of the
union of two of the three phases (e.g., white and grey).
We understand these binary images as realizations
of stationary and isotropic random closed sets (cf.

Mattfeldt and Stoyan, 2000b). Since these images are
two-dimensional the specific intrinsic volumes V 0,2V 1
and V 2 represent the mean Euler number per unit area,
the mean boundary length per unit area, and the area
fraction, respectively.

In the following, the procedure to calculate the
least-squares estimator given in Eq. 20 is described
step by step.

1. Choose the number k > 3 and the values of
the radii r0 < .. . < rk−1. We put k = 15 and
ri = 4.2 + 1.3i, i = 0, . . . ,14, following the
recommendation in Klenk et al. (2006). In this
particular case, the matrix A defined in Eq. 11 is
given by

A =




17.64π 8.4 1
30.25π 11.0 1

...
...

...
445.21π 42.2 1
501.76π 44.8 1




. (26)

2. Estimate the local Euler characteristic in the
reduced observation window W ª Br14(o) =
[23,1506]× [23,1506] for all radii r0, . . . ,r14 by
computing V0(Ξ ∩ Bri(x)) for all pixels x ∈ W ª
Br14(o) and averaging over all pixels. That means
the estimator ŷ from equation Eq. 16 is given in
discretized form by

ŷ j =
1

14842 ∑
x=(x1,x2)

x1,x2∈{23,...,1506}

V0
(
Ξ∩Br j (x)

)
. (27)

An algorithm to estimate the local Euler
characteristic for all radii simultaneously is given
in Klenk et al. (2006).

3. Now, the estimation of the specific intrinsic
volumes is straightforward by computing the least-
squares estimator v∗ = (A>A)−1A>ŷ.

4. To estimate the asymptotic covariance matrix the
theory says we need an unboundedly increasing
sequence of observation windows, cf. Eq. 6. In
practice we have only one concatenated quadratic
image with fixed size, and we assume it is large
enough. So we choose the averaging set U =
B300(o) and estimate the variances and covariances
using a discretized version of the estimator given in
Eq. 23, Eq. 24 and Eq. 25 where the integrals are
replaced by sums.

In the present study, the application of the joint
estimator described above to the white phase of the
images led to the following mean values for the
stereological model parameters Eqs. 1–3.
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Table 1. Means of the estimated values and the means
of their asymptotic standard deviations. The latter
means are not equal to the usual standard deviations
between the cases within the groups.

normal group carcinoma group
VV 0.15 0.43
Std(VV ) 0.037 0.047
SV 24.01 mm−1 40.85 mm−1

Std(SV ) 2.68 mm−1 1.97 mm−1

MV 106.91 mm−2 297.91 mm−2

Std(MV ) 122.07 mm−2 180.93 mm−2

In Table 1, the terms Std(VV ), Std(SV ) and
Std(MV ) denote the means of the asymptotic standard
deviations of the white phase per concatenated large
image. Thus, they are not identical with the standard
deviations of these model parameters ‘between images
within cases’ and also not identical with the ordinary
standard deviations of VV , SV and MV ‘between
cases within groups’ . The latter may be computed
using standard statistical formulae even with a
table calculator; however, this does not apply to
the asymptotic standard deviations. In addition, the
covariances between VV , SV and MV were computed,
but these are not reiterated here. In order to see which
parameter discriminated best between the groups,
the results were visualized graphically. For example,
Figs. 3 and 4 show the estimated area fraction of the
white phase and the estimated mean curvature density
of the white phase per unit area, respectively.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

�

�

��

�

�

�

��

�

�

��

�

�
���

�
�

carcinoma carcinoma-free

 

Fig. 3. Estimated area fraction of the white phase.

From Fig. 4 one can see that it is not possible to
base the decision whether an image shows mammary
carcinoma or not only on the mean curvature density.
Also a statistical test of the mean surface area per
unit volume alone does not lead to a sufficient
discrimination of the groups. However, the area
fraction of the white phase (Figure 3) seems to be
a better parameter to categorize the images into two
groups. Since this paper is focused on explaining
the theory and the algorithm of the new estimation
approach we will only test the area fraction which
yields acceptable results. Anyhow, it is clear that
the two groups in Fig. 4 belong to two different
settings. Therefore one could combine, e.g., area
fraction and Euler number and consider vectorial tests
to strengthen the results of a one-dimensional test.
With the approach described in the last section this is
possible and will be done in a further paper.

−600

−400

−200

0

200

400

600

800

1000

1200

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

carcinoma carcinoma-free

 

Fig. 4. Estimated mean curvature density MV (in
mm−2) of the white phase per unit area.

In the following, we write just ‘area fraction’
and omit the words ‘white phase’ for convenience.
From the last section we know that the least-squares
estimator is asymptotically normally distributed so we
can construct a statistical test for the area fraction.
Since the images have fixed size we don’t have
an unboundedly increasing sequence of observation
windows Wn. Instead we claim that the estimators are
approximately Gaussian because our images are large
enough. The null hypothesis states that ‘the expected
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area fraction in image j corresponds to the mean area
fraction in images showing normal mammary tissue,’
where the images 1–10 show normal mammary tissue
and the images 11–20 show mammary carcinoma
tissue. So if we write p j for the expected area
fraction in image j and p0 denotes the mean area
fraction in images showing normal mammary tissue,
the null hypothesis reads as H0 : p j = p0. As we
can see from Fig. 3, the estimated values of the
area fraction in images showing mammary carcinoma
tissue are greater than in images showing tumor-
free mammary tissue. That’s why we consider the
one-sided alternative hypothesis H1 : p j > p0. The
significance level is α = 5%. The unknown expected
area fraction p j in image j is estimated by the least-
squares estimator given in Eq. 20 or, to be precise, by
its third entry, and denoted by p̂ j. When calculating
the mean area fraction p0 one has to distinguish, if
the image whose area fraction we want to test shows
mammary cancer or normal tissue. In the first case we
define p0 as the arithmetic mean of the estimated area
fractions of the ten images showing tumor-free tissue,
i.e.,

p0 =
1
10

10

∑
i=1

p̂i . (28)

But if the considered image shows tumor-free
tissue, we have to exclude it from the calculation of
the mean, so we define p0 by

p0 =
1
9

10

∑
i=1
i6= j

p̂i . (29)

Now we can calculate the test statistic

Tj =
√
|W |

p̂ j − p0

σ̂ j
(30)

in image j, where σ̂ 2
j denotes the estimated variance

of
√

|W |( p̂ j − p0), see equations Eq. 23 and Eq. 24
and subsequent lines. In fact, it holds that

√
|W | =

1530 in the considered case, because all images are
squares with sidelength 1530 pixel. Slutsky’s theorem
yields that Tj is approximately standard Gaussian.
With the 95%-quantile z0.95 = 1.64 the critical range is
(1.64,∞), so the null hypothesis for image j is rejected
if the value Tj is greater than 1.64. The results are
shown in Table 2.

Table 2. Results of the test H0 : p j = p0 for images
showing tumor-free mammary tissue ( j = 1, . . . ,10)
and for images showing mammary cancer tissue ( j =
11, . . . ,20).

j p̂ j Rejection of H0

1 0.047224 no
2 0.094392 no
3 0.138055 no
4 0.145576 no
5 0.155753 no
6 0.159763 no
7 0.163755 no
8 0.163812 no
9 0.217735 no

10 0.232209 no
11 0.277096 yes
12 0.297491 yes
13 0.342711 yes
14 0.342963 yes
15 0.418210 yes
16 0.423122 yes
17 0.442027 yes
18 0.520348 yes
19 0.570691 yes
20 0.693262 yes

The null hypothesis is not rejected for the images
showing normal mammary tissue, but it is rejected for
all ten images showing mammary carcinoma tissue,
which means they are classified correctly.

Of course, we can, in a certain sense, exchange null
and alternative hypothesis and test the null hypothesis
that ‘the expected area fraction in image j corresponds
to the mean area fraction in images showing mammary
carcinoma tissue’ or, shortly, H̃0 : p j = p̃0. Here, p̃0
denotes the mean area fraction of images showing
mammary cancer tissue and as above there are two
definitions for p̃0 depending on what type of tissue the
considered image shows, cf. Eq. 28 and Eq. 29. Again,
the alternative is one-sided H̃1 : p j < p̃0 and the test
statistic is defined by

Tj =
√

|W |
p̂ j − p̃0

σ̂ j
. (31)

The results of this test are shown in Table 3.

19



MATTFELDT T ET AL: Characterization of mammary gland tissue

Table 3. Results of the test H̃0 : p j = p̃0 for
images showing tumor-free tissue ( j = 1, . . . ,10) and
for images showing mammary cancer tissue ( j =
11, . . . ,20).

j p̂ j Rejection of H̃0

1 0.047224 yes
2 0.094392 yes
3 0.138055 yes
4 0.145576 yes
5 0.155753 yes
6 0.159763 yes
7 0.163755 yes
8 0.163812 yes
9 0.217735 yes

10 0.232209 yes
11 0.277096 yes
12 0.297491 yes
13 0.342711 yes
14 0.342963 no
15 0.418210 no
16 0.423122 no
17 0.442027 no
18 0.520348 no
19 0.570691 no
20 0.693262 no

Table 3 shows that the null hypothesis is rejected for all
images showing normal tissue. But unfortunately there
are three images out of the ten showing mammary
carcinoma tissue for which the null hypothesis is
rejected although it should not be.

DISCUSSION

Eqs. 1–3 are well-known fundamental
stereological formulae, valid under the conditions of
isotropy and stationarity in a model-based approach,
and under the condition of IUR sampling from
arbitrary structures in a design-based approach.
However, there is a practical difference: the estimators
of the model parameters in Eqs. 1 and 2 are very
easy to implement with an image analyzer, but the
estimation of the Euler number is non-elementary even
in 2D. While estimation of VV and SV is already taught
in basic courses on stereology, this does not apply
for the Euler number. Nevertheless the Euler number
is of interest for a quantitative characterization of
carcinoma tissue of glandular origin, because the Euler

number is directly linked to fundamental pathological
tumor properties such as solid architecture where
ideally χ > 0, tubular architecture where ideally
χ = 0, and cribriform architecture where ideally
χ < 0. These textures may arise in all types of
adenocarcinomas. Sometimes a cribriform texture can
be found in mammary carcinomas; in practice it is
most important to recognize this texture component
in prostatic carcinomas, where it is known to be
associated with a poorer prognosis as compared
to tubular differentiation. Furthermore, the usual
stereological approach, even if it encompasses the
Euler number, leads merely to point estimates of the
model parameters, but does not provide an insight into
the covariance matrix, i.e., the asymptotic variances
and covariances of VV , SV , and MV of the three phases
remain unknown. Point estimates for VV and SV of
the epithelial phase of tumour-free mammary tissue
and mammary carcinomas obtained from conventional
stereological methods were previously published
(Mattfeldt et al., 2000, see Table 1 therein). The results
were very similar to the present study. This shows
the good reproducibility (robustness) of the method,
in which the images were segmented interactively.
Fully automatic segmentation of mammary tissue into
epithelium, lumen, and tumour cells by image analysis
would be desirable, but this aim is difficult to achieve
at the moment. The plausibility of the results was
checked by using a theorem of Tomkeieff, which states
that the mean length of intercepts through particle
profiles, l1, is related to the Minkowski functionals
of the particles by the equation l1 = 4VV /SV (see
Baddeley and Jensen, 2005, p. 33). According to this
relation, one would expect values for l1 ≈ 0.025 mm
in the tumour-free group and l1 ≈ 0.042 mm in the
carcinoma group, which roughly corresponds to the
visual impression, see Figs. 1b and 2b. In contrast to
many other methods to estimate the specific intrinsic
volumes the approach given in Spodarev and Schmidt
(2005) yields not only the estimates, but also the
(asymptotic) variances and covariances. All values can
be computed from one large concatenated image. The
classical approach to estimate the sample variance in
each group is inappropriate here because we want to
test each image separately. This might be interesting
if there is only one image available in a practical
application, which may be divided into subwindows.

In the special case of mammary tissue it turned
out that the area fraction of the white phase, i.e.,
the part of the image that shows epithelial cells,
is a good criterion to detect if an image shows
mammary cancer tissue or not. The area fraction
has the useful property of being independent of
the magnification of the image. Although this was
not important in our study, it may be relevant for
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the analysis of images where the scaling factor is
unknown. A practical example for this situation has
emerged more and more in the last decade. There are
published datasets available in the internet consisting
of images of various tumor types, e.g., also mammary
and prostatic carcinomas, where expert groups have
performed the histopathological grading for reference
purposes. Usually, these images are given without
any information on the final magnification, and often
it will not be possible to retrieve the magnification
factor any more. It would be attractive to perform a
quantitative meta-analysis of these images by means of
spatial statistics. Due to the aforementioned reasons,
one will then be restricted to methods which are
independent of the magnification. This holds for the
VV component of the joint estimator described here.
In contrast to the usual routine method, e.g., point
counting, our method will also provide an estimate
of the asymptotic variance, and thus yield valuable
additional information. As one can conclude from
Tables 2–3, the test on tumor-free tissue yields better
results than the test on mammary carcinoma tissue.

The most common tumor types of the female
breast are invasive ductal and lobular carcinoma.
These designations indicate a tumor differentiation
more similar to the ducts or to the lobules of
the mammary parenchyma, respectively. For both
types of breast cancers, an attempt is made towards
grading of malignancy in routine diagnostics. This
is important for prognosis prediction and therapy
planning. It is intended to apply our method for the
characterization of mammary carcinomas of different
degrees of malignancy, and eventually to use it for
the prediction of the grade of malignancy from spatial
data, i.e., for the purpose of pattern recognition. Also
it will be interesting to differentiate by this technique
between ductal and lobular mammary carcinomas,
which may be difficult in some cases (Mattfeldt
and Fleischer, 2005). However, before these two
more ambitious projects are put into practice, we
thought it advisable to implement the methodology
first in a simpler setting comparing tumor-free tissue
to carcinoma tissue, where the differences between
the classes of specimens are more pronounced. For
the advanced applications, it may become useful to
consider vectorial tests. With the described method it is
possible to characterize the tissue high-dimensionally.
If only one phase is considered, one obtains 9 instead
of 3 numerical values per image (the three point
estimates, the three asymptotic variances and the three
asymptotic covariances of the Minkowski functionals).
This rises to a whole bunch of characteristics if also
the other two phases are taken into account. This will
be subject of a further paper.
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